• Aucun résultat trouvé

DATA REDUCTION FROM AREA DETECTORS USED WITH CONTINUOUS WAVELENGTH NEUTRON SOURCES

N/A
N/A
Protected

Academic year: 2021

Partager "DATA REDUCTION FROM AREA DETECTORS USED WITH CONTINUOUS WAVELENGTH NEUTRON SOURCES"

Copied!
9
0
0

Texte intégral

(1)

HAL Id: jpa-00225822

https://hal.archives-ouvertes.fr/jpa-00225822

Submitted on 1 Jan 1986

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

DATA REDUCTION FROM AREA DETECTORS USED WITH CONTINUOUS WAVELENGTH

NEUTRON SOURCES

C. Wilkinson

To cite this version:

C. Wilkinson. DATA REDUCTION FROM AREA DETECTORS USED WITH CONTINUOUS

WAVELENGTH NEUTRON SOURCES. Journal de Physique Colloques, 1986, 47 (C5), pp.C5-35-

C5-42. �10.1051/jphyscol:1986505�. �jpa-00225822�

(2)

JOURNAL DE PHYSIQUE

Colloque C5, supplement au n o 8, Tome 47, aoOt 1986

DATA REDUCTION FROM AREA DETECTORS USED WITH CONTINUOUS WAVELENGTH NEUTRON SOURCES

C

.

WILKINSON

King

's

College London (KQC) , Strand, GB-London WCPR 2LS.

Great-Britain

~6sum6

-

Une technique pour 1 ' i n t e g r a t i o n de 1 'i n t e n s i t e des r e f l e x i o n s de monocristaux a 6 t 6 d6veloppGe pour l e s m u l t i d e t e c t e u r s bidimensionnels avec analyse de temps de v o l . El l e e s t t r e s proche de l a technique a ( I ) / I de reconnaissance de forme pr6cedemment d e c r i t e p a r N i l kinson & Khamis / I / pour l e s faisceaux monochromatiques. Son e f f i c a c i t e a

e t e

mise en evidence p a r l ' a n a l y s e de donnees obtenues

a

Argonne s u r l e d i f f r a c t o m e t r e IPNS pour mono- c r i s t a u x .

A b s t r a c t

-

A technique has been developed f o r t h e i n t e g r a t i o n o f area d e t e c t o r s i n g l e c r y s t a l r e f l e c t i o n s observed w i t h t i m e o f f l i g h t a n a l y s i s . I t i s c l o s e l y r e l a t e d t o t h e p a t t e r n r e c o g n i t i o n o ( I ) / I technique f o r use w i t h monochromatic beams p r e v i o u s l y described by Glilkinson and Khamis / I / . The e f f e c t i v e n e s s o f t h e technique has been observed by a n a l y s i s o f data gathered on t h e s i n g l e c r y s t a l d i f f r a c t o m e t e r a t IPNS, Argonne.

I

-

INTRODUCTION

I n a previous paper

/ I /

a method has been described f o r t h e optimal i n t e g r a t i o n o f d i f f r a c t i o n peaks from a c r y s t a l w i t h an area d e t e c t o r and a monochromatic beam.

I t s implementation i n t h e form o f t h e PEKIrlT program and i t s use i n t h e a n a l y s i s o f data c o l l e c t e d on t h e D l 9 "banana" d e t e c t o r a t ILLl,is described i n t h i s volume /2/.

For t h a t case t h e t h r e e dimensional data a r r a y i n d e t e c t o r space" has t h e two s p a t i a l dimensions o f t h e detector, w i t h t h e t h i r d dimension being steps i n c r y s t a l angle r o t a t i o n . I n t h e case o f a continuous wavelength pulsed beam and an area d e t e c t o r t h e normal method f o r r e c o r d i n g a s i n g l e c r y s t a l r e f l e c t i o n i s t o leave t h e c r y s t a l s t a t i o n a r y and t o analyse t h e t i m e o f a r r i v a l o f d i f f r a c t e d neutrons o f d i f f e r e n t wavelengths, thereby p r o v i d i n g t h e t h i r d dimension i n t h e data a r r a y . The data f o r r e f l e c t i o n s has a s i m i l a r s u p e r f i c i a l resemblance t o t h a t f o r a mono- chromatic beam, b u t two s i g n i f i c a n t d i f f e r e n c e s should be noted.

