• Aucun résultat trouvé

STRUCTURAL UNIT/GRAIN BOUNDARY DISLOCATION MODEL FOR TWIST BOUNDARIES IN CUBIC CRYSTALS

N/A
N/A
Protected

Academic year: 2021

Partager "STRUCTURAL UNIT/GRAIN BOUNDARY DISLOCATION MODEL FOR TWIST BOUNDARIES IN CUBIC CRYSTALS"

Copied!
17
0
0

Texte intégral

(1)

HAL Id: jpa-00224668

https://hal.archives-ouvertes.fr/jpa-00224668

Submitted on 1 Jan 1985

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

STRUCTURAL UNIT/GRAIN BOUNDARY

DISLOCATION MODEL FOR TWIST BOUNDARIES IN CUBIC CRYSTALS

P. Bristowe, R. Balluffi

To cite this version:

P. Bristowe, R. Balluffi. STRUCTURAL UNIT/GRAIN BOUNDARY DISLOCATION MODEL FOR

TWIST BOUNDARIES IN CUBIC CRYSTALS. Journal de Physique Colloques, 1985, 46 (C4), pp.C4-

155-C4-170. �10.1051/jphyscol:1985419�. �jpa-00224668�

(2)

JOURNAL DE PHYSIQUE

Colloque C4, supplément au n04, Tome 46, avril 1985 page C4-155

STRUCTURAL UNIT/GRAI N BOUNDARY DISLOCATION MODEL FOR TWIST BOUNDARIES

I N CUBIC CRYSTALS

P.D. Bristowe and R.W. Balluffi

Department of Materials Science and Engineering, Massachusetts I n s t i t u t e of TechnoZogy, Cambridge, MA 022 39, U.S.A.

Abstract - The s y s t e m a t i c s of [O011 t w i s t boundary s t r u c t u r e i s presented formally i n terms of a s t r u c t u r a l u n i t l g r a i n boundary d i s l o c a t i o n h i e r a r c h i c a l model and t h e e a r l i e r model of Sutton i s generalized. By comparison with experimental observation and a t o m i s t i c c a l c u l a t i o n using p a i r - p o t e n t i a l models t h e physical s i g n i f i c a n c e of t h e individual members of t h e hierarchy i s d e t e r - mined. Comparison with experiment i n d i c a t e s a s t r o n g <110> t y p e primary

r e l a x a t i o n f o r û & 36.g0 and a s i g n i f i c a n t secondary r e l a x a t i o n near C 5 whicli must r e s u l t from "oblique" p e r t u r b a t i o n s i n t h e a r r a y of primary GBD's. On t h e o t h e r hand, comparison with a v a i l a b l e c a l c u l a t e d r e s u l t s i n d i c a t e s a strong

<110> type primary r e l a x a t i o n a t low angles but a progressively weaker relaxa- t i o n a t higher a n g l e s . Also, no evidence i s found f o r any s i g n i f i c a n t

secondary r e l a x a t i o n s when a t l e a s t one p a i r p o t e n t i a l i s employed. However, very r e c e n t s t u d i e s i n d i c a t e s t r o n g e r secondary r e l a x a t i o n s with o t h e r poten- t i a l s , and t h i s , i n f u t u r e work, should lead t o b e t t e r agreement between c a l c u l a t i o n s and experiment.

