• Aucun résultat trouvé

SUPERCONDUCTIVITY OF DUCTILE TITANIUM-NIOBIUM-BASED AMORPHOUS ALLOYS

N/A
N/A
Protected

Academic year: 2021

Partager "SUPERCONDUCTIVITY OF DUCTILE TITANIUM-NIOBIUM-BASED AMORPHOUS ALLOYS"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: jpa-00220292

https://hal.archives-ouvertes.fr/jpa-00220292

Submitted on 1 Jan 1980

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

SUPERCONDUCTIVITY OF DUCTILE TITANIUM-NIOBIUM-BASED AMORPHOUS

ALLOYS

A. Inoue, T. Masumoto, C. Suryanarayana, A. Hoshi

To cite this version:

A. Inoue, T. Masumoto, C. Suryanarayana, A. Hoshi. SUPERCONDUCTIVITY OF DUCTILE

TITANIUM-NIOBIUM-BASED AMORPHOUS ALLOYS. Journal de Physique Colloques, 1980, 41

(C8), pp.C8-758-C8-761. �10.1051/jphyscol:19808189�. �jpa-00220292�

(2)

JOURNAL DE PHYSIQUE

CoZZoque C8, suppldment au n08, Tome 41, aoGt 1980, page C8-758

SUPERCONDUCTIVITY OF DUCTILE TITANIUM-NIOBIUM-BASED AMORPHOUS ALLOYS

A. Inoue, T. Masumoto, C. Suryanarayana

*

and A . Hoshi

The Research I n s t i t u t e for Iron, SteeZ and Other Metals, Tohoku University, Sendai 980, Japan.

* ~ e ~ a r t m e n t o f MetaZZurgicaZ Engineering, B m a s Hindu U n i v e r s i t y , Varanasi-221005, India.

INTRODUCTION

Superconducting m a t e r i a l s p o s s e s s i n g good me- c h a n i c a l p r o p e r t i e s a s w e l l a s a h i g h t r a n s i t i o n temperature(Tc) a r e d e s i r a b l e f o r a p p l i c a t i o n s . S i n c e amorphous a l l o y s e x h i b i t s u p e r c o n d u c t i v i t y

/1/

and h i g h s t r e n g t h a s w e l l a s good d u c t i l i t y compared t o t h e c r y s t a l l i n e a l l o y s / 2 / , i t

i s

expected t h a t a s u p e r c o n d u c t i n g m a t e r i a l p o s s e s s i n g a h i g h Tc a s w e l l a s good mechanical p r o p e r t i e s may b e o b t a i n e d i n t h e amorphous s t a t e . F u r t h e r , i t was r e c e n t l y shown / 3 / t h a t amorphous s u p e r c o n d u c t o r s a l s o pos- s e s s a h i g h t o l e r a n c e t o i r r a d i a t i o n i n c o n t r a s t t o t h e i r c r y s t a l l i n e c o u n t e r p a r t s . From t h e s e p o i n t s of view, we have i n v e s t i g a t e d t h e c o m p o s i t i o n r a n g e s f o r t h e f o r m a t i o n of amorphous p h a s e s and t h e i r s u p e r c o n d u c t i n g p r o p e r t i e s i n splat-quenched r e f r a c - t o r y metal-based a l l o y s /4-13/ and repor;ed t h a t Ti-, Nb-, Mo- and W-based amorphous a l l o y s e x h i b i t s u p e r c o n d u c t i v i t y above t h e l i q u i d helium tempera- t u r e ( 4 . 2 K ) . More r e c e n t l y , w i t h a view t o g e t su- p e r i o r s u p e r c o n d u c t i n g p r o p e r t i e s i n t h e s e m e t a s t a - b l e a l l o y s , we have c a r r i e d o u t s y s t e m a t i c e x p e r i - ments on t h e e f f e c t of a d d i t i o n a l e l e m e n t s on Ti-Nb- based amorphous a l l o y s . This p a p e r d e a l s w i t h a s - p e c t s i n v o l v i n g t h e composition r a n g e f o r t h e forma- t i o n of t h e amorphous s i n g l e p h a s e i n t h e Ti-IJb-Si-M (M=Mo, Ru, Rh, Pd, Ir, B , C and Ge) systems and t h e mechanical and s u p e r c o n d u c t i n g p r o p e r t i e s of t h e amorphous a l l o y s . These a l l o y i n g e l e m e n t s were chosen t o i n c r e a s e t h e a v e r a g e o u t e r e l e c t r o n con- c e n t r a t i o n ( e / a ) of t h e m e t a l component, s i n c e Tc i n t h e amorphous s t a t e was found t o b e c l o s e l y r e l a t e d t o t h e e / a showing a broad maximum around e / a = 6 . 5 f o r t h e 4d and 5d t r a n s i t i o n - m e t a l s e r i e s / 1 4 / .