The f i r s t i s t h a t t h e w h i t e beam data i s recorded simultaneously i n a l l elements o f t h e data a r r a y and i n f o r m a t i o n i s a v a i l a b l e a t a l l times on r e f l e c t i o n s which fa17 w i t h i n t h e s p a t i a l grasp o f t h e s t a t i o n a r y detector. The experimental s t a t i s t i c s a r e o f course improved as a f u n c t i o n o f t h e measurement time i n t h a t p o s i t i o n . I n t h e monochromatic beam case t h e data i s produced i n a d i f f e r e n t sequence, w i t h r e f l e c t i o n s being completed a t d i f f e r e n t times corresponding t o d i f f e r e n t stages o f c r y s t a l r o t a t i o n . Since t h e b a s i c philosophy of t h e i n t e g r a t i o n method o f PEKINT i s t h a t t h e parameters d e s c r i b i n g t h e shapes o f s t r o n g peaks a r e used t o improve t h e accuracy w i t h which t h e i n t e n s i t i e s o f t h e weak peaks can be measured, t h i s d i f f e r e n c e presents an improved o p p o r t u n i t y f o r data processing w h i l e measure- ment i s i n progress as t h e s t r o n g peaks are always a v a i l a b l e f o r a c h a r a c t e r i s a t i o n o f t h e i r p r o p e r t i e s .

The second i s t h a t w h i l e i n t h e monochromatic beam case t h e shapes o f t h e peaks i n t h e t h r e e dimensional a r r a y u s u a l l y approximate t o Gaussian e l l i p s o i d s i n v a r i o u s o r i e n t a t i o n s r e l a t i v e t o t h e s p a t i a l and r o t a t i o n dimensions, i n t h e pulsed w h i t e

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1986505

(3)

C5-36 JOURNAL

DE

PHYSIQUE

beam case t h e s p a t i a l shape i s approximately Gaussian b u t t h e time shape i s i n h e r e n t l y asymmetric due t o t h e d i f f e r e n t r i s e and decay times o f t h e neutron pulses a r r i v i n g a t t h e specimen. The consequence o f t h i s f o r t h e i n t e s r a t i o n method, which p a r t i t i o n s t h e peak according t o t h e volumes o f p a r t i c u l a r i n t e n s i t y contours i s t h a t these volumes a r e no l o n g e r c o n c e n t r i c i n t h e pulsed beam case.

This i s n o t a fundamental problem b u t means t h a t i f t h e peaks a r e t o be p a r t i t i o n e d i n t h i s way t h a t t h e p o s i t i o n s of centres o f t h e volumes o f p a r t i c u l a r i n t e n s i t y contours r e l a t i v e t o t h e centres o f g r a v i t y o f t h e s t r o n g peaks should be recorded.

I 1

-

COElPUTATION OF PEAK SHAPES FOR PULSED BEAM BRAGG REFLECTIONS

Using r e c i p r o c a l s p a c e / r e f l e c t i n g sphere geometry the i n t e n s i t y d i s t r i b u t i o n i n s i n g l e c r y s t a l r e f l e c t i o n s has been c a l c u l a t e d from t h e beam divergence, t h e c r y s t a l 1 it e spread o f t h e specimen, t h e wavelength ( t i m e ) p r o f i l e o f t h e p u l s e a r r i v i n g a t t h e specimen from t h e moderator and t h e p h y s i c a l s i z e o f t h e specimen.

The combined e f f e c t s o f beam divergence and c r y s t a l l i t e spread on t h e peak a t d i f f r a c t i o n angles

r ,

v places i n t e n s i t y a t p o i n t s d r , dv, dT from t h e peak c e n t r e i n a plane i n r

,

v

,

T space s a t i s f y i n g t h e equation

dk =

3

= ( c o s r s i n v dv + s i n r c o s v d r )

- A T 2(1

-

c o s r c o s v

1 ...

