• Aucun résultat trouvé

DEPENDENCE OF ELASTIC MODULUS ON MICROSTRUCTURE IN 2090-TYPE ALLOYS

N/A
N/A
Protected

Academic year: 2021

Partager "DEPENDENCE OF ELASTIC MODULUS ON MICROSTRUCTURE IN 2090-TYPE ALLOYS"

Copied!
13
0
0

Texte intégral

(1)

HAL Id: jpa-00226597

https://hal.archives-ouvertes.fr/jpa-00226597

Submitted on 1 Jan 1987

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

DEPENDENCE OF ELASTIC MODULUS ON MICROSTRUCTURE IN 2090-TYPE ALLOYS

M. O’ Dowd, W. Ruch, E. Starke, Jr.

To cite this version:

M. O’ Dowd, W. Ruch, E. Starke, Jr.. DEPENDENCE OF ELASTIC MODULUS ON MI-

CROSTRUCTURE IN 2090-TYPE ALLOYS. Journal de Physique Colloques, 1987, 48 (C3), pp.C3-

565-C3-576. �10.1051/jphyscol:1987366�. �jpa-00226597�

(2)

JOURNAL DE PHYSIQUE

Colloque C3, supplBment au n 0 9 , Tome 48, septembre 1987

DEPENDENCE OF ELASTIC MODULUS ON MICROSTRUCTURE IN 2090-TYPE ALLOYS

M.E. O r D O W D ( l ) , W. RUCH, and E . A . STAXKE, Jr.

Department of Materials Science, University of Virginia, Charlottesville, V A 22901, U.S.A.

ABSTRACT

The Young's m o d u l u s , s h e a r m o d u l u s and P o i s s o n ' s r a t i o w e r e d e t e r m i n e d u s i n g a n u l t r a s o n i c p u l s e e c h o t e c h n i q u e . T h r e e c o m m e r c i a l l y f a b r i c a t e d a l u m i n u m - c o p p e r - l i t h i u m a l l o y s a n d an aluminum-lithium b i n a r y a l l o y were examined. The e l a s t i c p r o p e r t i e s w e r e measured a s a f u n c t i o n of a g i n g t i m e , a g i n g t e m p e r a t u r e , amount of s t r e t c h i n g and t e s t i n g d i r e c t i o n . An i n c r e a s e i n Young's modulus due t o d e l t a prime and T1 p r e c i p i t a t i o n h a s been measured and t r e a t e d q u a n t i t a t i v e l y i n c l u d i n g p r e c i p i t a t i o n k i n e t i c s . A s i g n i f i c a n t d e c r e a s e of a b o u t 5 % i n t h e m o d u l u s of e l a s t i c i t y w a s f o u n d i n t h e peak age c o n d i t i o n . T h i s d e c r e a s e can be a t t r i b u t e d t o p r e c i p i t a t i o n of t h e T2 phase. The s h e a r modulus behaves s i m i l a r t o Young's modulus w h i l e t h e P o i s s o n ' s r a t i o remains unchanged. There i s no s i g n i f i c a n t o r i e n t a t i o n dependence of t h e e l a s t i c p r o p e r t i e s on t e s t i n g d i r e c t i o n d e s p i t e t h e f a c t t h a t a t y p i c a l . r o l l i n g t e x t u r e was p r e s e n t .

INTRODUCTION

I t i s w e l l e s t a b l i s h e d t h a t t h e a d d i t i o n of l i t h i u m d e c r e a s e s t h e d e n s i t y and i n c r e a s e s t h e e l a s t i c modulus (1-4). T h i s paper examines t h e i m p o r t a n t p a r a m e t e r s w h i c h i n f l u e n c e t h e e l a s t i c m o d u l u s i n c o m m e r c i a l l y i m p o r t a n t a l u m i n u m - l i t h i u m a l l a y s . T h e s e p a r a m e t e r s i n c l u d e s o l i d s o l u t i o n c o n c e n t r a t i o n s , t h e i r v o l u m e f r a c t i o n s , a n d o r i e n t a t i o n e f f e c t s . I n d u s t r y can implement t h e s e r e s u l t s t o produce aluminum-lithium a l l o y s which p o s s e s s an optinium e l a s t i c modulus.

EXPERIMENTAL PROCEDURE

?'he a l l o y s s t u d i e d i n t h i s i n v e s t i g a t i o n w e r e d a n a t e d by t h e R e y n o l d s M e t a l s Company, Richmond, V i r g i n i a. The m a t e r i a l was r e c e i v e d a s h o t c r o s s - r o l l e d p l a t e w i t h a t h i c k n e s s r f 12 mm. The c o m p o s i t i o n s of t h e a l l o y s a r e g i v e n i n T a b l e I. A l l o y 7 3 i s s i m i l a r i n c o m p o s i t i o n t o ALCOA's 2090.