EXPERIMENTAL

The a l l o y s were p r e p a r e d from p u r e components under

a

p r o t e c t i v e argon atmosphere i n a n

a r c

f u r - nace. The i n g o t s were r e p e a t e d l y t u r n e d o v e r and r e m e l t e d t o i n s u r e homogeneity of composition. Con- t i n u o u s r i b b o n specimens of a b o u t 1-2 mm w i d t h and

0.02-0.04 mm t h i c k n e s s were p r e p a r e d from t h e s e par- e n t a l l o y s under a p r o t e c t i v e a r g o n atmosphere u s i n g a modified s i n g l e r o l l e r quenching a p p a r a t u s a d a p t e d t o

a

l e v i t a t i o n f u r n a c e d e s c r i b e d i n Ref. / 5 / . Typ- i c a l l y , t h e amount of a l l o y m e l t e d i n one r u n was a b o u t 3 g and t h e r o t a t i o n speed of t h e copper r o l l - e r ( 2 0 cm i n d i a m e t e r ) was a b o u t 4000 rpm. I d e n t i f i - c a t i o n of t h e as-quenched p h a s e s was made by conven- t i o n a l X-ray d i f f r a c t i o n and t r a n s m i s s i o n e l e c t r o n microscopy t e c h n i q u e s .

The s u p e r c o n d u c t i n g t r a n s i t i o n was monitored by measuring t h e r e s i s t i v i t y u s i n g a c o n v e n t i o n a l f o u r - p r o b e method. The specimen c u r r e n t used was 1 m A . The t e m p e r a t u r e was measured w i t h a n a c c u r a c y of

f

0.05

K

u s i n g a c a l i b r a t e d Au-Fe

+

Chrome1 thermo- c o u p l e . The c r i t i c a l c u r r e n t was d e f i n e d a s t h e c u r r e n t a t which a measurable v o l t a g e ( 1 uV) appeared a c r o s s a 50 mm-length specimen i n a l i q u i d helium b a t h a t z e r o f i e l d . Upper and lower c r i t i c a l mag- n e t i c f i e l d ( H c 2 and Hcl) measurements were performed u s i n g a s u p e r c o n d u c t i n g s o l e n o i d f o r magnetic f i e l d s up t o about

7.2

x 106

A/m

a p p l i e d t r a n s v e r s e l y t o t h e specimen i n a l i q u i d helium b a t h .

RESULTS AND DISCUSSION

1. Formation r a n g e and mechanical p r o p e r t i e s of t h e amorphous a l l o y s

F i g u r e s 1 and 2 show t h e f o r m a t i o n r a n g e of amorphous s i n g l e p h a s e f o r t h e Ti-Nb-Si t e r n a r y and Ti55-xNb30MxSi15(M=Mo, Ru, Rh, Pd and I r ) and Ti55 N ~ ~ O S ~ ~ ~ - ~ % ( M = B , C and Ge) q u a t e r n a r y systems. The amorphous p h a s e forms i n t h e wide r a n g e of 0-43 a t . % Nb and 13-21 a t . % S i for,Ti-Nb-Si system and i n t h e r a n g e s of 0-7 at.%Mo, 0-25 at.%Ru, Rh o r Pd and 0-11 a t . % I r f o r Ti55-xNb30MxSi15 systems. A d d i t i o n a l l y , t h e amorphous s i n g l e p h a s e of t h e Ti55Nb30Si15 a l l o y was r e t a i n e d even by t h e replacement of S i w i t h B o r C up t o

7

a t . % and Ge up t o 4 a t . % .

