• Aucun résultat trouvé

NONLINEAR SURFACE ELECTROMAGNETIC WAVES AT METAL-SEMICONDUCTOR INTERFACES

N/A
N/A
Protected

Academic year: 2021

Partager "NONLINEAR SURFACE ELECTROMAGNETIC WAVES AT METAL-SEMICONDUCTOR INTERFACES"

Copied!
8
0
0

Texte intégral

(1)

HAL Id: jpa-00224157

https://hal.archives-ouvertes.fr/jpa-00224157

Submitted on 1 Jan 1984

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

NONLINEAR SURFACE ELECTROMAGNETIC WAVES AT METAL-SEMICONDUCTOR

INTERFACES

Y. Chen, G. Carter

To cite this version:

Y. Chen, G. Carter. NONLINEAR SURFACE ELECTROMAGNETIC WAVES AT METAL-

SEMICONDUCTOR INTERFACES. Journal de Physique Colloques, 1984, 45 (C5), pp.C5-261-C5-

267. �10.1051/jphyscol:1984539�. �jpa-00224157�

(2)

JOURNAL D E PHYSIQUL

Colloque C5, supplCment au n04, Tome 45, a v r i l 1984 page C5-261

NONLINEAR SURFACE ELECTROMAGNETIC WAVES AT METAL-SEMICONDUCTOR INTERFACES

Y . J . Chen and G.M. C a r t e r

GTE Laboratories, Inc., 40 Sy Zvan Road, WaZtham, Massachusetts 02254, U.S.A.

Resume

L ' e x i s t e n c e d'une grande s u s c e p t i b i l i t s n o n - l i n e a i r e du t r o i s i e m e ordre, X ( 3 ) , dans l e s semiconducteurs (en p a r t i c u l i e r , dans l e s compo- ses 111-V) p r o d u i t de nouveaux types d'ondes PlectromagnPtiques de surface l o c a l i s e e s aux i n t e r f a c e s metal-semiconducteur. La r e l a t i o n de d i s p e r s i o n de ces ondes e s t f o n c t i o n de l e u r i n t e n s i t e . Nous avons observe recemment pour l a premiere f o i s , ces ondes electromagnetiques de surface n o n - l i n e a i r e s aux i n t e r f a c e s Ag-S1 e t Ag-GaAs. Dans ce papier, nous donnons un b r e f aperqu s u r l e s considerations e x p e r i - mentales e t s u r l e t r a v a i l t h e o r i q u e correspondant.

A b s t r a c t

T h e existence o f a l a r g e t h i r d o r d e r nonlinear susceptibility, x ( ~ ) , in semiconductors (e.g., I l l - V compounds) g i v e s r i s e t o new t y p e s o f surface electromagnetic waves (SEWs) a t t h e metal-semiconductor interfaces whose dispersion relations a r e i n t e n s i t y dependent.

Recently, we o b s e r v e d f o r t h e f i r s t time, nonlinear SEWs a t A g - S i a n d Ag-GaAs interfaces. I n t h i s paper we g i v e a b r i e f summary of t h e experimental considerations a n d related theoretical w o r k .

INTRODUCTION

T h e degenerate t h i r d o r d e r nonlinear s u s c e p t i b i l i t y x ( ~ ) (w;w,-w,w), defined as x ( ~ ) w , is a v e r y i n t e r e s t i n g and technologically important optical p r o p e r t y . / l / T h e dielectric function, c(w), f o r isotropic materials w i t h a nonzero x ( ~ ) changes l i n e a r l y w i t h t h e l i g h t i n t e n s i t y , 1,:

c(w,l) = c O ( w ) + 4i7 x(3) ( @ ) I

T h i s nonlinear ( i n t e n s i t y dependent) behavior of t h e dielectric f u n c t i o n c contributes t o many well-known optical effects as optical b i s t a b i l i t y , self- focusing, s e l f - t r a p p i n g a n d self-bending o f l i g h t , f o u r wave mixing, phase conjugation, etc. /2-4

/

These effects a r e essential t o all optical signal processing. /4-5/ T h e dispersion relations o f t h e optical normal modes, e. g . surface electromagnetic waves and waveguide modes, f o r systems containing nonlinear materials a r e also i n t e n s i t y dependent as t h e dispersion relations of t h e normal modes a r e generally f u n c t i o n s o f t h e dielectric functions. I n t h i s w o r k we shall l i m i t o u r discussion t o surface electromagnetic waves.