The a l l o y s were s o l u t i o n h e a t t r e a t e d a t 5500C f o r 3 0 m i n u t e s i n a s a l t b a t h a n d c o l d w a t e r q u e n c h e d ( C W Q ) . A l l t h e s a > x p l e s , a l l o y s 7 3 , 81, 82 a n d t h e b i n a r y a l l o y w e r e a g e d a t l900C f o r t i m e s f r o m 1 0 m i n u t e s up t o 300 h o u r s . They w e r e a l l e x a m i n e d i n t h e u n s t r e t c h e d c o n d i t i o n . Alloy 7 3 was a l s o examined i n a 6 % s t r e t c h e d c o n d i t i o n .

(1)

Naval Air Development Center, Warminster. Pennsylvania. U.S.A.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1987366

(3)

JOURNAL DE PHYSIQUE

Samples were machined f o r u l t r a s o n i c measurement from t h e c e n t e r of t h e p l a t e . The s a m p l e s were r e c t a n g u l a r , a b o u t 1 2 x 7 x 5 mm3 i n dimensions. Longitudinal and t r a n s v e r s e wave v e l o c i t i e s were measured w i t h a 1 0 MHz u l t r a s o n i c p u l s e echo equipment.

The e l a s t i c modulus, s h e a r modulus, and P o i s s o n ' s r a t i o w e r e c a l c u l a t e d using t h e f o l l o w i n g e q u a t i o n s ( 5 ) :

. . .

R = ( V t / V L ) 2 eq. 1

P = (2*R-1)/(2*R-2)

. . .

eq. 2

G = v ~ ~ * D

. . .

eq. 3

E = D * v ~ ~ * ( ( ~ + P ) * ( ~ - 2 * ~ ) / ( l - P )

. . .

eq. 4

R - R a t i o of v e l o c i t i e s squared P

-

Poisson's r a t i o

G

-

Shear Modulus (GPa) E

-

E l a s t i c Modulus (GPa) D - Density ( g / c c )

V t

-

Transverse v e l o c i t y (m/sec) V

-

Longitudinal v e l o c i t y (m/sec)

Q

The d e n s i t y of e a c h s a m p l e was measured u s i n g Archimedes p r i n c i p l e . The d e n s i t y d i d not change upon aging w i t h i n 0.02%.

T e x t u r e a n a l y s i s of t h e a l l o y s was p e r f o r m e d u s i n g a Siemens t e x t u r e goniometer, s e t up f o r t h e Schulz r e f l e c t i o n technique. Pole f i g u r e s were obtained from each sample.

Transmission e l e c t r o n microscopy was performed using a P h i l l i p s 400 i l 2 0 ~ e v ) i n s t r u m e n t . S m a l l a n g l e x - r a y s c a t t e r i n g (SAXS) was performed a t t h e National Laboratory i n Oak Ridge, Tennessee w i t h CuKa r a d i a t i o n . A Huber G u i n i e r Camera w i t h a q u a r t z monochromator using Cu K a r a d i a t i o n was u s e d i n c o n n e c t i o n w i t h t h e d i r e c t c o m p a r i s o n methoa t o determine volume f r a c t i o n s of second phases.

RESULTS AND DISCUSSION

The m i c r o s t r u c t u r e of a l l o y s 73, 81 and 82 d i s p l a y a n e l o n g a t e d f l a t g r a i n s t r u c t u r e due t o r o l l i n g . T y p i c a l d i m e n s i o n s a r e 220 x 100 x 30 pm3. I n a d d i t i o n t h e r e i s a s u b g r a i n s t r u c t u r e i n t h e s i z e r a n g e of 5 t o 30 pm p r e s e n t . The b i n a r y a l l o y e x h i b i t e d a f u l l y r e c r y s t a l l i z e d , equiaxed g r a i n s i z e ranging from 340 t o 360 pm.

F i g u r e 1 d i s p l a y s t h e r e s u l t s of TEM and 3 u i n i e r x - r a y a n a l y s i s w i t h r e s p e c t t o second p h a s e p r e c i p i t a t i o n a t 1 9 0 ° C a s a f u n c t i o n of aging time. I n t h e s o l u t i o n h e a t t r e a t e d c o n d i t i o n t h e m a t r i x , 6 ' and

~ 1 3 z r d i s p e r s o i d s w e r e e v i d e n t i n t h e t e r n a r y a l l o y s . The l a t t e r change n e i t h e r d i s t r i b u t i o n nor volume f r a c t i o n during aging.