V i c k e r s h a r d n e s s and t e n s i l e f r a c t u r e s t r e n g t h of t h e Ti-Nb-Si and Ti-Nb-Si-B amorphous a l l o y s a r e

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:19808189

(3)

0

Am.. OAm.+Cry.. .Cry.

V V v

Ti 0

10 20 30 40 50 60, 70 Silicon (at?l0)

F i g . 1 Composition range f o r t h e formation of amor- phous s i n g l e phase i n t h e Ti-Nb-Si system and t h e change i n t r a n s i t i o n temperature(Tc) (marked by numbers on t h e open c i r c l e s ) of t h e amorphous a l l o y s .

F i g . 2 Composition r a n g e f o r t h e formation of arnor- phous s i n g l e phase i n t h e Ti55-,Nb3&Sil5 (M=Mo, Ru, Rh, Pd and I r ) and Ti55Nb30Sil5-, M,(M=B, C and Ge) systems.

about 570 DPN and 2040 MPa. C r y s t a l l i z a t i o n temper- a t u r e s a r e i n t h e range of 690-770

K.

F u r t h e r , a l l t h e amorphous a l l o y s a r e s o d u c t i l e t h a t no c r a c k

i s

found a t t h e t i p of a specimen b e n t through 180'.

These a l l o y s continued t o b e d u c t i l e a t l e a s t f o r

1

h a t temperatures below

670

K.

2. Superconducting p r o p e r t i e s 2-1. T r a n s i t i o n temperature(T,)

A s

shown i n Fig.

1,

t h e Ti-Nb-Si a l l o y s con- t a i n i n g more t h a n about 10 a t . % % show a supercon- d u c t i n g t r a n s i t i o n above l i q u i d helium temperature

(4.2 K). The Tc i n c r e a s e s w i t h i n c r e a s i n g Nb con- t e n t o r d e c r e a s i n g S i c o n t e n t and r e a c h e s 5 . 1 K f o r t h e Ti45Nb40Si15 a l l o y . F i g u r e 3 shows t h e change i n T i of Ti55-xNb3@xSi15 and Ti55Nb30Si15-xMx amorphous a l l o y s w i t h t h e c o n c e n t r a t i o n of a d d i t i o n - a l elements. A s s e e n i n ( a ) , t h e replacement of T i by Mo r e s u l t s i n a d r a s t i c d e c r e a s e of Tc d e s p i t e

2 - 5.

% a ) ' Ti55-xNb3~M~xSi15

' 4.0-

c 0

.-

c.

.$ 3.5-

e

k

I- \

3.0 0 2 4 6 8 1 0

Molybdenum concentration

(atolo)

l- (M= B,C,Ge)

3.0

0 1 2 3 4 5

Concentrationof additional elements,M(atPlo) F i g . 3 ( a ) change i n t r a n s i t i o n temperature(Tc) of

Ti55-xNb30Mo~Si15 amorphous a l l o y s by t h e replacement of T i w i t h Mo

.

(b) change i n t r a n s i t i o n temperature(Tc) of Ti55Nb3oSipj-, Mx(M=B,

C

and Ge) amorphous a l l o y s by t h e replacement of S i w i t h M elements.

t h a t t h e e / a of m e t a l components i n t h e s e amorphous a l l o y s approaches t h e e / a corresponding t o t h e ex- pected maximum Tc. Superconducting t r a n s i t i o n could n o t b e d e t e c t e d above 3.5 K when T i

i s

r e p l a c e d by Ru, Rh, Pd o r

Ir.

