• Aucun résultat trouvé

GAIN CONDITION FOR LONG-LASER-PULSE PRODUCED PLASMA

N/A
N/A
Protected

Academic year: 2021

Partager "GAIN CONDITION FOR LONG-LASER-PULSE PRODUCED PLASMA"

Copied!
11
0
0

Texte intégral

(1)

HAL Id: jpa-00225856

https://hal.archives-ouvertes.fr/jpa-00225856

Submitted on 1 Jan 1986

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

GAIN CONDITION FOR LONG-LASER-PULSE PRODUCED PLASMA

W. Brunner, Th. Schlegel

To cite this version:

W. Brunner, Th. Schlegel. GAIN CONDITION FOR LONG-LASER-PULSE PRO- DUCED PLASMA. Journal de Physique Colloques, 1986, 47 (C6), pp.C6-99-C6-108.

�10.1051/jphyscol:1986613�. �jpa-00225856�

(2)

JOURNAL DE PHYSIQUE,

Colloque C6, suppl6ment au n o 10, Tome 47, octobre 1986

GAIN CONDITION FOR LONG-LASER-PULSE PRODUCED PLASMA

W. BRUNNER and Th. SCHLEGEL

Zentralinstitut fiir Optik und Spektroskopie der Akademie der Wissenschaften der DDR, Rudower Chaussee 6 , DDR-1199 Berlin, D.R.G.

A b s t r a c t :

The i n v e r s i o n c o n d i t i o n f o r laser-produced plasmas i s analysed t h e o r e t i c a l l y f o r carbon f i b r e t a r g e t s i n r e l a t i o n t o the i n t r i n s i c i n t e n s i t y and d u r a t i o n o f h e a t i n g l a s e r pulses.

The s p a t i a l and temporal dependence o f t h e g a i n f o r t h e 3-2 and 4- 3 t r a n s i t i o n s i n c l u d i n g r a d i a t i o n t r a p p i n g e f f e c t s w i l l be discussed.

1. I n t r o d u c t i o n

The t h e o r e t i c a l p r e d i c t i o n o f t h e p o s s i b i l i t y t o produce a m p l i f i - c a t i o n o f XUV o r s o f t X-ray r a d i a t i o n i n laser-produced plasmas [I]

s t i m u l a t e d i n t e n s e e f f o r t s i n laser-plasma i n t e r a c t i o n r e s e a r c h f o r over t h e l a s t decade. C a l c u l a t i o n s [2-41 have shown t h a t under a p p r o p r i a t e plasma c o n d i t i o n s l a r g e g a i n s and a m p l i f i c a t i o n can be' achieved. Recently, s c o n c l u s i v e demonstration o f such an a m p l i f i - c a t i o n conducted a t t h e Novette l a s e r - t a r g e t i r r a d i a t i o n f a c i l i t y was r e p o r t e d on [5,6J. P o p u l a t i o n i n v e r s i o n s i n n e o n l i k e i o n s obtained i n c i t e d above c a l c u l a t i o n s and experiments were e x p l a i n e d by use of a l a s e r - d r i v e n electron-collisional-excitation scheme.

Other pump mechanisms[7] a r e charge-exchange 8 1 , i n t e r m e d i a t e o p t i c a l pumping [ 9 ] o r t h e recombination scheme 110-14

5 .

I n t h i s paper we present some t h e o r e t i c a l r e s u l t s concerning t h e g e n e r a t i o n o f p o p u l a t i o n i n v e r s i o n s i n laser-produced plasmas through recombination pumping. A one-dimensional gasdynamic code w i t h n o n l i n e a r heat conduction s i m u l a t e s t h e i n t e r a c t i o n o f l a s e r l i g h t (1,- = 1.06 ,urn, IL = 1011