A f t e r 1 0 m i n u t e s a g i n g a t 1 9 8 C t h e r e i s e v i d e n c e of t h e T I p h a s e i n a l l o y 73, b u t n o t i n a l l o y s 81 o r 82. This can be explained by t h e h i g h e r Cu c o n t e n t of 73 r e s u l t i n g i n a s t r o n g e r d r i v i n g f o r c e f o r T1 p r e c i p i t a t i o n . The T 1 p h a s e n u c l e a t e s h e t e r o g e n e o u s l y a t g r a i n and subgrain boundaries. The p l a t e l e t s , a f t e r 1 0 minutes aging a t 190°C, a r e a p p r o x i m a t e l y 72 nm l o n g and 8 nm wide.

A f t e r a p p r o x i m a t e l y 90 m i n u t e s a g i n g t i m e t h e T1 p h a s e i s a p p a r e n t i n a l l t h r e e a l l o y s . A f t e r 8 h o u r s a g i n g a t 1900C, t h e r e i s p r e s e n t i n a l l t h r e e a l l o y s some T2 p h a s e w h i c h n u c l e a t e s p r e f e r e n t i a l l y along t h e g r a i n boundaries.

The volume f r a c t i o n of 6' a s a f u n c t i o n of a g i n g t i m e was examined f o r a l l o y 81.

(4)

T a b l e I 1 shows t h a t t h e d i r e c t c o m p a r i s o n method y i e l d e d more c o n s i s t e n t r e s u l t s t h a n t h e TEM method. I n t h e f o r m e r method t h e i n t e g r a t e d i n t e n s i t y r a t i o of t h e (200) and (100) d i f f r a c t i o n l i n e was measured from a G u i n i e r camera e x p o s u r e compared t o t h e c a l c u l a t e d v a l u e and s o l v e d f o r t h e volume f r a c t i o n . At s h o r t a g i n g t i m e s t h e s u p e r l a t t i c e l i n e was t o o weak t o be m e a s u r e d q u a n t i t a t i v e l y and t h e r e f o r e a SAXS Kratky p l o t was used.

F i g u r e 2 shows t h e g' volume f r a c t i o n i n a l l o y 81 a s a f u n c t i o n of aging time. he SAXS d a t a p o i n t s ( a s t e r i s k s ) have been c a l i b r a t e d w i t h t h e d i r e c t comparison r e s u l t s ( c i r c l e s ) a t 4 0 min. aging time.

It i s evident from Guinier camera and TEM r e s u l t s t h a t t h e d e l t a p r i m e volume f r a c t i o n r e m a i n s e s s e n t i a l l y c o n s t a n t a t l o n g e r a g i n g times. SAXS d a t a i n Figure 2 shows an i n c r e a s e i n volume f r a c t i o n of second phases beyond 1 0 0 min., caused by T 1 and T2 p r e c i p i t a t i o n . The i n t e r p r e t a t i o n of t h e SAXS d a t a i n a more q u a n t i t a t i v e way i s r e s t r i c t e d due t o t h e c o m p l i c a t e d s h a p e and s t r u c t u r e of T 1 and T2.

A l l t e r n a r y a l l o y s e x h i b i t t h e same (110) [ 1 i 2 ] t y p e t e x t u r e ( F i g u r e 3 ) . The maximum t i m e s random number of t h e (200) p o l e was 11, 7 and 10 f o r a l l o y s 73, 81 and 82, r e s p e c t i v e l y .

F i g u r e 4 shows t h e Young's Modulus of t h e b i n a r y a l l o y a s a f u n c t i o n of a g i n g t i m e a t 1900C. I t e x h i b i t s an i n c r e a s e i n t h e e l a s t i c modulus up t o a p p r o x i m a t e l y 80 m i n u t e s a g i n g time. The maximum modulus i s approximately 80 GPa. 1 GPa i s t h e l a r g e s t o v e r a l l change i n modulus measured f o r t h e b i n a r y a l l o y where 6' and s o l i d s o l u t i o n a r e t h e only phases present.

The e l a s t i c modulus v e r s u s a g i n g t i m e a t 190°C f o r t h e t e r n a r y a1 l o y s i n t h e u n s t r e t c h e d c o n d i t i o n , l o n g i t u d i n a l d i r e c t i o n i s given i n Figure 5. They reach a maximum e l a s t i c modulus a t approximately 1 0 h o u r s a g i n g a t 1 9 0 0 C . The maximum modulus of a l l o y 73 i s 82 GPa.