This r e s u l t i n d i c a t e s t h a t a plu- r a l i t y of a l l o y component i s n o t a n e f f e c t i v e method f o r producing amorphous superconductors w i t h a h i g h

Tc.

On t h e o t h e r hand, a s s e e n i n ( b ) , replacement of S i by B b r i n g s about a s l i g h t i n c r e a s e of Tc and t h e maximum v a l u e

i s

5 . 1

K

f o r Ti55Nb30SiloB5 a l l o y . F u r t h e r , one can n o t i c e t h a t replacement of S i w i t h C o r Ge d e c r e a s e s Tc much less t h a n i n t h e c a s e of t h e replacement of T i by a l l o y i n g elements. The above r e s u l t s i n d i c a t e t h a t an e f f e c t i v e element f o r i n c r e a s i n g Tc of Ti-Nb-Si amorphous a l l o y s

i s

only boron. Hence, o u r subsequent r e s e a r c h was focused on t h e Ti-Nb-Si-B q u a t e r n a r y a l l o y s .

The f o r m a t i o n r a n g e of amorphous s i n g l e phase and t h e Tc v a l u e s f o r (Ti-Nb-Si)97B3 a l l o y s a r e shown i n F i g . 4, wherein t h e d a t a of Vickers hard- n e s s a r e a l s o p r e s e n t e d . S i m i l a r t o t h e (Ti-Nb)85 Si15 a l l o y s , t h e (Ti-Nb)85Sil2B3 amorpfious a l l o y s show a superconducting t r a n s i t i o n above 4.2

K

i n a

(4)

JOURNAL D IE PHYSIQUE

/

" v V V v V v

\o

Ti+3°1~B10 20 30 40 50 60 70 80 Niobium (at.O/o)

Fig. 4 Composition r a n g e f o r t h e f o r m a t i o n of amor- phous s i n g l e phase i n t h e Ti-Nb-Si-B system and t h e changes i n t r a n s i t i o n t e m p e r a t u r e

(T,) and V i c k e r s hardness(Hv) of t h e amor- phous a l l o y s .

l i m i t e d composition r a n g e . The Tc v a l u e i n c r e a s e s w i t h i n c r e a s i n g Nb c o n t e n t , a t t a i n s 5.4 K f o r Ti45 Nb40Sil2B3 and d e c r e a s e s r a p i d l y w i t h f u r t h e r i n - c r e a s i n g Nb c o n t e n t . Such a Nb c o n c e n t r a t i o n de- pendence

i s

s i m i l a r t o t h e tendency /15/ noted f o r c r y s t a l l i n e Ti-Nb b i n a r y a l l o y s , s u g g e s t i n g t h a t t h e electron-phofion b a r e d e n s i t y of s t a t e s a t t h e Fermi level(Ef=O) N(O), t h e electron-phonon coupling con- s t a n t

X

and t h e Debye t e m p e r a t u r e

e

which p l a y a n important r o l e i r . d e t e r m i n i n g Tc /16/ change s i g n i f - i c a n t l y i n t h e r a n g e of 40-60 at.%Nb. The h i g h e s t Tc v a l u e i n t h i s system i s 5.5

K

f o r t h e Ti45Nb40 SiloB5 a l l o y .

The T, v a l u e s of Ti-Nb-Si and Ti-Nb-Si-B amor- phous a l l o y s a r e p l o t t e d a s a f u n c t i o n of t h e aver- age e / a of t h e t r a n s i t i o n m e t a l components i n F i g . 5, wherein t h e d a t a of t h e Nb- and Mo-based, amorphous a l l o y s o b t a i n e d by t h e p r e s e n t a u t h o r s / 5 , 6,11/ a r e a l s o i n c l u d e d and compared w i t h t h e v a r i a - t i o n of Tc f o r amorphous t r a n s i t i o n m e t a l s o b t a i n e d by C o l l v e r and Hammond /14/ who employed t h e tech- n i q u e of t h i n f i l m e v a p o r a t i o n on a c r y o g e n i c sub- s t r a t e . From t h i s f i g u r e , i t