( 1 )

(This equation may be d e r i v e d by d i f f e r e n t i a t i o n o f Bragg's law w r i t t e n i n t h e form cos y cos v = 1

-

k2/2d2, keeping t h e i n t e r p l anar spacing d constant. )

Each p o i n t i n t h a t plane i s then convoluted w i t h t h e time d i s t r i b u t i o n o f t h e p u l s e a r r i v i n g a t t h e specimen. F i n a l l y t h e d i s t r i b u t i o n must be convoluted w i t h t h e shape o f t h e specimen. The form o f h a l f h e i g h t peak contours f o r d i f f e r e n t d i f f r a - c t i o n angles

r ,

v i s shown i n f i g . 1 f o r a model i n which t h e primary beam d i v e r g - ence has been made i s o t r o p i c a l l y Gaussian w i t h 0.667' f u l l w i d t h a t h a l f h e i g h t (fwhh) and t h e c r y s t a l l i t e spread i s o t r o p i c a l l y Gaussian w i t h 0.25" fwhh. The i n t e n s i t y d i s t r i b u t i o n has been p r o j e c t e d down t h e time a x i s . No account has been taken i n t h i s case o f f i n i t e specimen size.

v

= 30'

Fig. 1

-

V a r i a t i o n o f t h e shape o f t h e d i f f r a c t e d beam w i t h d i f f r a c t i o n angles

r , v .

I s o t r o p i c beam divergence o f 0.667" fwhh and c r y s t a l 1 i t e spread o f 0.25" fwhh have been assumed. The dashed o u t l i n e i n d i c a t e s t h e area covered by t h e SCD

d e t e c t o r a t Argonne Laboratory.

v= -30°

% - --e-@-@

r=

30' so" 90" 120"

r=18@

These c a l c u l a t i o n s have been compared w i t h measurements made by Nelmes e t a1 /3/ on a c r y s t a l o f P r o u s t i t e (Ag3AsS3) w i t h the SCD s i n g l e c r y s t a l d i f f r a c t o m e t e r /4/ a t Argonne National Laboratory. The d e t e c t o r was s e t w i t h i t s c e n t r e a t

r

= 90"

v = 0' and spanned t h e range i n

r ,

shown i n d o t t e d o u t l i n e i n f i g u r e 1. i t

(4)

can be seen t h a t i n t h i s r e g i o n t h e p r i n c i p a l axes o f t h e peak shape e l l i p s o i d s should be almost p a r a l l e l t o t h e X, Y d i r e c t i o n s and t h i s was i n f a c t found t o be t h e case. Equation ( 1 ) i n d i c a t e s t h a t i f measured a t t i m e i n t e r v a l s dT which a r e p r o p o r t i o n a l t o T a l l peaks should be t h e same shape a t a p a r t i c u l a r

r,v.

T h i s i s i l l u s t r a t e d i n f i g . 2 where the t i m e v a r i a t i o n o f t h r e e r e f l e c t i o n s a r r i v i n g a t w i d e l y d i f f e r e n t times (and i n p o s i t i o n s marked P,S,Q i n f i g . 1 ) i s seen t o be very s i m i l a r when p l o t t e d as a f u n c t i o n o f dT/T.

Fig. 2

-

Time dependance o f p u l s e f o r t h r e e

d i f f e r e n t r e f l e c t i o n s from P r o u s t i t e c r y s t a l as a f u n c t i o n o f dT/T.

The r e f l e c t i o n shape i n t h e X,Y d i r e c t i o n s was found t o vary l e s s across t h e

d e t e c t o r area t h a n i n d i c a t e d i n f i g u r e 1, presumably due t o specimen s i z e broadening e f f e c t s . An i s o m e t r i c p r o j e c t i o n o f t h e i n t e n s i t y i n t h e c e n t r a l X,T s e c t i o n o f t h e s t r o n g peak S i s shown i n f i g u r e 3. The maximum count i s 10765 and t h e average background l e v e l i s 17.

10765 F i g . 3

-

Central X,T s e c t i o n through s t r o n g peak S. Maximum count 10765, average background 17.

(5)

JOURNAL DE PHYSIQUE

The assymetric v a r i a t i o n w i t h t i m (sharp r i s e , slow f a l l ) which can be seen i n f i g . 2 and a l s o i n f i g . 3 means t h a t i f t h r e e dimensional constant i n t e n s i t y contours a r e drawn f o r a peak they a r e n o t concentric, b u t t h a t t h e i r c e n t r e s o f g r a v i t y are displaced along t h e t i m e axis. T h i s i s f u r t h e r discussed below.

111

-

THE a ( I ) / I PEAK INTEGRATION METHOD

The o ( I ) / I technique was f i r s t described by Lehmann and Larsen /5/ and has s i n c e been considerably extended

/ I /

t o deal w i t h PSD data.