1. Introduction - In an attempt t o i n c r e a s e O u r understanding of t h e systematics of g r a i n boundary s t r u c t u r e and i t s r e l a t i o n s h i p t o g r a i n boundary d i s l o c a t i o n s a s t r u c t u r a l u n i t / g r a i n boundary d i s l o c a t i o n (SUIGBD) model has r e c e n t l y been devel- oped by Sutton and Vitek (1-4) which i s based on t h e r e s u l t s of t h e i r a t o m i s t i c cal cul a t i o n s and t h e e a r l i e r geometrical "ledge" model of Bishop and Chalmers ( 5 ) . The geometrical p r i n c i p l e underlying t h e Sutton and Vitek model i s t h a t any long period boundary may be constructed from units of s h o r t e r period boundaries. The s h o r t period boundaries can tlien be chosen a s "del i m i t i n g " boundaries (DB's) wliich f i x t h e l i m i t s on l o c a l m i s o r i e n t a t i o n ranges. The s t r u c t u r e s of t h e intervening long period boundaries i n each range of m i s o r i e n t a t i o n between two D B ' s w i l l then be made up of various mixtures of t h e DB u n i t s . The r u l e f o r mixing so as t o preserve c o n t i n u i t y of s t r u c t u r e i s t h a t t h e u n i t s i n minority be a s f a r a p a r t a s p o s s i b l e . Recently, B a l l u f f i and Bristowe ( 6 ) recognized t h a t a hierarchy of SU/GBD d e s c r i o - t i o n s e x i s t s corresponding t o t h e d i f f e r e n t p o s s i b l e choices of DB's, thereby pro- viding a g e n e r a l i z a t i o n of t h e model. Geometrically, t h e choice of DB's i s usually well defined; i . e . , t h e s h o r t e s t period boundaries (lowest C ) a r e chosen f i r s t and o t h e r s follow so t h a t t h e hierarchy of s t r u c t u r a l u n i t c o n f i g u r a t i o n s i s systerna- t i c a l l y formed. Also, t h e system i s n a t u r a l l y quantised on a f i n e r s c a l e a s t h e number of DB's i s increased. However, a t o m i s t i c c a l c u l a t i o n s have shown t h a t t h e choice of DB's, based on t h e simple geometry of r i g i d dichromatic p a t t e r n s , may not be t h e b e s t one i f s u b s t a n t i a l atomic rearrangement has occurred during r e l a x a t i o n . Therefore, t h e choice of physical l y s i g n i f i c a n t DB's can only be determined from examination o f equilibrium s t r u c t u r e s . I f a OB u n i t can be constructed from u n i t s of another DB i t i s c a l l e d a " m u l t i p l e u n i t r e f e r e n c e s t r u c t u r e " (MURS); otherwise i t i s c a l l e d "favored" ( F ) . Very few favored boundaries appear t o e x i s t , t h e most n o t a b l e being t h e s i n g l e c r y s t a l ( C I ) and simple twin boundary ( ~ 3 ) .

The s y s t e m a t i c d e s c r i p t i o n o f boundary s t r u c t u r e i n terms of mixtures of s t r u c - t u r a l u n i t s corresponds d i r e c t l y t o one i n terms of GBD's. For a long period t i l t boundary, each minority u n i t can be considered a s t h e c o r e of a p e r f e c t GBD having

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1985419

(3)

C4-156 JOURNAL DE PHYSIQUE

a Burgers v e c t o r belonging t o t h e DSC l a t t i c e o f t h e d e l i m i t i n g boundary composed o f t h e m a j o r i t y u n i t s . Also, secondary GBD's (whose cores a r e a p p r o p r i a t e l y chosen m i n o r i t y u n i t s ) appear as p e r t u r b a t i o n s i n t h e spacing o f primary GBD's (whose cores a r e a l s o a p p r o p r i a t e l y chosen u n i t s ) ( 6 ) . Thus, a h i e r a r c h y o f GBD d e s c r i p t i o n s e x i s t s corresponding t o t h e h i e r a r c h y o f s t r u c t u r a l u n i t s d e s c r i p t i o n s , as deduced by B a l l u f f i and Bristowe (6). The h i e r a r c h i c a l nature o f t h e SU/GBD model i s one i l l u s t r a t i o n o f t h e non-uniqueness o f GBD d e s c r i p t i o n s (7,8) and choosing which member o f t h e h i e r a r c h y i s "best" o r has p a r t i c u l a r p h y s i c a l s i g n i f i c a n c e can o n l y be made by c a l c u l a t i o n o f a s p e c i f i c boundary p r o p e r t y such as t h e s t r e s s f i e l d o r d i f f r a c t i o n c o n t r a s t . I f t h e g r a i n boundary f o l l o w s t h e r i g i d l a t t i c e model, and no r e l a x a t i o n s are allowed i n t h e b i c r y s t a l near t h e core region, t h e s t r u c t u r a l u n i t s e x h i b i t considerable d i s t o r t i o n s , and a l 1 GBD's a r e completely d e l o c a l i z e d . However, i n a c t u a l cases a t l e a s t some r e l a x a t i o n s occur which improve t h e uniformity o f s t r u c t u r a l u n i t s and produce l o c a l i z e d GBD1s. The q u e s t i o n o f which GBD descrip- t i o n w i t h i n t h e h i e r a r c h y i s most a p p l i c a b l e was addressed by B a l l u f f i and Bristowe ( 6 ) by re-examining t h e data o f Sutton and V i t e k (1) i n terms o f t h e d i s t o r t i o n s o f t h e s t r u c t u r a l u n i t s . I t was concluded t h a t t h e d i s t o r t i o n s decreased as t h e number of DB's chosen increased, b u t t h a t nevertheless, d i f f e r e n t members o f t h e h i e r a r c h y of d e s c r i p t i o n s could be used advantageously f o r d i f f e r e n t purposes.