i s

s e e n t h a t t h e v a r i -

Average electron concentration

,

e l a F i g . 5 T r a n s i t i o n temperature(Tc) v s . e l e c t r o n p e r

atom r a t i o f o r t h e Ti-Nb-Si and Ti-Nb-Si-B amorphous a l l o y s . Also, t h e d a t a of Nb-Si, Nb-Mo-Si, Nb-Zr-Si, Nb-Si-B and Mo-Si-B amorphous a l l o y s a r e r e p r e s e n t e d by s o l i d c i r c l e s .

a t i o n of Tc w i t h a l l o y composition f o r each a l l o y system

i s

r e l a t e d a p p a r e n t l y t o t h e a v e r a g e e / a . Johnson e t a l . /17/ have shown f o r (Mo-Ru)8oP20 amorphous a l l o y s t h a t such a change of Tc w i t h e / a corresponds w e l l t o t h e change of t h e N(0) w i t h e / a .

It i s

a l s o t o b e n o t i c e d t h a t t h e Tc v a l u e s of t h e Nb- and Mo-based a l l o y s l i e below t h e C o l l v e r - Hammond curve. The o b s e r v a t i o n t h a t Tc v a l u e s of melt-quenched a l l o y s l i e below t h e Collver-Hammond c u r v e was a l s o n o t e d e a r l i e r f o r Mo- and Zr-based a l l o y s 117-20/. T h i s i m p l i e s t h a t when t h e t r a n s i - t i o n m e t a l components i n t h e a l l o y s a r e widely sepa- r a t e d i n e / a a n d / o r t h e a l l o y s c o n t a i n m e t a l l o i d elements, t h e Tc t e n d s t o f a l l below t h e C o l l v e r - Hamnond c u r v e f o r m e t a l s and a l l o y s of n e i g h b o r i n g m e t a l s . On t h e o t h e r hand, t h e Tc v a l u e s of Ti-Nb- S i and Ti-Nb-Si-B a l l o y s a r e above t h e C o l l v e r - Hammond curve. A l t h o u g h , t h e r e a s o n f o r such

a

d i f - f e r e n c e i s u n c e r t a i n a t p r e s e n t , i t s o r i g i n may b e found i n one o r b o t h o f t h e f o l l o w i n g two f a c t o r s : (1) t h e mixing of t h e m e t a l elements from d i f f e r e n t t r a n s i t i o n m e t a l s e r i e s , and (2) t h e oxygen c o n t e n t . P r e v i o u s i n v e s t i g a t i o n s /18/ and o u r p r e s e n t r e s u l t s ( F i g . 3 a ) show t h a t mixing o f two o r more m e t a l elements from d i f f e r e n t

series

r e s u l t s i n a d e c r e a s e of Tc of amorphous a l l o y s . On t h e o t h e r hand, i t h a s been r e p o r t e d /21/ t h a t a s m a l l amount of oxygen can s i g n i f i c a n t l y r a i s e Tc o f c r y s t a l l i n e Ti-Ta a l - l o y s . Thus, i t i s p o s s i b l e t h a t t h e Tc h i g h e r t h a n t h e v a l u e expected from Collver-Hammond c u r v e may b e due t o a s m a l l amount of oxygen c o n t a i n e d i n t h e Ti- Nb-Si and Ti-Nb-Si-B amorphous a l l o y s . It

i s

hoped t h a t s y s t e m a t i c i n v e s t i g a t i o n s , c u r r e n t l y i n prog- r e s s , on t h e e f f e c t of oxygen o r n i t r o g e n on Tc w i l l shed some l i g h t on t h i s problem.