T h e r e has been considerable i n t e r e s t i n nonlinear surface electromagnetic waves./6/ I t has been shown t h a t a s-polarized nonlinear surface electromagnetic wave exists /7-8/ and t h a t a p-polarized surface electromagnetic wave is allowed a t a uniaxial nonlinear interface even t h o u g h t h e zero f i e l d dielectric functions, c,, of b o t h media a r e positive./9/ It

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1984539

(3)

C5-262 J O U R N A L DE PHYSIQUE

has also been shown t h a t u n d e r l a r g e f i e l d conditions, t h e d i s p e r s i o n o f nonlinear s u r f a c e electromagnetic waves e x h i b i t s m u l t i p l e states a n d t h e r e i s a g r e a t deal o f i n t e r e s t i n o p t i c a l b i s t a b i l i t y phenomena associated w i t h these m u l t i p l e states./7,10-14/ Experimentally, nonlinear s u r f a c e electromagnetic waves were o n l y r e c e n t l y o b s e r v e d b y Chen and C a r t e r f o r t w o Ag-GaAs a n d A g - S i s i n g l e i n t e r f a c e systems a t wavelengths near l u m /15/ T h e lack o f experimental r e s u l t s can b e a t t r i b u t e d , i n p a r t , t o t h e l a r g e f i e l d ( a n d t h u s t h e l a r g e i n p u t laser i n t e n s i t y ) r e q u i r e d t o i n d u c e a measurable nonlinear d i s p e r s i o n f o r a normal nonlinear material ( e . 9 . CS,). T h e l a r g e t h i r d o r d e r s u s c e p t i b i l i t y i n semiconductors makes t h e measurement o f t h e nonlinear d i s p e r s i o n o f SEWS a t t h e metal-semiconductor ( o r u n d e r special conditions, e v e n d i e l e c t r i c - s e m i c o n d u c t o r ) i n t e r f a c e s possible. It also opens u p a new avenue f o r s t u d y i n g t h e n o n l i n e a r o p t i c a l phenomena a t semiconductor-metal interfaces. I n t h i s p a p e r we w i l l g i v e a b r i e f summary of t h e experimental a n d related t h e o r e t i c a l w o r k on t h e s u b j e c t .

NONLINEAR DISPERSION

OF

SURFACE ELECTROMAGNETIC WAVES

T h e nonlinear polarization f i e l d Pi c r e a t e d a t t h e f r e q u e n c y w b y a field ( o r f i e l d s ) of t h e same f r e q u e n c y , f o r an i s o t r o p i c medium, i s g i v e n b y /16/

Pi(w,E)=C(u)[21E.(w) 12Ei(w) + E , ~ ( w ) E ~

*

(w)]

J (1)

w h e r e t h e Einstein summation notation is used f o r repeated indices. T h e second t e r m i n Eq(1) allows m i x i n g o f e l e c t r i c f i e l d at d i f f e r e n t polarizations.