Suppose t h a t a s t r o n g r e f l e c t i o n i s c h a r a c t e r i s e d by measuring t h e i n t e n s i t y I ( p ) contained i n p peak p o i n t s which l i e w i t h i n a s e r i e s o f shapes s e t up t o approximate t o i n t e n s i t y contours i n t h e peak. L e t I o ( p o ) be t h e " t o t a l " i n t e n s i t y o f t h e peak contained w i t h i n po p o i n t s and l e t x ( p ) be t h e r a t i o I ( p ) / I ( p o ) . Suppose a l s o t h a t t h e r e i s a weak peak o f t o t a l i n t e n s i t y WO(po) which has t h e same shape as t h e s t r o n g peak and s i t s on t h e same background B. I t can then be shown /6/ t h a t t h e q u a n t i t y o(W)/W and a l s o t h e q u a n t i t y o(W/x) [

-

o(Wo)] i s minimised when t h e eauation

i s s a t i s f i e d and t h e r e f o r e corresponds t o t h e minimum e r r o r i n measurement o f W o when t h e peak i s d i v i d e d up i n t h i s way. ( c i s a constant t h e value o f which depends on t h e r a t i o o f t h e number o f background p o i n t s t o t h e number o f peak p o i n t s a t which a(W)/W i s a minimum. I t i s 1 when t h e number o f p o i n t s over which t h e value o f B i s measured i s much g r e a t e r than t h e number o f peak p o i n t s and 2 when t h e two a r e c o n s t r a i n e d t o be equal .)

Equation 2 can be solved f o r t h e s t a t i s t i c a l l y optimum number o f p o i n t s f o r i n t e - g r a t i o n o f t h e weak peak when t h e q u a n t i t i e s IodP/dI and 2p/x have been obtained from nearby s t r o n g peaks. F i g u r e 4 shows these q u a n t i t i e s d e r i v e d from t h e s t r o n g peak S whose c e n t r a l s e c t i o n i s i l l u s t r a t e d i n f i g u r e 3.

" '?

Y

lo

. -Byy

I

1

a!

a i F i g . 4

-

V a r i a t i o n o f x, I d ~ / d I , . - and 2p/x f o r - -

&! numbers o f peak p o i n t s

i n c l u d e d w i t h i n i n t e g r a - O? t i o n contour e l l i p s o i d s

strono Peak S

g = 139287 o.I f o r s t r o n g peak S. The

1; 17 lowest contour e l 1 ip s o i d

a. contained 520 p o i n t s .

0.3

The i n t e g r a t i o n volumes were those e l l i p s o i d s w i t h t h e same moment o f i n e r t i a tensors and same centres as those corresponding t o t h e chosen peak contours, a t t a c h i n g u n i t weight t o each peak p o i n t . T h e i r n a j o r axes a r e so c l o s e t o t h e d e t e c t o r and time axes t h a t f o r s i m p l i c i t y they have been assumed t o l i e e x a c t l y i n

(6)

t h e s e d i r e c t i o n s . Figure

5

shows t h e s e e l l i p s o i d s f o r peak S

i n

X,T s e c t i o n s through t h e i r c e n t r e s .

A

displacement o f up t o 0.6 elements i n T

is

apparent between high and low contours.

Fig.

5

- X,T s e c t i o n s through i n t e g r a t i o n volumes f o r peak S.

E l l i p s o i d a l i n t e g r a t i o n volumes can be used t o p a r t i t i o n t h e s t r o n g peak I o ( p ) and generate t h e curves of Figure 4 even though t h e t r u e i n t e n s i t y contours a r e n o t s t r i c t l y e l l i p s o i d a l . There is no consequent l o s s of accuracy in estimating

W o

provided t h a t t h e i n t e g r a t i o n volumes a r e c o r r e c t l y positioned r e l a t i v e t o t h e c e n t r e of t h e weak peak.

IV - TEST OF THE METHOD FOR INTEGRATION OF WEAK PEAKS

In o r d e r t o t e s t t h e r e l i a b i l i t y of i n t e g r a t i o n of t h e peak within a a ( I ) / I minimum volume f o r weak peaks, an a r t i f i c i a l s e r i e s o f t h e s e with i n t e n s i t i e s 0.1, 0.01 and 0.001 of and t h e same shape a s t h e s t r o n g peak S were generated.