-

1013 W cmo2, tL- 10 ns) w i t h a c y l i n d r i c a l carbon plasma. The c a l c u l a t e d plasma c h a r a c t e r i s t i c s such as the t i m e - e v o l v i n g e l e c t r o n and i o n temperatures o r d e n s i t i e s a r e f u r t h e r used t o e s t i m a t e p o p u l a t i o n d e n s i t i e s i n h y d r o g e n l i k e carbon i o n s . A n a l y s i s o f t h e p o p u l a t i o n i n v e r s i o n s f o r i n n e r - s h e l l t r a n s i t i o n s , e s p e c i a l l y f o r t h e 3--2 and 4--3 emission processes, show t h a t a g a i n optimum i s reached f o r a r e l a t i v e l y l o n g time i n t e r v a l (-- 5 ns) a f t e r the end o f t h e l a s e r p u l s e i n a d e f i n e d s p a t i a l r e g i o n . The r e s u l t s w i l l be discussed and compared w i t h e x p e r i m e n t a l and t h e o r e t i c a l f i n d i n g s f o r carbon plasmas i n the l i t e r a t u r e [ 1 5 ] .

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1986613

(3)

JOURNAL DE PHYSIQUE

2. Gas dynamics and heat f l o w

The plasma i s assumed t o c o n s i s t o f a c h a r g e - n e u t r a l m i x t u r e o f e l e c t r o n s ( e ) and v a r i o u s species o f carbon i o n s ( i ) .

E l e c t r o n s w i l l be t r e a t e d as one subsystem, w i t h i n t e r n a l energy &,

per u n i t mass, temperature Te, pressure p and so on. The i o n s form the second subsystem w i t h a correspo8ding s e t o f thermodynamic v a r i a b l e s i n c l u d i n g s p e c i f i c volume V = 1/9 = l/Nimi (Ni

-

i o n

d e n s i t y , m i

-

averaged i o n mass). Charge n e u t r a l i t y r e q u i r e s t h a t the two subsystems share t h e same v e l o c i t y u. The f o l l o w i n g s e t o f gas-dynamic equations i n l a g r a n g i a n c o o r d i n a t e s will be used t o s i m u l a t e l a s e r h e a t i n g o f carbon plasmas w i t h a x i a l symmetry:

Besides work o f t h e summary pressure 3v the e q u a t i o n o f the -P 3t

e l e c t r o n i n t e r n a l energy c o n t a i n s e l e c t r o n heat f l o w

( w i t h c o e f f i c i e n t o f the classical e l e c t r o n heat conduction x.= %T%)~

exchange o f energy between i o n s and e l e c t r o n s (aei

-

Qo 9 / T ~ / * ) and t h e absorbed energy o f l a s e r l i g h t per mass i n t e r v a l . Pressure P i n c l u d e s g a s - k i n e t i c pressure p = pe + pi = Ni (ZT, + Ti), where Z i s t h e averaged charge o f t h e i o n s , and an a r t i f i c i a l v i s c o u s pressure w = , ~ ~ ( b u / b m ) ~ , , u i s a constant. I t w i l l be assumed t h a t b o t h subsystems

-

e l e c t r o n s and i o n s

-

behave as p e r f e c t gases.

I n our c a l c u l a t i o n s o n l y a b s o r p t i o n by t h e i n v e r s e Bremsstrahlung mechanism was taken i n t o c o n s i d e r a t i o n . Long i n t e n s e l a s e r pulses (tL- i o n s , EL * 5

-

500 Jcm-lrad-l) w i t h a trapeze shape were supposed.

I n d i f f e r e n c e t o t h e MEDUSA code we s o l v e t h e gas-dynamic equations by means o f a complete i m p l i c i t d i f f e r e n c e scheme on an inhomo- geneous l a g r a n g i a n mesh 1161. I t i s a complete c o n s e r v a t i v e and

(4)

F i g . 1 F i g . 2

P l a s m a d e n s i t y N a s f u n c t i o n P l a s m a t e m p e r a t u r e Te a s f u n c - o f t h e d i s t a n c e f r o m t h e t a r - t i o n o f t h e d i s t a n c e f r o m t h e g e t a x i s f o r s e v e r a l times t a r g e t a x i s f o r s e v e r a l times

,,---s*.

c",,ndr,rol r.r- on1.R.t

100 WOO 1)OW

R lpml -*

F i g . 3 F i g . 4

P l a s m a d e n s i t y N a n d t e m p e r a - A s i n F i g . 3 , l a s e r i n t e n s i t y t u r e T, a s f u n c t i o n o f t h e IL = 4 . 0 . 1 0 1 2 W

d i s t a n c e f r o m t a r g e t a x i s f o r cm 2 d i f f e r e n t t i m e s i n t h e i n t e r -

e s t i n g s p a t i a l r e g i o n ; l a s e r i n t e n s i t y 1,=1.7*1013 g

cm 2

(5)