A g r a n o v i c h e t . al. /17/ h a v e a r g u e d t h a t it can lead t o t h e decay o f n o n l i n e a r SEW'S t h r o u g h t h e i r c o u p l i n g t o bulk waves. I f one i g n o r e s t h e second t e r m i n Eq (11, t h e f i e l d d e p e n d e n t t e r m o f t h e nonlinear d i e l e c t r i c f u n c t i o n can b e expressed i n t h e f o l l o w i n g simple f o r m :

z N L i ( w , E ) = 4 r x ( ~ ) ( w ) E ~ ( w )

I

( 2 )

F o r s i m p l i c i t y we w i l l c o n s i d e r a metal-semiconductor s i n g l e - i n t e r f a c e system o f w h i c h t h e metal (medium a) has a l i n e a r d i e l e c t r i c f u n c t i o n , ca(w) = coalw) < 0 a n d t h e semiconductor (medium b ) has a nonlinear d i e l e c t r i c f u n c t i o n , r (w) b = cbo(w) + c N L b ( u , ~ ) > 0 . T h e f i e l d i n d u c e d change of d i e l e c t r i c c o n s t a n t i s normally v e r y small compared w i t h t h e zero f i e l d t e r m

( i . e sbo >> r N L b ( w , ~ ) ) . T h u s t h e change of t h e d i s p e r s i o n o f a SEW, i n terms o f t h e change of t h e p r o p a g a t i o n constant Ak// d u e t o t h e p e r t u r b a t i o n o f t h e d i e l e c t r i c constant, Ar = rNLb, o f t h e system can b e obtained via t h e v a r i a t i o n theorem /18/:

w h e r e P E ( c / ~ T I ) If ( E x H ) da p o w e r c a r r i e d b y t h e SEW which is p r o p a g a t i n g along x; z is normal t o t h e i n t e r f a c e a n d t h e i n t e g r a t i o n i n Eq. (3) is o v e r t h e medium b w h i c h i s assumed t o o c c u p y t h e z>0 space ( w h e r e bz=cNL). I f we make t h e f o l l o w i n g assumptions: (1) l1z: >> r o b , so t h a t most o f t h e e n e r g y o f t h e SEW i s i n t h e nonlinear medium b a n d

I E z > > E ~ ~ { ; b a n d (2) t h a t t h e f i e l d p r o f i l e o f t h e SEW i n t h e nonlinear medium does n o t change a p p r e c i a b l y f r o m t h a t o f t h e z e r o f i e l d case, t h e n f o r t h e lowest p e r t u r b a t i o n o r d e r , Eb = Eb(0) exp(-abz) w h e r e o 2

b = Ik// (0) - cob ( W / C ) ~ ] ~ / ~ a n d k//(O) = ( w / c ) [roazob/ (zo a + c 0b)]1/2. F r o m E q . (3) we

(4)

can r e a d i l y o b t a i n t h e following simple r e s u l t f o r Ak// /15,19-20/

We note t h a t even f o r t h e simple nonlinear d i e l e c t r i c f u n c t i o n shown i n Eq. ( 2 ) , t h e nonlinear d i s p e r s i o n o f t h e SEW cannot b e solved a n a l y t i c a l l y . However, it can b e r e a d i l y solved u s i n g numerical m e t h o d s . / l l / We f u r t h e r n o t e t h a t f o r a u n i a x i a l nonlinear case, w h e r e E~

Y 4 7 ~ ' ~ ) [ I E X l 2 +

1

E y 2

I ,

t h e n o n l i n e a r dispersion can b e d e r i v e d a n a l y t i c a l l y . /6,9/ However, t h e u n i a x i a l system i s somewhat a r t i f i c i a l a n d i t i s h a r d t o f i n d a nonlinear material w i t h t h e uniaxial nonlinear p r o p e r t y .

F i g u r e 1 shows t h e nonlinear d i s p e r s i o n o f a SEW calculated b y numerical approaches. T h e calculation was c a r r i e d o u t b y t r e a t i n g t h e nonlinear medium as m u l t i l a y e r s o f i d e n t i c a l nonlinear media each w i t h a c o n s t a n t d i e l e c t r i c f u n c t i o n d e p e n d i n g o n t h e e l e c t r i c f i e l d s t r e n g t h o f t h a t l a y e r . / l l / F o r l a r g e changes o f t h e nonlinear d i e l e c t r i c constant ( ~ I T x ( ~ ) .