Including t h e model peak t h e s e represented s i g n a l t o noise r a t i o s (over t h e whole e x t e n t o f t h e peak) o f 16,1.6,0.16 and 0.016. An i s o m e t r i c p r o j e c t i o n through t h e c e n t r a l X,T s e c t i o n o f t h e weakest peak i s shown i n f i g u r e

6.

I t i s viewed from t h e same p o s i t i o n a s f i g u r e

3 .

A peak point (average value 10.8) can just be detected r i s i n g above t h e background (average value 17).

Fig. 6 - Isometric

p r o j e c t i o n o f c e n t r a l X,T

s e c t i o n i n t e n s i t y o f a

peak which has t h e same

shape a s

S,

but is 1000

times weaker and s i t s on

an average background of

17.

(7)

C5-40 JOURNAL DE PHYSIQUE

The q u a n t i t y o(W/x) [ 5 o(Wo)

1

has been c a l c u l a t e d f o r i n c r e a s i n g numbers o f peak p o i n t s a t these s i g n a l t o n o i s e r a t i o s and i s shown as a f u n c t i o n o f t h e normalised v a r i a b l e p/po i n f i g u r e 7. The p r e d i c t e d p o s i t i o n s o f t h e u ( I ) / I minima from equation 1 a r e i n d i c a t e d . (Since t h e s t r o n g e s t peak can n o t be taken as a

"bootstrap" model f o r i t s e l f , t h e minimum value o f u(Wo) occurs a t t h e f u l l l i m i t o f t h e peak, w h i l e i t s o ( I ) / I value l i e s much c l o s e r t o t h e peak c e n t r e . ) T h i s i s a consequence o f t h e very "sharp" nature o f t h e time r i s e o f t h e peaks compared w i t h t h e slower s p a t i a l v a r i a t i o n , and u ( I ) / I p o i n t s can be seen t o g e t i n - c r e a s i n g l y c l o s e t o t h e peak c e n t r e as t h e s i g n a l gets weaker.

F i g . 7

-

o(Wo) c a l c u l a t e d f o r peaks o f t h e same shape as S, ( b u t w i t h v a r y i n g s i g n a l t o n o i s e r a t i o s ) as a f u n c t i o n o f i n t e g r a t i o n volume.

I t can be seen t h a t gajns i n accuracy below 80 peak p o i n t s a r e o n l y s l i g h t and thought t o be t o o r i s k y due t o " s t a t i s t i c a l " mis-centering o f t h e i n t e g r a t i o n volume t o be worthwhile. S e t t i n g a minimum i n t e g r a t i o n volume o f 80 p o i n t s , ( r o u g h l y t h e 1% h e i g h t contour, c o n t a i n i n g 94% o f t h e o v e r a l l i n t e n s i t y ) i s s a t i s f a c t o r y , i n t h a t mis-centerings o f up t o 1 peak element i n any d i r e c t i o n produce o n l y a small e r r o r i n I. T h i s has been e m p i r i c a l l y estimated by d i s p l a c e - ment o f t h e i n t e g r a t i o n volume w i t h i n peak S i n X,Y and T d i r e c t i o n s . The

v a r i a t i o n i s shown i n f i g u r e 8.

Fig. 8

-

V a r i a t i o n i n t h e i n t e n s i t y i n c l u d e d w i t h i n t h e 1% contour as a f u n c t i o n o f t h e c e n t r e of t h e i n t e g r a t i o n volume i n X,Y and T d i r e c t i o n s .

(8)

The o v e r a l l gains i n accuracy o f e s t i m a t i n g 5 (W,) by choosing an i n t e g r a t i o n volume o f 80 r a t h e r than 520 p o i n t s a r e shown i n Table 1. I t can be seen t h a t t h e g a i n i s more than 300% f o r t h e weakest peak considered.

Also shown i n t h e f i n a l column o f Table 1 i s t h e "computationally simulated" value o f u (Wo) which was obtained by 100 repeated generations of peaks o f those

s t r e n g t h s w i t h random n o i s e applied. These values agree w e l l w i t h those p r e d i c t e d by equation 2.

Table 1

-

o(W0) as a f u n c t i o n o f i n t e g r a t i o n volume. Also shown i s t h e

"computationally simulated" value o f o(W0) obtained by repeated peak generation.