JOURNAL DE PHYSIQUE

F i g . 5

Temporal b e h a v i o u r o f t h e d e n s i t y f o r d i f f e r e n t d i s t a n c e s f r o m t h e t a r g e t f o r l a s e r i n t e n s i t i e s 1 ,-=6,7.1013 \V/cm2 and

1.7 1013 \l/cm2

F i g . 6

T e m p o r a l b e h a v i o u r o f t h e tempe- r a t u r e f o r d i f f e r e n t d i s t a n c e s f r o m t h e t a r g e t f o r l a s e r i n t e n - s i t i e s fL=6 ,7.1013~/cm2 and 1 . 7 . 1 0 ~ ~ by/cm2

F i g . 7

R e l a t i v e p o p u l a t i o n d e n s i t y of t h e pump l e v e l ,

p4=

k!

N a s a f u n c t i o n o f t h k d e n s i t y and t h e t e m p e r a t u r e Te

(6)

-owing t o the i n t r o d u c t e d a r t i f i c i a l v i s c o u s i t y - a homogeneous scheme[17]. Complete c o n s e r v a t i o n means t h a t n o t o n l y c o n s e r v a t i o n laws f o r mass, impuls and f u l l energy b u t a l s o a l o t o f o t h e r impor- t a n t p h y s i c a l r e l a t i o n s l i k e equations f o r i n t e r n a l and k i n e t i c energies o r t h e law o f volume change a r e preserved i n t h e space o f mesh f u n c t i o n s ,

Some t y p i c a l r e s u l t s o f t h e n u m e r i c a l c a l c u l a t i o n s a r e presented i n Figs. 1-4. I n a d d i t i o n t o s p a t i a l d i s t r i b u t i o n s o f t h e i o n d e n s i t y and e l e c t r o n temperature f o r d i f f e r e n t times t h e temporal behaviour o f these plasma parameters f o r d e f i n e d d i s t a n c e s from the t a r g e t a x i s i s shown i n Figs. 5-6. I t can be seen t h a t f o r l o n g e r l a s e r p u l s e s (some ns) t h e d e n s i t y d i s t r i b u t i o n -as i s w e l l known-

s t r o n g l y decreases w i t h i n c r e a s i n g d i s t a n c e from the t a r g e t . Compa- r e d t o i t , t h e temperature r i s e s near t h e c r i t i c a l i n t e r f a c e , where t h e maximum o f l a s e r energy w i l l be deposited i n t h e plasma, and h o l d s approximately constant w i t h growing distance. When t h e l a s e r h e a t i n g breaks o f f , t h e temperature begins t o f a l l o f f i n t h e h i g h - d e n s i t y r e g i o n o f plasma caused by the remaining s t r o n g heat flow.

Concerning t h e temporal behaviour o f plasma p r o p e r t i e s d u r i n g t h e f r e e expansion regime, we can conclude from Figs. 1-4 t h a t i n r e g i o n s n o t so f a r from t h e t a r g e t a x l s ( 4 1 mm) t h e d e n s i t y keeps constant i n time, whereas t h e temperature r a p i d e l y decreases.

3. Gain c a l c u l a t i o n s

The g a i n c o e f f i c i e n t concerning t h e t r a n s i t i o n q

-

p i n hydrogenic i o n s is

where A i s t h e spontaneous emission r a t e and $ t h e t r a n s i t i o n

9 P qP

frequency. The f a c t o r g ( 3

-

jqp) d e s c r i b e s t h e normalized l i n e shape. I n t h e case o f Gaussian l i n e shape (Doppler broadening) t h i s f u n c t i o n i s g i v e n b y

Therefore, t h e g a i n c o e f f i c i e n t f o r resonant t r a n s i t i o n becomes

An a n a l y t i c a l c a l c u l a t i o n o f t h e p o p u l a t i o n d e n s i t e s N (q=1,2,3), assuming a s i m p l i f i e d f o u r - l e v e l system and q u a s i s t a t i o n a r i t y g i v e s q

(7)