~~1~

> 6 x IO-~), t w o SEW branches were obtained. T h e presence o f t w o possible SEW states f o r a g i v e n f i e l d s t r e n g t h has raised t h e p o s s i b i l i t y o f optical b i s t a b i l i t y f o r t h e system./lO/ We w a n t t o p o i n t o u t t h a t e x a c t l y w h i c h of t h e t w o states can b e reached i n an experimental ( e i t h e r b y v a r y i n g t h e i n p u t l i g h t i n t e n s i t y o r i n c i d e n t c o u p l i n g angle) is dependent on t h e i n i t i a l s t a t e o f t h e system.

U n d e r "pulsed" conditions, ( i . e . , t h e nonlinear d i e l e c t r i c is allowed t o relax back t o t h e zero f i e l d state, as t h e i n p u t c o n d i t i o n ( i n c i d e n t angle o r t h e i n c i d e n t laser i n t e n s i t y i s changed), t h e h i g h g a i n state ( t h e u p p e r c u r v e ) cannot b e reached. O n l y u n d e r "cw" conditions, ( i . e . , t h e nonlinear d i e l e c t r i c constant does n o t relax as t h e i n p u t condition i s changed), t h e h i g h q a i n s t a t e can b e reached. Since most nonlinear materials h a v e a r e l a t i v e l y

-

small t h i r d o r d e r nonlinear s u s c e p t i b i l i t y ( 5 1 x 1 0 - ~ ~ ( e s u ) ) , it i s n e a r l y impossible t o achieve t h e cw c o n d i t i o n b y u s i n g a cw laser source since t h e l a r g e laser power w i l l damage t h e sample. F o r nonlinear materials w h i c h h a v e

, -,

a l a r g e xL" one may attempt t o o b s e r v e t h e o p t i c a l b i s t a b i l i t y u s i n g a cw laser source. However, a ( q u a s i - ) cw condition may b e achieved f o r "slow"

n o n - l i n e a r i t y cases b y u s i n g a h i g h r e p e t i t i o n r a t e p u l s e d laser w h e r e t h e relaxation time of t h e n o n l i n e a r i t y is much l o n g e r t h a n t h e p u l s e d i n t e r v a l . T h e calculated r e s u l t s o f scanning t h e i n c i d e n t angle at f i x e d i n p u t i n t e n s i t i e s have been r e p o r t e d elsewhere /11/ a n d w i l l not b e discussed h e r e . F i g u r e 2 shows t h e change o f r e f l e c t e d i n t e n s i t y b y v a r y i n g t h e i n p u t l i g h t i n t e n s i t y a t a f i x e d i n c i d e n t c o u p l i n g angle ( 0 = 60.2') U n d e r t h e "pulsed" condition, t h e r e f l e c t e d i n t e n s i t y (normalized t o t h e i n c i d e n t i n t e n s i t y ) follows t h e s o l i d c u r v e f o r b o t h i n c r e a s i n g i n t e n s i t y a n d decreasing i n t e n s i t y cases. T h i s means t h a t it is o n l y possible t o couple i n t o t h e low g a i n s t a t e . U n d e r t h e

"cw" condition, t h e normalized r e f l e c t e d i n t e n s i t y c u r v e follows t h e s o l i d c u r v e as t h e i n t e n s i t y is increased f r o m 0 w h i l e t h e r e f l e c t e d i n t e n s i t y follows t h e dashed c u r v e as t h e i n t e n s i t y is r e d u c e d f r o m 1 x 1 0 - ~ a n d a h y s t e r e s i s loop opens. When an i n c i d e n t angle closer t o t h e zero f i e l d resonant angle (259.4') was used, t h e resonant c o u p l i n q o c c u r e d at a smaller value o f 47

-

x (3) E~~ ( i . e . , smaller i n p u t i n t e n s i t y ) and, t h e h y s t e r e s i s window was r e d u c e d a c c o r d i n g l y . B o t h calculations were done f o r a p r i s m - A g - n o n l i n e a r d i e l e c t r i c c o n f i g u r a t i o n u n d e r t h e f o l l o w i n g c o n d i t i o n s : X = 3 . 3 9 urn;