I n t h e present paper we use t h e SU/GBD h i e r a r c h i c a l model developed f o r t i l t boundaries (6) t o determine t h e systematics o f t w i s t boundary s t r u c t u r e i n FCC crys- t a l s . Primary focus w i l l be on [ O O l ] t w i s t boundaries s i n c e t h i s i s where most of t h e c o n t r o l l e d experimental i n f o r m a t i o n e x i s t s , b u t extension t o t h e [ O l l ] system i s a l s o i n d i c a t e d b r i e f l y . P r e l i m i n a r y work by Sutton (9) has shown t h a t t h e SU/GBD model f o r t w i s t boundaries i s i n h e r e n t l y more complicated than t i l t boundaries s i n c e a t h i r d core u n i t has t o be i n t r o d u c e d i n o r d e r t h a t t h e u n i t s f i l 1 a l 1 space, However, t h e general p r i n c i p l e s remain t h e same w i t h t h e m i n o r i t y u n i t s now being t h e i n t e r s e c t i o n o f t h e cores o f t h e screw GBD1s d e s c r i b i n g t h e boundary. More r e c e n t l y , Schwartz e t a l . (10) have examined a d d i t i o n a l [O011 t w i s t boundary s t r u c - t u r e s emphasizing t h e r e l a t i o n s h i p between v a r i o u s SU/GBD d e s c r i p t i o n s and c e r t a i n symmetry operations i n t h e boundary plane. We b e g i n here by p r e s e n t i n g t h e general geometrical h i e r a r c h y o f d e s c r i p t i o n s by reference t o r i g i d ( d i c h r o m a t i c ) [O01 1

p a t t e r n s where t h e d i s t o r t i o n o f t h e u n i t s i s o b v i o u s l y maximized. Special a t t e n t i o n i s p a i d t o the i d e a t h a t t h e d i s t o r t i o n s o f t h e s t r u c t u r a l u n i t s c h a r a c t e r i s t i c of t h e r i g i d model can be reduced, and GBD1s w i t h l o c a l i z e d s t r a i n f i e l d s can be formed, when r e l a x a t i o n i n t h e form o f l o c a l r o t a t i o n s occur i n t h e boundary. Next, t h e experimental i n f o r m a t i o n i s summarized and i n t e r p r e t e d , and f i n a l l y , some s e l e c t e d computer c a l c u l a t i o n s a r e shown and t h e i r appl i c a b i l i t y t o t h e model discussed.

