• Aucun résultat trouvé

PROPAGATION OF THE LEADER OF A LONG SPARK IN AIR WITHOUT PARTICIPATION OF THERMAL IONIZATION PROCESSES

N/A
N/A
Protected

Academic year: 2021

Partager "PROPAGATION OF THE LEADER OF A LONG SPARK IN AIR WITHOUT PARTICIPATION OF THERMAL IONIZATION PROCESSES"

Copied!
3
0
0

Texte intégral

(1)

HAL Id: jpa-00219188

https://hal.archives-ouvertes.fr/jpa-00219188

Submitted on 1 Jan 1979

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

PROPAGATION OF THE LEADER OF A LONG SPARK IN AIR WITHOUT PARTICIPATION OF

THERMAL IONIZATION PROCESSES

Henryk Ryżko

To cite this version:

Henryk Ryżko. PROPAGATION OF THE LEADER OF A LONG SPARK IN AIR WITHOUT PARTICIPATION OF THERMAL IONIZATION PROCESSES. Journal de Physique Colloques, 1979, 40 (C7), pp.C7-427-C7-428. �10.1051/jphyscol:19797208�. �jpa-00219188�

(2)

JOURNAL DE PHYSIQUE CoZZoque C7, suppZ6ment au n07, Tome 40, JuiZZet 1979, page C7- 427

PROPAGATION OF THE LEADER OF A LONG SPARK I N AIR WITHOUT PARTICIPATION OF THERMAL IONIZATION PROCESSES

Henryk Ryiko.

RoyaZ I n s t i t u t e o f TeehnoZoau. S-100 44 StoekhoZm, a e d e n .

We consider the i n i t i t a l stage o f t h e l e a d e r propa- g a t i o n i n a p o i n t - t o - p l a n e a i r gap a t s w i t c h i n g surge voltage (impulse v o l t a g e w i t h f r o n t d u r a t i o n o f some hundreds o f micro-seconds). I n t h i s stage corona ahead o f t h e l e a d e r has n o t reached the plane e l e c t r o d e so t h a t t h e c u r r e n t o f t h e gap i s s t i l l small.

The e l e c t r o n i c c u r r e n t o f t h e leader channel i s

where r - r a d i u s o f t h e channel crosssection, i n cm

q - elementary charge i n As

v - d r i f t v e l o c i t y o f e l e c t r o n s i n cm/s Ne - average e l e c t r o n d e n s i t y i n cm -3, On t h e o t h e r hand i = Q v where Q - e l e c t r o n i c charge o f t h e channel i n As/cm.

Hence

The value o f $ depends mainly on the d i f f u s i o n o f t h e e l e c t r o n s , on the i o n i z a t i o n due t o t h e r a d i a l f i e l d o f t h e channel and on gas expansion i t h e channel. As we a r e n o t a b l e t o take i n t o account a l l thes processes, we . c o n s i d e r o n l y t h e r a d i a l d i f f u s i o n o f e l e c t r o n s which d r i f t along t h e chan- n e l a x i s . I n t h i s way t h e lower l i m i t o f F w i l l be c a l c u l a t e d .

We assume as a f i r s t approximation t h a t F a t t h e cathode end o f t h e channel equals zero, f u r t h e r t h a t e l e c t r o n s are moving i n a u n i f o r m f i e l d and t h a t a Maxwellian d i s t r i b u t i o n o f e l e c t r o n v e l o c i - t i e s i s t h e case. Then t h e r a d i u s o f t h e channel d e f i n e d as t h e average r a d i a l displacement o f e l e c - t r o n s from t h e channel a x i s i n time t i s

where D-electron d i f f u s i o n c o e f f i c i e n t .

v e

We s u b s t i t u t e D =

$

p, p = and t = - v

where 7 - mean random energy o f e l e c t r o n s i n V ,

u - m o b i l i t y o f e l e c t r o n s i n cm2/vs

k - d i s t a n c e o f t h e considered c r o s s - s e c t i o n o f the channel from i t s cathode end, i n cm

E

-

f i e l d g r a d i e n t i n V/cm.