Alloys 81 and 82 reach a maximum modulus of approximately 80 GPa.

The s h e a r modulus e x h i b i t s t h e same t r e n d s a s t h e Young's modulus ( s e e F i g u r e 6 ) . The v a l u e s r a n g e d from 29 t o 31 GPa. The P o i s s o n ' s r a t i o measurements d i d n o t e x h i b i t any s i g n i f i c a n t v a r i a t i o n a s a f u n c t i o n of aging time. The v a l u e s ranged between 0.30 and 0.33.

The v a r i a t i o n i n t h e e l a s t i c modulus e x h i b i t e d by t h e s e a l l o y s can be explained by changes i n t h e m i c r o s t r u c t u r e . During aging, t h e g r a i n s i z e , g r a i n o r i e n t a t i o n ( t e x t u r e ) and d e n s i t y remain unchanged.

Therefore, t h e p r e c i p i t a t i o n of second phases i s r e s p o n s i b l e f o r t h e changes i n e l a s t i c behavior.

The change i n modulus of 1 GPa e x h i b i t e d by t h e b i n a r y a l l o y i s due t o t h e i n c r e a s i n g volume f r a c t i o n of d e l t a prime. Beyond 100 m i n u t e s a g i n g t h e volume f r a c t i o n of d e l t a p r i m e r e m a i n s c o n s t a n t . Coarsening of t h e d e l t a prime has no measurable e f f e c t on t h e Young's modulus. This has a l s o been r e p o r t e d by Brous:;aud and Thomas (6).

A volume f r a c t i o n of 12.6% d e l t a prime was determined using t h e G u i n i e r camera on a s a m p l e which had b e e n aged 200 hours. T h i s corresponds w e l l w i t h a value of 11.5% c a l c u l a t e d u s i n g t h e l e v e r r u l e w i t h t h e m i s c i b i l i t y gap d a t a r e p o r t e d by Cocco e t al. ( 7 ) .

Using a l i n e a r r u l e of m i x t u r e s t h e modulus of t h e d e l t a p r i m e can be c a l c u l a t e d using t h e f 01 lowing equation:

E = f g , E 6 , + (1

-

f 6 . ) ( E A l +

xcLi)

S S

. . . . .

eq. 5.

E

-

measured modulus

f

-

6 ' v o l u m e f r a c t i o n E g :

-

modulus of d e l t a prime E A ~

-

modulus of aluminum

X - c o n s t a n t which d e p i c t s t h e dependence of t h e modulus of t h e m a t r i x p h a s e on t h e a m o u n t of l i t h i u m i n s o l i d s o l u t i o n .

(5)

JOURNAL DE PHYSIQUE

c:

;

- L i t h i u m c o n c e n t r a t i o n i n s o l i d s o l u t i o n (6.25 a t % a t m e t a s t a b l e e q u i l i b r i u m )

E A l a n d X h a v e b e e n d e t e r m i n e d by a l i n e a r r e g r e s s i o n of d a t a r e p o r t e d by M u l l e r e t a l . (8). They a r e 70.8 and 1.235, r e s p e c t i v e l y . The modulus of d e l t a prime c a l c u l a t e d u s i n g t h e above e q u a t i o n w i t h E

= 80.7 GPa i s 97 G P ~ . T h i s v a l u e i s r e a s o n a b l y c l o s e t o 1 0 6 a n d 96 GPa r e p o r t e d e l sewhere ( 6 , 8 , 9 ) .

E q u a t i o n 5 w a s a l s o u s e d t o p r e d i c t t h e c h a n g e i n m o d u l u s a s a f u n c t i o n of d e l t a prime volume f r a c t i o n . The l i t h i u m c o n c e n t r a t i o n i n t h e s o l i d s o l u t i o n ( C S S ) c a n b e r e l a t e d t o t h e d e l t a p r i m e v o l u m e f r a c t i o n a c c o r d i n g t o t h e f o l l o w i n g e q u a t i o n :

c&A

= (yLi - c L i f s f ) / ( l - s S f 6 1 )

. . . . . . .

eq. 6

yLi - t o t a l a t o m i c f r a c t i o n of l i t h i u m i n t h e a l l o y

c:;

= 0.225 a c c o r d i n g t o Cocco e t a l . ( 7 ) .