C6-104 JOURNAL DE PHYSIQUE

where w.& denote c o l l i s i o n a l e x c i t a t i o n and d e e x c i t a t i o n r a t e s , Z , -

i s t h e t;ansition t i m e from t h e hydrogen

-

t o t h e helium

-

l i k e

s t a t e ,

I t can be seen immediately t h a t t h e g a i n f o r t r a n s i t i o n s 3-2 and 4 -3 i s p r o p o r t i o n a l t o t h e populat_ion d e n s i t y N, o f t h e pump

7

l e v e l and the i n v e r s i o n f a c t o r (1

-

$ N /N ). With r a t e c o e f f i c i e n t s P 4

f o r c o l l i s i o n a l and r a d i a t i v e procesges g i v e n e x p l i c i t e l y as func- t i o n s o f t h e plasma s t a t e (N,Te,Z) we o b t a i n , f o r example f o r N3:

Then, f o r the i n t e r e s t i n g g a i n f a c t o r s we can w r i t e

f o r t h e t r a n s i t i o n 3-2 and

f o r the t r a n s i t i o n 4 -3.

The term

describes the e f f e c t o f t h e Ld - a b s o r p t i o n (L

-

a b s o r p t i o n l e n g t h ,

fl = N1/N - r e l a t i v e p o p u l a t i o n d e n s i t y o f the ground l e v e l ) .

(8)

Carbon 3-2

1 ~ - l . 7 x l o ~ ~ ~ ~

Carbon 3-2

n.2mo #.

15 20 25

tlnsi -+

F i g . 8 F i g . 9

Temporal b e h a v i o u r o f t h e g a i n As i n F i g . 8, t h e l a s e r c o e f f i c i e n t f o r t h e t r a n s i t i o n i n t e n s i t y i s 4.0*1012 w/cm2 3-2 a t d i f f e r e n t d i s t a n c e s

from t h e t a r e t . Laser i n t e n s i t y IL 5 1 , 7 ' 1 0 l9 w/cm2

Carbon 4-3 1

-

1.7 . 1 0 " ~

Carbon 4-3

I , . 4 . 0 ~ 1 0 ' ~ ~ tm

F i g . 10

Temporal b e h a v i o v r o f t h e g a i n f o r t h e 4-3 t r a n s i t i o n a t d i f f e r e n t d i s t a n c e s from t h e t a r g e t . L a s e r i n t e n s i t y

IL = 1,791013 w/cm2

t l n s l +

F i g . 11

As i n F i g . 1 0 , laser i n t e n s i t y i s 4.0.1012 w/cm2

(9)

C6-106 JOURNAL DE PHYSIQUE

The r e l a t i v e p o p u l a t i o n d e n s i t y o f t h e pump l e v e l i n our s i m p l i f i e d model

was c a l c u l a t e d n u m e r i c a l l y s o l v i n g the f u l l system of r a t e equations f o r p o p u l a t i o n d e n s i t i e s i n t h e q u a s i s t a t i o n a r y approach. R e s u l t i n g f u n c t i o n a l dependence on d e n s i t y and temperature f o r i s shown i n

F i g . 7. f 4

I f we know t h e values f o r d e n s i t y and temperature i n dependence on the space c o o r d i n a t e and time from gas-dynamic c a l c u l a t i o n s , we can determine by use o f F i g . 7 and f i n a l l y e s t i m a t e g a i n c o e f f i c i e n t s

f 4

w i t h formulas (14) and (15). Some r e s u l t s a r e presented i n Figs.8-11.

4. D i s c u s s i o n

Corresponding t o equations (14) and (15) t h e g a i n i s p r o p o r t i o n a l

-

as t h e most i m p o r t a n t dependence

-

t o t h e term N and t h e r e l a t i v e p o p u l a t i o n o f the pump l e v e l , fq. which i s alsoK a f u n c t i o n o f N and T., Therefore, h i g h v a l u e s of , f end t h e i n v e r s i o n f a c t o r

( 2 0.2) a r e necessary f o r an o p t i m a l gain.

As we can see from F i g . 7, t h e r e l a t i v e p o p u l a t i o n d e n s i t y o f t h e pump l e v e l increases

-

as expected

-

w i t h i n c r e a s i n g i o n d e n s i t y

r 4

M and decreesing temperature Te. Considering t h e i n v e r s i o n l i m i t , t h e r e e x i s t a maximum v a l u e f i m O x )

-

2 - l o - 3 f o r t h e 3-2 and

f 4 ( m a X ) = l . 2 . 1 0 - ~ f o r t h e 4

-

3 t r a n s i t i o n s .