= 16.28;

A 9 = -570 + i62 ; E~ = 11.67 a n d s i l v e r t h i c k n e s s o f 300 A . E X P E K I M E N T L CONSIDERATIONS AND DISCUSSION

T h e experimental s e t u p used f o r measuring t h e nonlinear dispersion o f SEW has been d e s c r i b e d i n detail before, /15/ a n d w i l l o n l y b e b r i e f l y mentioned

(5)

J O U R N A L DE PHYSIQUE

F i g u r e 1. Field-dependent dispersion relation of SEWS at a metal- nonlinear m e d i u m interface.

h e r e . Basically, c o u p l i n g t o t h e SEW was b y attenuated t o t a l r e f l e c t i o n ( A T R ) techniques ( e i t h e r v i a a p r i s m o r a g r a t i n g ) . T h e nonlinear d i s p e r s i o n was determined b y measuring t h e change o f c o u p l i n g a n g l e w i t h

,m,

i n p u t laser i n t e n s i t y . From t h e nonlinear d i s p e r s i o n t h e values o f x l J ) o f Si a n d GaAs a t Xelpm were determined. B y u s i n g a collimated laser beam, a n d a h i g h a n g u l a r r e s o l u t i o n spectrogonirneter we c o u l d measure x ( ~ ) t o b e t t e r

F i g u r e

2.

Reflected intensity versus E . ; ' f o r a prism-metal-non- linear medium ATR configuration.

(6)

t h a n 2 x 1 0 - l 1 e s u Furthermore, f r o m t h e d i r e c t i o n o f t h e change o f Akl/

w i t h laser i n t e n s i t y , we also established t h e s i g n o f x ( ~ ) r e l a t i v e t o t o f o r GaAs a n d Si. T h i s additional i n f o r m a t i o n can b e q u i t e valuable i n s t u d y i n g t h e kinematics of t h e n o n l i n e a r i t y a t resonance conditions w h e r e more t h a n o n e mechanism may b e i n v o l v e d .

F i g u r e 3 shows a t y p i c a l a n g u l a r scan o f t h e normalized r e f l e c t e d i n t e n s i t y n e a r t h e resonant c o u p l i n g angle f o r t h e A g - S i system a t an i n c i d e n t w a v e l e n g t h o f l . l l u m f o r b o t h h i g h i n p u t laser e n e r g y (=70uj/pulse) a n d low i n p u t laser e n e r g y ( = l O ~ j / p u l s e ) . T h e resonant c o u p l i n g angle was o b s e r v e d t o increase w i t h i n p u t laser i n t e n s i t y . Since a - 1 g r a t i n g c o u p l i n g c o n d i t i o n was used, t h e experimental r e s u l t s showed t h a t Ak,, decreases as t h e laser

. .

i n t e n s i t y increases, a n d t h u s , x ( ~ ) a n d e-

"

h a v e opposite signs. T h e magnitude o f x ( ~ ) was d e r i v e d f r o m t h e amount o f change dk,/ w i t h t h e g i v e n f i e l d s t r e n g t h o f t h e SEW a t t h e A g - S i i n t e r f a c e a n d was estimated t o b e 1 x 1 0 - ~ esu.