Up t o a p p r o x i m a t e l y 90 m i n u t e s a g i n g , t h e u n s t r e t c h e d t e r n a r y a l l o y s c a n b e t r e a t e d a s two p h a s e m a t e r i a l s c o m p r i s e d of t h e s o l i d s o l u t i o n and d e l t a p r i m e p h a s e s . The a g i n g k i n e t i c s of d e l t a p r i m e can be d e s c r i b e d u s i n g an e q u a t i o n from T u r n b u l l ( 1 0 ) :

f - e q u i l i b r i u m volume f r a c t i o n f y , - volume f r a c t i o n of 6 ' a t time, t to

-

c o n s t a n t

B - c o n s t a n t .

T h i s e q u a t i o n d e s c r i b e s w e l l t h e m e a s u r e d c h a n g e i n v o l u m e f r a c t i o n of d e l t a p r i m e up t o a b o u t 1 0 0 m i n u t e s a g i n g t i m e . The p a r a m e t e r s u s e d w e r e f = 0.2,

t o

= 2.7705 min. a n d B = 0.3196 m i n - l .

U s i n g e q u a t i o n s 5 , 6, a n d 7 t h e c h a n g e i n m o d u l u s f o r a l l o y 8 1 aged up t o where T1 b e g i n s t o p r e c i p i t a t e was c a l c u l a t e d ( s e e F i g u r e 7 ) . One c a n s e e t h a t 6

'

p r e c i p i t a t i o n h a s o n l y a weak e f f e c t on t h e Young's modulus.

T h e i n c r e a s e i n E b e y o n d 9 0 m i n u t e s i s c a u s e d b y T1 p r e c i p i t a t i o n . A T 1 v o l u m e f r a c t i o n of .7% was d e t e r m i n e d a f t e r 4 h o u r s a g i n g u s i n g t h e d i r e c t c o m p a r i s o n method. Assuming a l i n e a r r u l e of m i x t u r e s t h e m o d u l u s of T1 c a n b e c a l c u l a t e d u s i n g t h e f o l l o w i n g e q u a t i o n :

U s i n g c o n s t a n t s f r o m e q u a t i o n 5 f o r t h e m o d u l u s of t h e s o l i d s o l u t i o n (ESS) t h e T1 modulus c a l c u l a t e s t o a b o u t 350 GPa. T h i s v a l u e i s o v e r two t i m e s h i g h e r t h a n a r o u g h a p p r o x i m a t i o n of t h e l o w e r bound performed e a r l i e r (14).

The d r o p i n E o c c u r s a t a p p r o x i m a t e l y 8 t o 1 0 h o u r s a g i n g t i m e w i t h t h e p r e c i p i t a t i o n of t h e i c o s a h e d r a l T2 phase. The d a t a s u g g e s t s t h a t T2 h d s a n e x t r e m e l y low i n t r i n s i c m o d u l u s b e c a u s e i t s v o l u m e f r a c t i o n a p p e a r s t o be s m a l l . From F i g u r e 2 f o l l o w s t h a t t h e volume f r a c t i o n of d e l t a p r i m e a t t h e l o n g e r a g i n g t i m e s r e m a i n s c o n s t a n t . T h i s i n d i c a t e s t h a t t h e T2 phase may grow somewhat a t t h e expense of t h e T1 p h a s e b u t n o t a t t h e e x p e n s e of d e l t a p r i m e . I t may a l s o t a k e l i t h i u m o u t of s o l i d s o l u t i o n , t h u s d e c r e a s i n g t h e m o d u l u s of t h e m a t r i x phase even f u i i h e r .

The t y p e of p r e c i p i t a t e s a r e t h e same i n a l l t h r e e t e r n a r y a l l o y s . However, t h e k i n e t i c s of p r e c i p i t a t i o n a r e d i f f e r e n t . The

(6)

e a r l i e r o n s e t of T1 p r e c i p i t a t i o n i n t h e h i g h copper a l l o y , 73, shows up a s an e a r l i e r i n c r e a s e i n modulus and a l a r g e r d i f f e r e n c e between s t a r t i n g and peak modulus c o n d i t i o n . The l a t t e r may b e e x p l a i n e d by a h i g h e r T1 volume f r a c t i o n .