2-2. C r i t i c a l magnetic f l e l d ( H , ) and c r i t i c a l c u r r e n t d e n s i t y (J,)

The lower and upper c r i t i c a l magnetic f i e l d s , H c l and Hc2 were measured a t l i q u i d helium tempera- t u r e by a s t a n d a r d four-probe r e s i s t a n c e method.

The Hc2(onset) and Hcl(overall) v a l u e s o b t a i n e d a r e 4.9 x

lo6 A/m

and

1.1

x

lo6

A/m f o r Ti55Nb30Sil2B3 and 6 . 1 x 106 A/m and 8.8 x

lo5

A/m f o r Ti45Nb40 Sil2B3, f o l l o w i n g t h e g e n e r a l tendency 1221 t h a t t h e h i g h e r t h e Tc, t h e h i g h e r

i s

Hc2. A d d i t i o n a l l y , one can n o t i c e t h a t t h e Hc2.values a r e much h i g h e r com- pared w i t h t h e

H c l

v a l u e s . T h i s l a r g e d i f f e r e n c e h a s been c o n s i d e r e d t o b e due t o t h e l a r g e Ginzburg -Landau parameter / 2 3 / . These r e s u l t s i n d i c a t e t h a t

(5)

t h e p r e s e n t amorphous a l l o y s can b e c l a s s i f i e d a s t y p e

I1

s u p e r c o n d u c t o r s .

The c r i t i c a l c u r r e n t d e n s i t y

Jc

was measured a t e x t e r n a l a p p l i e d magnetic f i e l d ( H ) i n a l i q u i d h e l i - um b a t h . F i g u r e 6 shows t h e c r i t i c a l c u r r e n t densi- t y

Jc

a s a f u n c t i o n of

H

f o r Ti55Nb3oSil~B3 and Ti45 Nb40Sil2B3 amorphous a l l o y s . For H=O,

Jc

i s found t o b e about 450-480 ~ / c m ~ . For

H>O,

Jc i s observed t o f a l l v e r y r a p i d l y w i t h i n c r e a s i n g H . For exam- p l e , a t H=3.2

x

106 A/m(40 kOe),

Jc

i s of t h e o r d e r 220 ~ / c m ~ . Such s m a l l v a l u e s of

Jc

i n d i c a t e t h a t f l u x pinning f o r c e s i n t h e s e m a t e r i a l s a r e compara- t i v e l y weak.

H

(kOe)

10 20 30 40 50 6D 70 80

Hc2 (onset )

,

20

.- 8

.. t

O 0 1 2 3 4 5 7

Magnetic field. H (Alrn) ''06

Fig. 6 C r i t i c a l c u r r e n t d e n s i t y ( J c ) of Ti55Nb30

Si12B-j and Ti45Nb40Si1.2B3 amorphous a l l o y s a s a f u n c t i o n of magnetic f i e l d a p p l i e d normal t o t h e d i r e c t i o n of c u r r e n t flow.

The superconducting p r o p e r t i e s ( T c and Hcp) of t h e amorphous a l l o y s c h a r a c t e r i z e d i n t h e p r e s e n t i n v e s t i g a t i o n a r e , w i t h i n t h e a u t h o r s ' knowledge, t h e h i g h e s t f o r d u c t i l e amorphous a l l o y s showing complete bending, b u t a r e

s t i l l

i n s u f f i c i e n t f o r p r a c t i c a l u s e . From t h e t e c h n o l o g i c a l p o i n t of view, however, liquid-quenching makes t h e p r o c e s s i n g of superconducting m a t e r i a l s much s i m p i e r . Espe- c i a l l y , t h e e x i s t e n c e of a r e a d i l y o b t a i n a b l e amor- phous phase i n t h e Ti-Nb-Si and Ti-Nb-Si-B systems and t h e r e s u l t /7/ t h a t t h e superconducting proper- t i e s of t h e s e amorphous a l l o y s improve remarkably on c r y s t a l l i z a t i o n o f f e r a l t e r n a t i v e means of f a b r i c a t - i n g superconducting t a p e s o r w i r e s . I n f a c t , Ti-Nb- Si-B a l l o y s c o n s i s t i n g of a duplex s t r u c t u r e of amorphous and c r y s t a l l i n e phases show superconduct-

REFERENCES

/1/

P. Duwez and

W.