T h e nonlinear measurement t e c h n i q u e can also b e used f o r time resolved pump a n d p r o b e studies, as shown i n F i g u r e 4. Note t h a t t h e p u m p a n d p r o b e beams a r e c o - l i n e a r so t h a t b o t h beams a r e i n c i d e n t on t h e same sample s p o t a t t h e same i n c i d e n t angle. If t h e time delay between t h e pump a n d p r o b e beam, T , i s s h o r t e r t h a n t h e r e l a x a t i o n time o f t h e n o n l i n e a r i t y , z , t h e p r o b e beam (a low i n t e n s i t y beam) i s u n d e r a quasi-cw c o n d i t i o n (i.e., t h e system i s s t i l l u n d e r t h e i n f l u e n c e o f t h e p u m p beam) a n d t h e d i s p e r s i o n r e l a t i o n measured b y t h e p r o b e beam w i l l b e similar t o t h a t o f t h e p u m p beam ( w h i c h has a much l a r g e r laser i n t e n s i t y ) . If T >> s , t h e p r o b e beam i s u n d e r a p u l s e d c o n d i t i o n ( i . e . , t h e system has r e t u r n e d t o t h e zero f i e l d state) a n d t h e d i s p e r s i o n relation measured b y t h e p r o b e beam w i l l b e d i f f e r e n t f r o m t h a t o f t h e p u m p beam. T h e r e f o r e , b y u s i n g t h e p u m p and p r o b e t e c h n i q u e one can s t u d y n o t o n l y t h e nonlinear d i s p e r s i o n o f SEWs, b u t also t h e dynamics o f t h e n o n l i n e a r i t y . T o i n c l u d e t h e dynamics o f t h e SEW, one m u s t b e i n t h e time scale w h e r e (a) t h e SEW has n o t decayed a n d ( b ) has n o t p r o p a g a t e d away. T h e pump a n d p r o b e s e t u p can also b e modified so t h a t t h e pump a n d p r o b e beams a r e n o t co-linear ( i . e . , t h e t w o beams have d i f f e r e n t i n c i d e n t angles). I n t h i s case one can use t h e pump beam t o c o n d i t i o n t h e nonlinear system a n d then, b e f o r e t h e system relaxes, p r o b e t h e system w i t h a n o t h e r i n t e n s i t y beam a t a s l i g h t l y d i f f e r e n t angle. T h i s way, one can i n i t i a t e t h e cw c o n d i t i o n w i t h p u l s e d laser beams a n d couple t o t h e h i g h gain s t a t e a t c o u p l i n g angles w h e r e t h e t w o n o n l i n e a r SEW b r a n c h e s a r e s t a r t i n g t o s p l i t .

F i n a l l y , we w a n t t o p o i n t o u t t h a t t h e n o n l i n e a r d i s p e r s i o n r e l a t i o n f o r an uniaxial system i s d i f f e r e n t f r o m t h a t o f a n i s o t r o p i c system. T h u s one can use t h e measured nonlinear d i s p e r s i o n t o s t u d y t h e n a t u r e o f o p t i c a l n o n l i n e a r i t v a t t h e metal-semiconductor i n t e r f a c e s . One case o f articular i n t e r e s t is t h e G ~ A S / G ~ ~ - ~ A I ~ A ~ m u l t i p l e q u a n t u m well (MQW) s t r u c t u r e . 2 1 A t wavelengths n e a r t h e two-dimensional exciton, MQW s t r u c t u r e s have been - shown t o h a v e a l a r g e x ( ~ ) i n t h e QW plane. I n t h e d i r e c t i o n normal t o t h e p l a n e ( z ) , t h e optical nonlinearity has not been well studied. However, f r o m t h e l a r g e d i f f e r e n c e s i n t h e l i n e a r e l e c t r o n i c a n d e x c i t o n i c p r o p e r t i e s , we - . .

believe t h a t xZ (3) can b e q u i t e d i f f e r e n t f r o m x,'~). T h e nonlinear d i s p e r s i o n r e l a t i o n o f SEW w i l l address t h i s q u e s t i o n . F u r t h e r m o r e , t h e x (3) o f t h e MQW s t r u c t u r e s i s a f a c t o r o f 10 l a r g e r t h a n t h a t o f t h e silicon, t h u s 5 it is also a p r o m i s i n g system f o r s t u d y i n g t h e optical b i s t a b i l i t y phenomena of nonlinear SEWs.

(7)

JOURNAL DE PHYSIQUE

LOW -

-

INCIDENT ANGLE

Figure 3. Anpular scan of the reflected intensities around the resonant coupling angles for the Si-Ag case. The arrows shown mark the excitation angle (in degrees) for the two cases.