The m o d u l u s of a l l o y 7 3 , s t r e t c h e d 6 % , i s 2 GPa l o w e r t h a n t h e u n s t r e t c h e d m a t e r i a l ( F i g u r e 8). T h i s i s due t o t h e i n c r e a s e d amount of d i s l o c a t i o n s i n t h e s t r e t c h e d m a t e r i a l w h i c h c a n r e s u l t i n a n e l a s t i c s t r a i n e f f e c t s t h e r e b y r e d u c i n g t h e n e a s u r e d modulus. There i s a more homogeneous p r e c i p i t a t i o n of t h e T1 ghase w i t h i n t h e m a t r i x a t d i s l o c a t i o n j o g s (11). The i n c r e a s e i n m o 3 u l u s i n t h e s t r e t c h e d m a t e r i a l o c c u r s a t a s h o r t e r a g e t i m e d u e t o t h e i n c r e a s e i n t h e k i n e t i c s of p r e c i p i t a t i o n .

A l t h o u g h we d i d n o t e x p e r i m e n t a l l y o b s e r v e a n i n f l u e n c e of t e s t i n g d i r e c t i o n o n t h e m o d u l u s , we c a l c u l a t e d m o d u l i f o r v a r i o u s t e s t i n g d i r e c t i o n s from e l a s t i c c o n s t a n t d a t a p u b l i s h e d by M u l l e r e t a l . ( 8 ) .

L i n e a r r e g r e s s i o n a n a l y s i s was performed t o d e t e r m i n e t h e e l a s t i c c o n s t a n t s of o u r a l l o y s . U s i n g t h e s e e l a s t i c c o n s t a n t v a l u e s t h e modul; a r e c a l c u l a t e d and l i s t e d a c c o r d i n g t o (12) i n Table 111, a l o n g w i t h p u r e aluminum from r e f e r e n c e (13).

The h i g h e s t modulus, a s expected, i s i n t h e [ I l l ] d i r e c t i o n . The maximum t h e o r e t i c a l d i f f e r e n c e i n m o d u l i d u e t o t e s t i n g d i r e c t i o n (Emax) i s o n l y about h a l f i n aluminum-lithium a l l o y s compared t o p u r e aluminum. From a t h e o r e t i c a l p o i n t of view t h e A 1 - L i s o l i d s o l u t i o n a l l o y s can be e x p e c t e d t o be even more e l a s t i c a l l y i s o t r o p i c t h a n p u r e a l u m i n u m . F i g u r e 9 s h o w s t h a t e v e n d u r i n g a g i n g t h e r e i s n o d i r e c t i o n a l i t y of t h e Young's modulus o b s e r v a b l e w i t h i n e x p e r i m e n t a l e r r o r d e s p i t e t h e f a c t t h a t a w e l l p r o n o u n c e d r o l l i n g t e x t u r e i s p r e s e n t .

CONCLUSIONS

1. T h e Y o u n g ' s m o d u l u s i n c r e a s e s o n l y s l i g h t l y d u e t o t h e p r e c i p i t a t i o n of d e l t a prime , ( a b o u t 0.1 GPa/vol%).

2. The T1 p h a s e c o n t r i b u t e s p o s i t i v e l y t o t h e e l a s t i c modulus.

I t s i n t r i n s i c modulus i s e s t i m a t e d t o be a p p r o x i m a t e l y 350 GPa.

3. A maximum i n c r e a s e i n E w i t h a g i n g t i m e of a p p r o x i m a t e l y 5% can b e a t t r i b u t e d t o t h e p r e c i p i t a t i o n of T 1 , a n d t o a l e s s e r e x t e n t of 6 ' , f o r t h e a l l o y s examined.

4. T h e r e i s a s i g n i f i c a n t d r o p i n t h e m o d u l u s a t t h e peak a g e d c o n d i t i o n (5%). I t i s a s s o c i a t e d w i t h t h e p r e c i p i t a t i o n of t h e T2 p h a s e .

5. Al-Cu-Li a l l o y s w h i c h h a v e b e e n s t r e t c h e d 6 % w i l l show a s m a l l e r , b u t f a s t e r i n c r e a s e i n m o d u l u s upon a g i n g . E a r l i e r o c c u r r e n c e of t h e T1 phase and enhanced p r e c i p i t a t i o n k i n e t i c s a r e r e s p o n s i b l e f o r t h i s phenomenon,

6. T h e r e i s no o r i e n t a t i o n d e p e n d e n c e of t h e e l a s t i c m o d u l u s observed i n t h e s e a1 loys.

ACKNOWLEDGEMENT

The a u t h o r s w o u l d l i k e t o a c k n o w l e d g e t h e s p o n s o r s h i p of t h e O f f i c e of Naval R e s e a r c h , G r a n t #N00014-85-K0526, w i t h D r . B r u c e MacDonal d, program manager.