L. Johnson,

J .

Less-Common Metals 62 (1978) 215.

/ 2 / T. Masumoto and R. Maddin, Acta Met. 19 (1971) 725.

/3/

E. A.

Kramer,

W.

L. Johnson and

C.

C1ine;Appl.

Phys. L e t t . 21 (1979) 815.

141

A.

Inoue,

H.

M. Kimura, S. S a k a i and T. Masu- moto, Paper t o b e p r e s e n t e d a t t h e 4 t h I n t e r n . Conf. on Titanium, Kyoto, Japan, May, 1980.

/5/ T. Masumoto,

A.

Inoue, S. S a k a i ,

H. M.

Kimura and A. Hoshi, Trans. Japan I n s t . Metals

(1980) 115.

/ 6 /

A.

Inoue, S. S a k a i ,

H. M.

Kimura, T. Masumoto and A. Hoshi, S c r i p t a Met. 14 (1980) 235.

'

/7/

A . Inoue, C.

Suryanarayana, T. Masumoto and A.

Hoshi, S c i . Rep. Res. I n s t . Tohoku Univ. A28

(1980) 182.

/ 8 / A. Inoue and T. Masumoto, S t r u c t u r e and Proper- t i e s of Amorphous Metals

Z I ,

Supplement t o S c i . Rep, Res. I n s t . Tohoku Univ. A28 (1980) 165.

191

A . Inoue, H. M. Kimura, T. Masumoto, C.

Surya- narayana and

A . Hoshi, J.

Appl. Phys. (Communi- c a t e d ) .

1101

A.

Inoue,

C .

Suryanarayana, T. Masumoto and A.

Hoshi, Mater. S c i . Eng. (Communicated).

/11/

A.

Inoue, T. Masumoto,

A.

Hoshi and S. S a k a i , t o b e p r e s e n t e d a t t h e I n t e r n . Conf. on Metal- l i c G l a s s e s , Science and Technology, J u n e 30- J u l y 4 , 1980, Budapest.

1121 C. Suryanarayana, A. Inoue and T. Masumoto, S c r i p t a Met. (Communicated).

/13/ A. Inoue,

A.

Hoshi,

C.

Suryanarayana and T.

Masumoto, S c r i p t a Met. (Communicated).

/14/ M. M. Collver and

R.

H. Hammond, Phys. Rev.

L e t t . 2 (1973) 92.

/15/ J . B . Vetrano and R.

W.

Boom,

J.

Appl.

(1965) 1179.

1161

W. L.

McMillan, Phys. Rev. 167 (1968) 331.

1171

W.

L. Johnson, S.

J.

Poon,

J.

Durand an#

P .

Duwez, Phys. Rev. B 2 (1978) 206.

1181 W. L. Johnson,

J.

Appl. Phys. 50 (1979) 1557.

1191 K. Togano and

K.

Tachikawa, Phys. L e t t . 54q (1975) 205.

1201 E. R. Domb and

W.

L. Johnson,

J .

Low Temp.

Phys. 2 (1978) 29.

1211

W.

DeSorbo, Phys. Rev. 130 (1963) 2177.

1221

G.

E i l e n b e r g e r and V. Ambegaokar, Phys. Rev.

158 (1967) 332.

-

/23/

W.

L. Johnson, Rapidly Quenched Metals

111,

ed. B. Cantor, The Metals S o c i e t y , London, (1978), v01.2, p.1.

i n g p r o p e r t i e s much s u p e r i o r t o t h o s e of ' c o m p l e t ~ l y

amorphous a l l o y s w i t h o u t a d e t e c t a b l e l o s s of duc-

t i l i t y 1131.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to