V

-

DISCUSSION AND CONCLUSIONS

o(W,) by repeated peak generation

(80 p o i n t s )

- -

127 52 38 SignalINoise

R a t i o

16 1.6 0.16 0.016

The a (1111 method o f peak i n t e g r a t i o n has been adapted and found t o work s a t i s - f a c t o r i l y f o r white beam pulsed source neutron d i f f r a c t i o n .

When measured as a f u n c t i o n o f X,Y p o s i t i o n elements on t h e d e t e c t o r and constant dT/T i n t h e t i m e dimension t h e d i f f r a c t i o n peaks have been found t o vary o n l y s l i g h t l y i n shape over t h e whole volume o f r e c i p r o c a l space sampled. T h i s means t h a t t h i s method o f i n t e g r a t i o n , which r e l i e s on i n t e r p o l a t i o n o f s t r o n g peak parameters a t t h e p o s i t i o n o f weak r e f l e c t i o n s i s even more s u i t a b l e f o r t h i s case than the monochromated beam/crystal r o t a t i o n method, where i t . h a s p r e v i o u s l y been demonstrated t o work. Indeed, because o f the "sharp" n a t u r e o f t h e observed d i f f r a c t i o n peaks the method can be s i m p l i f i e d s t i l l f u r t h e r and t h e "minimum"

i n t e g r a t i o n volume adopted f o r a l l peaks which are n o t considered "strong" ( d e f i n e d t o have s i g n a l t o n o i s e r a t i o s measured over t h e

whole

range o f t h e peak of

g r e a t e r than 1).

o(W0) estimated from 520 p o i n t s 60 p o i n t s

400 400

185 130

148 58

143 45

T h i s has p a r t i c u l a r advantages when t h e peaks a r e c l o s e t o g e t h e r in t h e o v e r a l l data array, as e r r o r s due t o o v e r l a p o f t h e o u t e r regions o f peaks can be avoided.

It a l s o means t h a t on7y p a r t i a l l y recorded ("edge") peaks can be d e a l t w i t h s a t i s f a c t o r i l y , thereby i n c r e a s i n g t h e o v e r a l l number o f r e f l e c t i o n s which can be e x t r a c t e d from a data array. T h i s f e a t u r e i s o f course even more valuable when' u s i n g a "banana" d e t e c t o r .

w

Q

139287 13929 1392 139

By i t s nature, t h e method i s p a r t i c u l a r l y s u i t a b l e f o r t h e time o f f l i g h t method, as o n - l i n e processing f o r t h e establishment o f a p p r o p r i a t e peak i n t e g r a t i o n volumes can proceed as t h e data s t a t i s t i c s b u i l d up and a l i s t o f i n t e g r a t e d i n t e n s i t i e s be r a p i d l y e s t a b l i s h e d as soon as measurement has f i n i s h e d . The o ( I ) / I procedure w i 11 be implemented f o r t h e s i n g l e c r y s t a l d i f f r a c t o m e t e r

(SXD) on t h e I S I S s p a l l a t i o n source a t t h e K u t h e r t o r d Appleton Laboratory.

V l

-

ACKNOWLEDGEMENTS The author i s g r a t e f u l t o Dr. W.I.F. David f o r t h e p r o - v i s i o n o f experimental data on Ag,AsS,, t o Dr. J.B. F o r s y t h and Dr. R. S t a n s f i e l d f o r u s e f u l discussions and Miss V. Leavers f o r assistance i n p r e p a r i n g some o f t h e diagrams.

(9)

C5-42 JOURNAL DE PHYSIQUE

REFERENCES

/1/ Wilkinson, C. and Khamis, H.W. i n P o s i t i o n S e n s i t i v e D e t e c t i o n o f Thermal Neutrons, Academic Press (1983) 358.

/ 2 / S t a n s f i e l d , R.F.D. T h i s volume.

/3/ Nelmes, R.J., Howard, C.J., Ryan, T.W., David, W.I.F., Schultz, A.J. and Leung, P.C.W., J. Phys. C. 17 (1984) L861.

/4/ Schultz, A.J., Srinivasan, S(T, T e l l e r , R.G., Williams, J.M. and Lukeheart, C.M.

3. Am. Chem. Soc. 106 (1984) 999.

/5/ Lehmann, P1.S. and E s e n , F.K., Acta Cryst. A30 (1974) 580.

/6/ Wilkinson, C. and Khamis, H.W., A.I.P. Conference Proceedings No 89 (1981) 111.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to