2. Forma1 SU/GBD d e s c r i p t i o n o f [O011 t w i s t boundaries - I n order t o i n v e s t i g a t e t h e h i e r a r c h y o f SU/GBD d e s c r i ~ t i o n s t h a t e x i s t s f o r r O O l l t w i s t boundaries we have f i r s t e x a m i k d t h e r i g i d body dichromati c p a t t e r n s o f - s e v e r a l CSL c o n f i g u r a t i o n s i n t h e usual m i s o r i e n t a t î o n range 068645" (which generates a l 1 c r y s t a l l o g r a p h i c a l l y e q u i v a l e n t s t r u c t u r e s ) . For b r e v i t y we i l l u s t r a t e here o n l y t h r e e o f t h e l o n g p e r i o d s t r u c t u r e s which are viewed along t h e t w i s t a x i s and show, u s i n g d i f f e r e n t symbols, t h e two (002) planes immediately adjacent t o t h e boundary.

2.1 c l DB d e s c r i p t i o n - The most elementary SU/GBD d e s c r i p t i o n p o s s i b l e i s o b t a i n e d by s e l e c t i n g two 11 p e r f e c t c r y s t a l l a t t i c e "boundaries" as the DB's. These boun- d a r i e s , which must a l s o be favored, are chosen such t h a t t h e i r s t r u c t u r a l u n i t s possess t h e two s h o r t e s t p o s s i b l e p e r i o d v e c t o r s ( o r h a l f - p e r i o d v e c t o r ) 1/2<110>

and 1/2<100>. F i g . 1 ( a ) shows t h e c l DB u n i t s and t h e m i s o r i e n t a t i o n range over

which a l 1 o t h e r boundaries may be constructed by an appopriate m i x t u r e o f these

u n i t s . The l e f t h a l f o f t h e f i g u r e represents SU d e s c r i p t i o n s generated i n t h e

range 068645" b y s t a r t i n g w i t h a m a j o r i t y o f <110> type u n i t s and t h e r i g h t h a l f

represents SU d e s c r i p t i o n s generated i n t h e same range by s t a r t i n g w i t h a m a j o r i t y

o f <100> type u n i t s . Tlius, from O t o 45" two non-equivalent SU/GBD d e s c r i p t i o n s

e x i s t . However, o n l y one of t h e d e s c r i p t i o n s i s p h y s i c a l l y s i g n i f i c a n t and can be

chosen from examination of computed e q u i l i b r i u m s t r u c t u r e s . a n d / o r experimental ob-

s e r v a t i o n as described i n s e c t i o n s 3 and 4. N o t i c e a l s o t h a t a t 36.g0 ( ~ 5 ) on t h e

(4)

Fig. 1. Formal SU/GBD hierarchical description of [O011 t w i s t boundaries: ( a )

Cl DB description, ( b ) Ll/L5 DB description, and ( c ) Ll/C5/L13/L17 DB

description. The DB units and t h e i r period vectors a r e shown below the

misorientation range in each case. (For L13 and Cl7 the interna1 contents

of the units have been omitted f o r simplicity.) The shaded regions adja-

cent t o t h e DBs define the angular range over which t h e s t r u c t u r e can be

represented by the appropriate GBD of Burgers vector b. Structures which

have dual dislocation descriptions are indicated by 1 : l .

(5)

C4-158 JOURNAL DE PHYSIQUE

<110> branch t h e two descriptions become equivalent since a t t h i s angle there i s a 1 :1 mixture of each type of Cl u n i t . However, a t 36.9' (15) on the <100> branch there a r e four times a s many <100, units as <110> u n i t s . Figure 2 ( a - f ) shows the dichromatic patterns of the 1265 ( 8 = 21 . Z O ) , C281 (8 = 34.7") and C305 (8 = 42.7') configurations each in t h e i r two possible s t r u c t u r a l unit descriptions. I t i s seen t h a t the various structural units exhibit considerable d i s t o r t i o n s over the angular range in t h i s r i g i d representation as expected. The shaded regions represent the primary (Cl) GBD cores and the c i r c l e d symbols a r e t h e CSL points. Of course, the GBD arrays a r e purely forma1 (delocalized) in these r i g i d s t r u c t u r e s but become i d e a l l y localized l i n e defects when we visualize imposing " f u l l reversal" rotations

( i . e . , a rotation of each crystal by -8/2) about appropriate 'O' l a t t i c e elements normal t o the boundary t o recreate patches of perfect s i n g l e crystal centered on each ' 0 ' element. On the e110> branch the appropriate 'O' l a t t i c e i s the one parallel t o c110> w i t h l a t t i c e spacing given by d = 211/2<110>(/sin(8/2), and on t h e

<100> branch t h e ' 0 ' l a t t i c e i s parallel t o <100> with spacing d = 21<100>l/sin(8/2),.