Reabsorption o f the resonance l i n e L& lowers t h e i n v e r s i o n l i m i t o f the 3 -+2 t r a n s i t i o n , and t h e r e f o r e , (max) w i l l be decrea- sed too.

The g a i n curves i n Figs. 8-11 can be understood i n connection w i t h s p a t i a l and temporal v a r i a t i o n s o f d e n s i t y and temperature i n t h e plasma heated by l o n g l a s e r pulses. So we can see t h a t t h e r e e x i s t a s p a t i a l r e g i o n from approximately 300 t o 3000pm measured from t h e a x i s o f t h e c y l i n d e r i c a l t a r g e t , i n which t h e i n v e r s i o n c o n d i t i o n i s o p t i m a l l y performed. This o p t i m a l s i t u a t i o n occurs a f t e r t h e l a s e r pulses ( 2 10 n s ) and w i l l e x i s t f o r a r e l a t i v e l y l o n g time ( 5 t o 10 ns d u r a t i o n ) .

3 - 2 t r a n s i t i o n

The s p a t i a l r e g i o n w i t h h i g h g a i n i s s i n e l l (200 t o 300 p m ) f o r t h e t r a n s i t i o n 3-2. This i s caused by t h e f a c t t h a t i n v e r s i o n c o u l d be reached a t s u f f i c i e n t l y l o w temperatures, which w i l l be o b t a i n e d a f t e r t h e l a s e r p u l s e i n a s m a l l s p a t i a l r e g i o n n o t so f a r from t h e t a r g e t . The maximum g a i n v a l u e s f o r t h e 3 - 2 t r a n s i t i o n a r e 5 cm-1 However, t a k e i n t o account t h e i n f l u e n c e of t h e Ld - a b s o r p t i o n , t h i s v a l u e i s v a l i d o n l y f o r l a t i o n o f t h e ground s t a t e o f

I1

L-10-5 and t h i s means

el

= 0.01 t h e t h i c k n e s s o f t h e s p a t i a l t h a t f o r a popu- r e g i o n , i n which a maximum g a i n may be d e t e c t e d , i s o n l y 10,um.

For e t h i c k n e s s o f 100pm we get a g a i n o f 1 cm-1 f o r a t i m e i n t e r - v a l o f 80.0 ns. However. because fl increases i n time ( r 0.1)~ t h e s h o r t e r pulses. e f f e c t o f L,L - a b s o r p t i o n on the 3 - 2 t r a n s i t i o n i educed f o r

E

(10)

To summarize t h e t h e o r e t i c a l r e s u l t s concerning t h e X-ray g a i n i n c y l i n d r i c a l carbon plasmas f o r t h e 3 - 2 t r a n s i t i o n u s i n g r e l a t i - v e l y l o n g l a s e r pulses (t, -- 1 0 n s )

.

we expect an o p t i m a l g a i n o f

-1 L

c 5 cm i n a s m a l l s p a t i a l r e g i o n ( 4 100,wn) a t d i s t a n c e s from t h e t a r g e t o f 500 t o 1000 /urn. Maximum g a i n w i l l be obtained a f t e r t h e end o f t h e l a s e r pulse. I t c o u l d be d e t e c t e d d u r i n g a t i m e i n t e r v a l o f approximately 5 ns.

4

-

3 t r a n s i t i o n

The i n v e r s i o n c o n d i t i o n N = Ninv(Te) shows a n o n l i n e a r dependence on the temperature f o r T e h 1 0 eV. Therefore, h i g h e r temperatures seems t o be favoured t o g i v e an o p t i m a l gain. Moreover, f o r l o n g l a s e r pulses t h e temperature i s r e l a t i v e l y h i g h and n e a r l y constant over a l a r g e s p a t i a l range f a r from the t a r g e t . So a h i g h g a i n f o r t h e 4-3 t r a n s i t i o n w i t h values o f = 0.05 cm'i (GmaX = 0.08 cm'l) w i l l be reached f o r a wide s p a t i a l r e g i o n (1000 t o 3000,um) i n a time i n t e r v a l o f about 10 ns beginning a t t h e end o f t h e l a s r pulse.