(7)

JOURNAL D E PHYSIQUE

REFERENCES

1. E.A. S t a r k e , J r . , T.H. S a n d e r s , Jr., a n d I. P a l m e r . "New Approaches t o A l l o y Development i n t h e A1-Li System," J o u r n a l of M e t a l s

33

( 1 9 8 1 ) p. 24.

2. G.G. Wald, NASA C o n t r a c t o r R e p o r t 1 6 5 7 6 , L o c k h e e d

-

C a l i f o r n i a Company, Burbank, CA (May 1 9 8 1 ) .

3. W. K o s t e r a n d W. Rauscher, Z. M e t a l l k d e

39

(1948) p. 111.

4. K.K. S a n k a r a n a n d N. J. G r a n t : A l u m i n u m - ~ i t h i u m A l l o y s , e d s . T.H.

S a n d e r s , Jr., a n d E.A. S t a r k e , Jr.. TMS-AIME, W a r r e n d a l e , PA (1981) p. 205.

5. J. K r a u t k r a m e r a n d H. K r a u t k r a m e r , U l t r a s o n i c T e s t i n g pf Materials, 2nd e d . , S p r i n g e r - V e r l a g , New York ( 1 9 7 7 ) .

6. F. B r o u s s a u d a n d M. Thomas, " I n f l u e n c e o f D e l t a P r i m e P h a s e C o a l e s c e n c e o n Younu's M o d u l u s i n a n Al-2.5 w t % L i A l l o v . " - . A l u m i n u m - L i t h i u m ~ l i o y s

u,

e d s . C. Balcer, P.J. G r e g s o n , S.J.

----

H a r r i s a n d C.J. P e e l , I n s t i t u t e o f M e t a l s , London, UK ( 1 9 8 6 ) p.

7. G. Cocco, G. F a g h e r a z z i a n d L. S c h i f f i n i , " D e t e r m i n a t i o n of t h e D e l t a P r i m e C o h e r e n t M i s c i b i l i t y Gap i n t h e A1-Li System by S m a l l - Angle X-ray S c a t t e r i n g , " J. Appl. C r y s t .

10

(1977) pp. 325-327.

8. W. M u l l e r , E. B u b e c k a n d V. G e r o l d , " E l a s t i c C o n s t a n t s of A1-Li S o l i d S o l u t i o n s a n d P r e c i p i t a t e s , " Aluminum-Lithium A l l o y s

m,

I n s t i t u t e of M e t a l s , London, UK ( 1 9 8 6 ) , p. 435.

9. B. N o b l e , S.J. H a r r i s , a n d K. D i n s d a l e , "The E l a s t i c M o d u l u s o f Aluminum-Lithium A l l o y s , " J o u r n a l of M a t e r i a l s S c i e n c e

17

(1982) p. 461-468.

10. D. T u r n b u l l , S o l i d S t a t e P h y s i c s

3

(1956) p. 226.

11. W i l l i a m A. Cassada, 111, Ph.D. T h e s i s , u n i v e r s i t y of ~ i r g i n i a . May 1987.

12. E. K r o n e r , S t a t i s t i c a l C o n t i n u u g M e c h a n i c s , S p r i n g e r B e r l i n ( 1 9 7 1 ) .

13. C. K i t t e l , I n t r o d u c t i o n t o S o l i d S t a t e P h y s i c s , 4 t h E d i t i o n , J o h n Wiley a n d Sons, I n c . , New York, NY (1971) p. 149.

14. E. Agyekum, W. Ruch, E.A. S t a r k e , Jr., S.C. J h a a n d T.H. S a n d e r s ,

"The E f f e c t o f P r e c i p i t a t e Type o n t h e E l a s t i c P r o p e r t i e s o f A l -

Li-Cu a n d ~ l - ~ i - C U - ~ g ~l l & ~ " , ~ l u m i n u m - ~ i t h i u i A l l o y s

u,

I n s t i t u t e of M e t a l s , London, UK (1986) p. 448.