As an example, some of the appropriate 'O' l a t t i c e elements a r e indicated by large + ' s in Fig. 2 ( a ) . W e note t h a t i f 'O' l a t t i c e relaxations occur which a r e l e s s than ideal ( i . e . , l e s s than f u l l reversa1 r o t a t i o n s ) a structural unit model r e s u l t s which consists of u n i t s possessing d i s t o r t i o n s which a r e intermediate between those of the highly d i s t o r t e d r i g i d model and the minimally distorted i d e a l l y relaxed model. In terms of GBDis, boundaries in the range 0-36.9' then consist of arrays of primary screw GBDis with e i t h e r Burgers vector 1/2<110> o r <100> depending on the choice of SU description. In the range 36.9"-45" the screw GBD's only have Burgers vector <100>. When the Burgers vector i s 1/2<110> t h e intersections of the screw dislocations a r e the minority <100> u n i t s and when the Burgers vector i s <100> the intersections of t h e screw dislocations a r e t h e minority <110> units. We note t h a t t h i s description i s more primitive than S u t t o n ' s (9) who a l s o took the C5 boundary t o be delimiting. W e consider t h a t description next.

2.2 Ll/Z5 DB description - The next most elementary description i s obtained by taking the 25 boundary as an additional DB, since i t s half-period vector i s the next l a r g e s t period o r half-period vector. Since, as described i n the previous section, two d i s t i n c t SU/GBD descriptions e x i s t i n the range 0<8$45", the DB's must be taken in p a i r s so t h a t f o r L5 the two crystallographically equivalent s t r u c t u r e s will each be represented by s t r u c t u r a l units with period vectors 1/2<210> and 1/2<310> as shown in Fig. l ( b ) . As f a r a s constructing boundaries by mixing units i s concerned, the range 0-45" on t h e <110> branch ( l e f t half of Fig. l ( b ) ) i s divided into two regions where from 0-36.9" <110> and <210> u n i t s are mixed and from 36.9"-45" <210>

and <310> units are mixed. On t h e other hand, f o r the <100> branch ( r i g h t half of Fig. 1 ( b ) ) <310> and <100> units a r e mixed in the range 0-36.g0, and <310> and <210>

uni t s a r e mixed i n the range 36 .go-45". A t 22.6", (Cl 3) on the <170> branch equal mixtures of units a r e obtained. Equal mixtures of appropriate units a r e also ob- tained a t 28.1" (117) and 43.6' ( ~ 2 9 ) on the <100> branch of t h i s Cl/C5 DB descrip- tion. The C5 DB's can now be considered a s MURS'S since they a r e a c t u a l l y composed of ( d i s t o r t e d ) Cl units. Fig. 3 ( a - f ) shows the C265, C281 and C305 dichromatic patterns each in t h e i r two possible Cl/C5 representations. The shaded regions again represent the GBD cores in t h e i r distorted inCipient form and a r e seen t o be quite d i f f e r e n t from Fig. 2 ( a - f ) . I f ideal ized rotational 'O' l a t t i c e relaxations are again visualized t o occur the s t r u c t u r e s may be interpreted in terrns of G B D ' s . For t h e L265 boundary t h e GBD1s are s t i l l primary w i t h Burgers vector 1/2<110> (Fig. 3a) or <100> (Fig. 3d), but the intersections of the GBDis a r e now the minority units

<210> and <310> respectively. For the C281 boundary the GBD arrays a r e no longer primary but secondary with Burgers vector 1/5<210> (Fig. 3b) o r 1/10<310> (Fig. 3e) with t h e intersection minority units'being of <110> o r <100> type respectively.