Hence f i n a l l y

We assume t h a t t h e gas pressure i n t h e channel i s equal t o atmospheric pressure ( j u ~ t i f i c a t i o n -

see l a t e r ) . Using datal r e l a t i n g E and E values we o b t a i n nummerical r values presented i n Table 1 Tab& 1 . R a b od t h e channnel ctionn -n e d o n

(&owen. LiXX), i n cm.

I n o r d e r t o determine t h e range o f Ne values we assume t h a t Q i n equation (1) i s equal t o the p o s i - t i v e charqes per u n i t l e n q t h o f t h e channel, measu- r e d i n 2. The average value o f t h i s charge i s 13-7 As/cm. I n s e r t i n g t h i s value o f Q and F values from Table 1 i n equation $1) one o b t a i n s t h a t Ne i s ir

t h e range 101 1 - 101 electrons/cm3. The a c t u a l r values a r e l a r g e r than those o f Table 1, because we have taken i n t o account o n l y t h e d i f f u s i o n o f e l e c t r o n s . I f f o r i n s t a n c e t h e a c t u a l r values are t h r e e times l a r g e r than those i n Table 1, t h e ac- t u a l d e n s i t y of e l e c t r o n s i s 1010

-

1012 e l e c - trons/cm3.

L e t us now e s t i m a t e t h e temperature o f the channel under assumption t h a t t h i s d e n s i t y o f e l e c t r o n s i s produced by t h e thermal i o n i z a t i o n . I f t h e r a t i o o f t h e e l e c t r o n d e n s i t y t o t h e p a r t i c l e d e n s i t y i s low and i f t h e e l e c t r o n s are i n thermal e q u i l i b r i u m w i t h gas p a r t i c l e s , Saha's equation can be w r i t t e n i n the form

where N - d e n s i t y o f e l e c t r o n s i n cm::, N~ - d e n s i t y o f molecules i n cm ,

P - gas pressure i n t o r r , T - gas temperature i n OK,

Vi - i o n i z a t i o n p o t e n t i a l o f t h e gas i n V, q - elementary charge i n As,

k - Boltzmann's constant i n WS/'K.

As t h e i o n i z a t i o n p o t e n t i a l s o f N2 and 02 a r e 15,5 V and 12,2 V r e s p e c t i v e l y , we assume i n t h i s approxi- mate c a l c u l a t i o n V i = 14,5 V. Because t h e i n p u t c u r r e n t o f t h e l e a d e r i s low, t h e r a t e o f r i s e o f t h e channel temperature should be a l s o low. As t h e channel w i l l expand, i t s gas pressure cannot d i f f e r appreciably from t h e atmospheric one. Therefore we s u b s t i t u t e i n (3) p = 760 t o r r . With these nummeri- c a l value one o b t a i n

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:19797208

(3)

Ne = 2.7 x 10'' w i t h u n i t s cmm3 and OK.

As i t i s shown i n Fig. 1 t h e e l e c t r o n d e n s i t i e s 1010

-

1012 cm-3 a r e reached if channel temperature i s around 4000-5000 OK.

F i g . 1

.

DenbLty 06 d e & a m , phoduced by k h m d ionizat.ion i n ah as a ~unc;cion ad dih tempaatuhe.

We question now i f the considered channel can reache these temperatures. L e t us t h e r e f o r e compare t h e i n p u t energy t o t h i s channel w i t h t h e l o s s o f energy by r a d i a t i o n . As a degree o f i o n i z a t i o n i n t h e channel i s very low we consider these channel as unionized and consequently r a d i a t i n g as a b l a c k body. The l o s s by r a d i a t i o n p e r u n i t l e n g t h from t h e channel i s

where o-Stefan-Bol zmann ' s constant.

A t t h e temperature 4 9 0 0 ~ ~ ( r = 0.36 cm) t h e power l o s s i s about 7 kW/cm. The corresponding power l o s s a t a temperature o f 4 4 0 0 ~ ~ ( r = 1 cm) i s about 13 kW/cm.