SPECTROGENIOMETER

DETECTOR PUMP PROBE 1

0 LENS REFERENCE

PULSED LASER SYSTEM

PROBE BEAM

Figure 4. Schematics for time resolved (pump and probe) nonlinear

coupling measurement set-up.

(8)

A C K N O W L E D G E M E E

We l i k e t o acknowledge Professor J.M. B a l l a n t y n e a n d G.J. Sonek a t t h e National Research a n d Resource F a c i l i t y f o r Submicron S t r u c t u r e a t Cornell U n i v e r s i t y a n d D r . N. Economour a t M I T Lincoln L a b o r a t o r y f o r s u p p l y i n g us w i t h t h e submicron g r a t i n g samples u s e d i n t h e experiments.

References

1. D . Frohlich, i n Advances i n Solid State Physics: Festkoer Probleme (Pergarnon, New Y o r k , 1981), V o l . XXI, p . 363.

2. Y . R . S h e n , R e v . M o d . Phys. @ , I (1976) 3. D. M. Pepper, O p t . Eng.

2,

156 (1982).

4. See, f o r example, "Optical Phase Conjugation," e d i t e d b y R. A . F i s h e r (Academic Press, New Y o r k , 1983).

5. P.

W.

Smith a n d W. J . Tomlinson, IEEE Spectrum

18,

26 (1981).

6. See, f o r example, a r e c e n t r e v i e w p a p e r b y A . A . M a r a d u d i n ( p r e p r i n t ) , t o b e p u b l i s h e d .

7. W. J. Tomlinson, Optical L e t t e r s

5,

323 (1980).

8 . A . A . Maradudin, Z. Physics,

841,

341 (1981).

9. Y . R . Alanakyan, Soviet Phys. - Tech. Phys. 12, 587 (1967); V . M.

A g r a n o v i c h , Psi'ma Z h . E k s p . T e o r . Fiz.

2,

5 3 n (1980).

10. G . M. Wysin, H. J. Simon, a n d R. T. Deck, Optical Letters

6,

3 0

(1981).

11. Y . J . Chen a n d G . M. C a r t e r , Solid State Commun.

41,

277 (1983).

12. V . K. Fedyania, D . Minhalache, Z. Phys.

847,

167 (1982) 13. D . Sarid, A p p l . P h y s . L e t t .

2 ,

889 (1981).

14. G. I . Stegeman, A p p l . Phys. L e t t . 4J, 214 (1982).

15. Y . J. Chen a n d G. M. C a r t e r , A p p l . P h y s . L e t t .

41,

307 (1982).

16. P. D . Maker a n d R. W. Terhune, Phys. Rev.

137,

A801 (1965) 17. V. M. Agranovich, V . S. Babichenko, a n d V. Ya Chernyak, Soviet

Physics - - JETP L e t t . 3_1, 512 (1980).

18. H. Kogelnik, i n I n t e g r a t e d Optics, e d i t e d b y T . Tarnir ( S p r i n g e r , New Y o r k , 1979), Chap. 2.

19. V.M. A g r a n o v i c h a n d V . Ya. C h e r n y a k , Solid State Commun.

9,

1309 (1982).

20. T h e same r e s u l t was o b t a i n e d i n d e p e n d e n t l y b y Chen a n d C a r t e r ( R e f . 15) a n d A g r a n o v i c h a n d C h e r n y a k ( R e f . 19). T h e expression g i v e n i n Ref.15 (Eq. 2) used an e f f e c t i v e e l e c t r i c f i e l d E d e f i n e d as Eo/J2 w h i c h accounts f o r t h e f a c t o r o f 2 d i f f e r e n c e .

21. D . A . B . Miller, D. S. Chemlla, D. J . Eilenberger, P. W. Smith, A . C . Gossard, a n d W. T . Tsang, A p p l . Phys. L e t t .

41,

679 (1982).

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to