For the 1305 boundary the GBD arrays are again secondary with-Burgers vector1/54210>

(Fig. 3c) or 1/10<310> (Fig. 3f) but with the intersection minority u n i t s now of

<310> o r <210> type respectîvely. These r e s u l t s demonstrate the non-uniqueness of

the various GBD descriptions of boundaries within a given hierarchy in the manner

already demonstrated f o r t i 1 t boundaries ( 6 ) . Clearly, the GBD description most

appropriate f o r a p a r t i c u l a r boundary i s determined by how close i t i s t o an adja-

cent DB. As Fig. 1 (b) i l l u s t r a t e s , the Cl/C5 SU/GBD description quantised the

angular range i n t o additional dislocation regions where primary GBD's are found near

(6)

Fig. 2:

cl DB descriptions of [O011 t w i s t boundaries using r i g i d di chromatic patterns. The

<110> branch. Structures viewed along t w i s t axis show two (002) planes using d i f - f e r e n t symbol S . Ci r c l ed symbols define CSL points and large +s indicate some of the '0' l a t t i c e elements.

Shaded regions represent the GBD arrays. The minori t y u n i t s a r e located a t the intersections of t h e GBDs.

( a ) C265 (8 = 21.2') s t r u c - t u r e . Burgers vector of GBDs is 1/2<110>. Minority u n i t s a r e <100>. (b) C281

(9 = 34.7') s t r u c t u r e .

Burgers vector of GBDs i s

1/2<110>. Minori t y units

a r e <100>. ( c ) C305 ( 8 = 42.7')

s t r u c t u r e . Burgers vector

of GBDs 1s <100>. Minority

units a r e <110>.

(7)

C4-160 JOURNAL DE PHYSIQUE

F i g . 2 (continued):

Ll DB descriptions of [O011 twist boundaries using r i g i d dichromatic patterns. The

<100> branch. Structures viewed along t w i s t axis show two (002) planes using d i f - f e r e n t symbol S. Ci rcl ed symbols define CSL points.

Shaded regions represent t h e GBD arrays. The minority units a r e located a t the intersections of t h e GBDs.

( d ) L265 (8 = 21 .ZO) struc- t u r e . Burgers vector of GBDs i s <100>. Minority units a r e <110>. ( e ) C281 (8 = 34.7') s t r u c t u r e . Burgers vector of GBDs i s <100>. Minori ty units a r e <110>. ( f ) 1305 (O = 42.7') s t r u c t u r e . Burgers vector of GBDs i s

<100>. Minority units are

(8)

Fig. 3:

Cl/C5 DE descriptions of [OOl]

t w i s t boundaries using r i g i d dichromatic patterns. The

4 1 O> branch. Structures vlewed along t w i s t axis show two (002) planes using d i f - f e r e n t symbols. Circled symbols define CSL points.

Shaded regi ons represent the GBD arrays. The minority units a r e located a t the intersections of the GBDs.

( a ) C265 (e = 21.2') s t r u c - t u r e . Burgers vector of GBDs i s 1/2<110>. Minority units a r e <210>. ( b j c281 ( 0 = 34.7') s t r u c t u r e . Burgers vector of GBDs i s 1/5<210>. Minori t y uni t s are

< i i o > . ( C I ~ 3 0 5 ( e = 42.70)

s t r u c t u r e . Burgers vector of

GBDs i s 1/5<210>. Minority

units a r e <310>.

(9)

C4-162 JOURNAL DE PHYSIQUE

Fig. 3 (continued) :

Cl/C5 DB descriptions of [OOl]

t w i s t boundaries using r i g i d dichromati c patterns. The

<100> branch . Structures viewed along t h e t w l s t axis show two (002) planes using di f f e r e n t symbols. Circled symbols define the CSL points.