(8)

TABLE I. ALLOY COMPOSITIONS

ALLOY

-

A 1

-

Cu

-

L i

-

Z r C u / L i r a t i o

w t %

-

a t 8

B i n a r y 9 7 . 8 5 2 . 0 0

9 2 . 6 0 7 . 3 6

TABLE 11. VOLUME FRACTION OF DELTA PRIME

A 1 loy A g e t i m e TEM Direct C o m p a r i s o n

a t 1 9 0 C M e t h o d M e t h o d

8 1 4 h r s 1 1 . 2

8 h r s 8 h r s 8 h r s

81 2 0 h r s

8 1 2 0 h r s

8 1 1 0 0 h r s 1 3 . 9

TABLE 111. THEORETICAL MODULI FOR S O L I D SOLUTIONS

A 1 loy C r y s t a l l o g r a p h i c d i r e c t i o n < h k l >

(9)

J O U R N A L DE PHYSIQUE

- - - A L L O Y 73

-

ALLOY 81, 8 2

---

T2

-

--- - - - - --- - - - -

-p

Tl *

---- --- - - - - - - - - - - - -

- - p

6'

rn

loa

1 I I

10' 1

o2

10"

12

AGE TIME

9190

C (MINUTES)

F i g u r e 1. p r o f i l e of t h e o c c u r r e n c e of t h e d e l t a p r i m e , T 1 a n d T 2 p h a s e s i n a l l o y s 7 3 , 81, a n d 82.

AGE TIb?E 1 190 C (MINUTES)

F i g u r e 2. The v o l u m e f r a c t i o n of d e l t a p r i m e i n a l l o y 8 1 a f t e r a g i n g a t 1 9 0 C. ( 0 ) G u i n i e r c a m e r a d a t a : ( * ) S A X S d a t a normalized.

(10)

F i g u r e 3 . P o l e f i g u r e s a ) A l l o y 7 3 (111). b) A l l o y 7 3 ( 2 0 0 ) . c) A l l o y 8 1 ( I l l ) , d ) A l l o y 8 1 ( 2 0 0 ) , e ) A l l o y 8 2 ( I l l ) , a n d f ) A l l o y 8 2 ( 2 0 0 ) .

(11)

JOURNAL DE PHYSIQUE

7 5 . 0 ~ ' " ' " ' " ' " " " " ' ' ' ' ' ' ' ' 1 3 ' " " " ' I

I

oO

10' I

o2

10 10'.

ACE TIME (MINUTES)

F i g u r e 4. E l a s t i c modulus v e r s u s a g i n g t i m e a t 190°C of a l l o y .

--- 1

W 79.0

-

78.0 -

. . . . .. ... .

-

.

-

. 76. J

1

I

75.0 I

. . . .

,... 1 ,

. .

! . I

. . .

1 , . . m I

.

I

I

o0 i

O' . 10' i 0" 1 0'

ACE TIME B 190 C .:IINUTC_S)

t h e b i n a r y

F i g u r e 5. Young's modulus v e r s u s a g i n g t i m e a t 190°C f o r a l l o y s 73, 81 and 82 i n t h e l o n g i t u d i n a l t e s t i n g d i r e c t i o n .

(12)

Figure 6. S h e a r modulus vs. a g i n g t i m e a t 190°C f o r a l l . o y s 7 3 , 81 and 82.

32.0

--

75.0 I , , , I , , I

.

, ,,,,.I I

.

1 I

1

oO

10' 1 02 1

o3

10'

ACE TIME R 190 C (MINUTES)

31.0

30.0

-C .(

Figure 7. E l a s t i c m o d u l u s v e r s u s a g i n g t i m e f o r a l l o y 81.

E x p e r i m e n t a l d a t a i s c o m p a r e d w i t h a t h e o r e t i c a l p r e d i c t i o n .

-

-

73

29.0

Q

0 28.0

27.0

26.0

25.0

-

81

82

-

- -

1 0%

I I , , , . , , , , I

.

, , , , . ,

10'

loZ

1

o3 2

AGE TIME B 190 C (MINUTES)

(13)

JOURNAL DE PHYSIQUE

F i g u r e 8. Young's m o d u l u s v e r s u s a g i n g t i m e a t 1900C of a l l o y 7 3 s t r e t c h e d 6 % .

75.0

-

i

I

4

F i g u r e 9. Young's modulus v e r s u s a g i n g t i m e a t 1900C f o r t h e s h o r t t r a n s v e r s e , l o n g t r a n s v e r s e and l o n g i t u d i n a l d i r e c t i o n s of a l l o y 8 2 .

75.0 I I I

1

on

10' 1

o2

1

o3

l o 4 L l

TI!4E (MINUTES)

80.0

.;; 79.0

i3

W 78.0

77.0

76.0

75.0

- - -

- - - - - - -

,

- -

... .

. - . . .

. .

. . .

. .

. --

I 1 1 1 + , 1 8 1 1 1 1 1 1 1 1 1 1 1 t 1 1 3 1 1 1 1 1

1

o0

10' 1

o2

1

c3

10'

AGE TIME R 193 C (MIIIUTES)

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to