The i n p u t power p e r u n i t l e n g t h i s

With nummerical values: Q = As/cm, E = 3 kV/cm and corresponding v = 25 x 105 cm/s3 t h e i n p u t power p e r u n i t l e n g t h i s 750 W/cn.

This rough c a l c u l a t i o n i n d i c a t e s t h a t i n t h e consi- dered c o n d i t i o n s t h e thermal i o n i z a t i o n as a source o f e l e c t r o n s i s r u l e d out.

dO E Q V

m = nr2 c p ~

where - d6 dt - r a t e o f temperature r i s e o f t h e chan- n e l i n OC/s,

c - s p e c i f i c h e a t o f a i r i n Ws/g OC,

G~ - s p e c i f i c weight o f a i r i n g/cm3.

With nummerical values: Q = As/cm, E = 3 kV/cm, cp = 1 Ws/g OC, G = 1.3 x 10-3 g/cm3, one o b t a i n s

* =

d t 1.4 x l o 6 'CIS and 1.8 x l o 5 'CIS a t r = 0.36 cm and 1 cm r e s p e c t i v e l y . This rough c a l c u l a t i o n i n d i - cates t h a t even i f t h e whole i n p u t power would cause t h e temperature r i s e , then t h e temperature o f the channel would be n o t very much h i g h e r than t h a t o f t h e surrounding a i r , s i n c e t h e i n v o l v e d time i n t e r v a l s are i n t h e range of tens o r a t most o f hundreds o f microseconds.

This temperature r i s e i s s u f f i c i e n t t o lower gas d e n s i t y i n t h e channel s i n c e each new s t e p d i s - charge r u n i n i t i a l l y along the same path.

We b e l i e f t h a t i n t h e considered case t h e l e a d e r c o n d u c t i v i t y undergoes l a r g e f l u c t u a t i o n s . The e l o n g a t i o n o f t h e l e a d e r occurs when t h i s anduc- t i v i t y i s reduced d u r i n g the s t e p discharge mani- f e s t e d by a r e i ll u m i n a t i o n o f t h e channel.

Conclusion: Mechanism o f t h e l o n g spark i n a i r a t p o s i t i v e s w i t c h i n g surge v o l t a g e d i f f e r s i n a i n i 4 t i a l stage from t h a t a t p o s i t i v e impulse v o l t a g e by d e f i c i e n c y o f t h e thermal i o n i z a t i o n .

References :

( 1 ) L.G.H. Huxley, A.A. Zaazou, "Experimental and t h e o r e t i c a l s t u d i e s o f the behaviour o f slow e l e c t r o n s i n a i r . " Phoc. Roy. Soe. A 196, pp. 402-426, 1949.

( 2 ) B. Ganger, " E l e k t r i s c h e F e s t i g k e i t von L u f t - i s o l i e r s t r e c k e n b e i hohem Schaltspannungen."

B&. SEV., pp. 227-236, 1971.

( 3 ) H. Rytko, " D r i f t v e l o c i t y o f e l e c t r o n s and i o n s i n d r y and humid a i r and i n water vapour."

Phoc. P h y ~ . S o c . , v o l . 85, pp. 1253-1295, 1965.

( 4 ) R.T. !.laters, "Streak photography and o t h e r s t u d i e s o f t h e l o n g spark i n a i r . " Pmc. I&.

Cond. Gas Dhch. and E l k & . Supp. lad., Leatherhead, London: Butterworth, 1962, pp. 38,53.

L e t us estimate t h e r a t e o f r i s e o f channel tempera- t u r e when t h i s temperature does n o t d i f f e r conside- r a b l y from t h e temperature o f t h e surrounding a i r . Because under these c o n d i t i o n s the l o s s by r a d i a - t i o n and by heat conduction a r e r e l a t i v e l y low, we assume t h a t t h e whole i n p u t energy i s converted i n - t o h e a t energy o f t h e channel. I f t h e qas pressure i n t h e channel i s unchanged, we w r i t e

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to