Shaded regions represent t h e GBD arrays. The minoi-i t y units a r e located a t the intersections of t h e GBDs.

( d ) C265 (8 = 21.2') struc- t u r e . Burgers vector of GBDs i s <100>. Minority uni t s a r e <310>. (e) C281

(8 = 34.7') s t r u c t u r e .

Burgers vector of GBDs i s

1/10<310>. Minority uni t s

a r e <100>. ( f ) C305 (8 = 42.7')

s t r u c t u r e . Burgers vector of

GBDs i s 1/10<310>. Minori t y

units a r e <210>.

(10)

the Cl boundaries and secondary GBD's found near the C5 boundaries. A t the 1 :1 boundaries ( ~ 1 3 , C29 and C17) dual descriptions e x i s t .

2.3 Cl/C5/C13/C17 DB description - W e include here the t h i r d most elementary SU/GBD description t o i l l u s t r a t e f u r t h e r how t h e hierarchy i s formed. Two additional pairs of DB's (Cl3 and 117) with next s h o r t e s t period vectors are added t o t h e system as shown in Fig. l ( c ) . For brevity we do not show t h e dichromatic patberns f o r t h i s system. However, following the same rules of mixing appropriate units and i n t e r - preting the r e s u l t s in terms of GBD's we see t h a t the angular range i s quantised f u r t h e r so t h a t GBD's a r e formed around each DB with Burgers vector which i s e i t h e r a primitive o r non-primitive vector of the corresponding DSC l a t t i c e . W notice e t h a t the s t r u c t u r a l uni t s al t e r n a t e primi tivelnon-primi t i v e as the misorientation angle increases, a r e s u l t which follows naturally from the i n i t i a l choice of Cl units. Note f u r t h e r t h a t each DB except Cl i s a MURS and t h a t the 1 :1 boundaries, which have dual GBD descriptions and define the 'catchment areas" around each DB, increase i n number and a r e now C25, C89, 165, 129, 153, C85, and 137. I t i s easy t o see how the system, although systematic, becomes increasingly complex as f u r t h e r DB's are added and where, i n the extreme l i m i t , every boundary could be delimiting.

2.4 Secondary GBD's as perturbations in primary GBD arrays - I t was observed in the Introduction t h a t perturbations i n the primary GBD spacings correspond t o the secondary GBD content. That t h i s follows from the structural unit model can be seen by comparing the dichromatic patterns in Figure 2 and Figure 3. For example, on comparing Fiqure 2(b) and Figure 3(b) f o r the X281 boundary i t can be c l e a r l y seen t h a t the perturbation in the 1/2<110> primary GBD array corresponds exactly t o the secondary GBD array with Burgers vector 1/5<210>. Similarly, comparing Figs. 2 ( e ) and 3 ( e ) f o r C281 in the a l t e r n a t i v e s t r u c t u r a l unit model i t i s seen t h a t the per- turbation in the <100> primary GBD array corresponds t o the 1/10<310> secondary array. Clearly al1 secondary GBD's in the angular range 0-36.9' on the <110> branch can be considered perturbations in the 1/2<110> primary GBD's whereas al1 secondary GBD's in the range 0-45' on the <100> branch and 36.9-45' on the <110> branch can be considered perturbations in the <100> GBD's. Furthermore, perturbations can occur in the secondary GBD arrays themselves a s seen f o r example in Fig. 3 ( f ) where a non-uniform array of 1/10<310> secondary GBD's i s present corresponding t o pertur- bations in the <100> primary array in Fig. 2 ( f ) . In the hierarchy of descriptions such non-uniformities i n the secondaries would manifest themselves as higher order secondaries possessing DSC l a t t i c e vectors of an adjacent DB, C29 i n t h i s case. An i n t r i n s i c feature of t h e SU/GBD model presented so f a r i s t h a t t h e secondaries form a r a l l e l perturbations i n the primaries, and t h i s i s represented schematical l y in F i g 4 a where t i s the magnitude of the perturbations in the spacings of the as "e-77"

parallel GBD's, P . However, topologically there i s no reason why non-parallel per- turbations in the primary array cannot y i e l d secondary GBD's, and t h i s i s shown schematically i n Fig. 4(b) where t i s now a t 45' t o the primary array. Such an