~ h e ' i n f l u e n c e o f t h e l a s e r i n t e n s i t y (1012 t o 1013 W/cm ) i s smell. 3

I t g i v e s r i s e t o o n l y s l i g h t l y d i f f e r e n t s p a t i a l and temporal behaviour.

We conclude t h a t for t h e 4 -+3 t r a n s i t i o n l o n g e r l a s e r pulses csn generate a g a i n i n a wide s p a t i a l range f o r l o n times. However, the maximum g a i n v a l u e reached i s s m a l l (s 0.08 smog).

To t e s t our t h e o r e t i c a l model we compared t h e r e s u l t s w i t h some 17 e x p e r i m e n t a l data115i. For - N = 5'1016 cm-3, T, = 9 eV and M = 10 cm", Te = 14 eV, t h e e x p e r i m e n t a l g a i n f a c t o r s a r e 0.01 and 0.02 crn-' r e s p e c t i v e l y , Corrss onding t h e o r e t i c a l values 0.018 and

0.025 cn-l c a l c u l a t e d w i t ! h e l p of Eq. 15 a r e i n good agreement w i t h t h e experimental f i n d i n g s . For t h e p o p u l a t i o n d e n s i t y o f t h e pump l e v e l N4 a v a l u e of ~ ~ ( e x p . 1 , 1.2-1.01~- cm-3 was measured. T h e o r e t i - c a l l y we get from ~ i g . 7 ~ ~ ( t h e 0 y . 1 a 1 . 6 . 1 0 ~ ~ c m - ~ .

I n c o n c l u s i o n we n o t e t h a t analogous i n v e s t i g a t i o n s f o r A l ( 2 = 13) and h i g h e r Z values are i n p r e p a r a t i o n .

References

[I] L.I. Goodzenko, S.I. Yakovlenko, W.V. Yevstigneyev, Phys. L e t t . (1974) 419

[2] A.N. Z h e r i k h i n , K.N.Koshelev, and V.S. Lerokhov

.

Sov. 3. Quantum E l e c t r o n . 6 (1976) 82

-

[3] A.V. Vinogradov and V.N. Shylaptsev, Ssv. Quantum E l e c t r o n . 13 (1983) t S 1 l [ 4 ] U. Feldman, A.K. B h a t i a , and S. Suckewer

3 . Appl. Phy8. 54 (1983) 2188

[ 5 ] M.D. Rosen s t a l , , ~ h y s . ~ e v . ~ e t t . 2 (1985) 106 161 D.L. Matthews e t al., Phys. Rev. L e t t . 54 (1985) 110 171 F.V. Bunkin, W . I . B e r r h i e v , end S.I. qakovlenko

Kvant , Elek t r o n . (Moscow) 2 (1981) 1621 [ 8 ] R.H. Dixon, I.F. Seely, R.C. E l t o n ,

Phys. rev. L e t t . 40 (1978) 122

(11)

C6-108 JOURNAL DE PHYSIQUE

I 9 1 N.G. Basov, G.A. Vergunova, V.8, Rotanov.

Kvant. E l e k t r o n . (Moscow) 12 (1985) 248

[lo] F.E. I r o n s , N.3. Peacock, 3. Phys. 87 (1974) 1109

[ill P. 3aegl&, G. Jamelot, A. C a r i l l o n , A. Sureau, P. Dhez, Phys. Rev. L e t t . 33 (1974) 1070

[12] 6 . J . P e r t , 3. Phys. (1979) 2067

1131 M.H. Key, C.L.S. Lewis, M.J. Lamb. Opt. Commun. 28 (1979) 331 [14] R.C. E l t o n , Opt. Eng. 21 (1982) 307

1151 R.H. Dixon, J.F. Seely, end R.C. E l t o n Appl. O p t i c s 22 (1983) 1309

[16] N.N. Demchenko, Ph. D. t h e s i s , Lebedev P h y s i c a l I n s t i t u t e (Moscow), 1980

[17] A.A. Samarsky, Yu. Popov, D i f f e r e n c e schemes i n gas dynamics ( i n Russian), Moscow, 1975

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to