"oblique" perturbation i s shown in Fig. 5 f o r C281 where the 1/10<310> secondary GBD's form as a non-parallel perturbation in the 1/2<110> primary array which may be

Fig. 4. Schematic representation of two d i f f e r e n t types of perturbations in the spacings of primary GBDs P , whicli y i e l d secondary GBDs S . ( a ) "para1 le1 " pertur- bations where t i s normal t o P and (b)

"oblique" perturbations where t i s a t 45'

t o P.

(11)

C4-164 JOURNAL DE PHYSIQUE

. Cl DB d e s c r i p t i o n of t h e C281 8 = 34.7") s t r u c t u r e i n which

-"t

t h e p e r t u r b a t i o n s of t h e primary GBDs of Burgers v e c t o r 1/2<110>

(shaded r e g i o n s ) a r e of t h e oblique ki nd . Resul ti ng secondary GBDs have Burgers vector 1/10<310>.

Compare with Figs. 2 ( e ) and 3 ( e ) .

compared with Fig. 2 ( e ) . Of course, an e q u i v a l e n t c o n s t r u c t i o n may be made f o r t h e

<210> r e p r e s e n t a t i o n of t h e C281 boundary where t h e 1/5<210> secondaries could be described a s oblique p e r t u r b a t i o n s of t h e <100> primaries but t h i s i s not shown here.

3. Comparison with Experirnental Observations - We f i r s t summarize t h e TEM and X-ray d i f f r a c t i o n observations on low and high angle [OOl] t w i s t boundaries i n gold a s they r e l a t e t o t h e e x i s t e n c e of t h e p o s s i b l e primary and secondary GBD r e l a x a t i o n s which we have formally described above. For f u r t h e r d e t a i l s and r e f e r e n c e s s e e B a l l u f f i e t a l . ( 1 1 ) . The d i f f r a c t i o n c o n t r a s t observed i n TEM shows t h a t low a n g l e boundaries (<20°) possess a uniform a r r a y of primary l a t t i c e GBD's with Burgers v e c t o r 1/2<110>. A t high angles around C5 (36.9" f 2 " ) a r r a y s of secondary GBD's a r e observed wi t h p r i m i t i v e Burgers vector 1/10<31 O>. Other weaker secondary GBD a r r a y s a r e observed by TEM a t intermediate angles ( ~ 1 3 , C17) and a l s o have p r i m i t i v e DSC Burgers v e c t o r s . The X-ray d i f f r a c t i o n o b s e r v a t i o n s show s t r o n g <110> ' 0 ' l a t t i c e r e f l e c t i o n s f o r low angle boundaries (<IO0), intermediate angle boundaries ( ~ 1 3 , %22.6O) and high angle boundaries (15, ~ 3 6 . 9 ' ) . These r e s u l t s i n d i c a t e t h e e x i s t e n c e o f primary <110> r e l a x a t i o n s . Furthermore, i t has been deduced from t h e measured X-ray i n t e n s i t i e s t h a t t h e s e r e l a x a t i o n s a r e l a r g e , i . e . , they correspond e s s e n t i a l l y t o i d e a l f u l l - r e v e r s a 1 r o t a t i o n s , even a t high angles. Measurements of boundary energy versus t w i s t angle i n d i c a t e t h e e x i s t e n c e of only one pronounced secondary GBD energy cusp a t t h e C5 m i s o r i e n t a t i o n which must be due t o t h e 1/10

<310> GBD's (11). From t h i s information we conclude t h a t t h e primary r e l a x a t i o n i s

<110>, a t l e a s t up t o 36.g0, and t h a t around t h a t angle p e r t u r b a t i o n s i n t h e <110>

primaries g i v e r i s e t o t h e 1/10<310> secondaries. Comparing t h e s e experimental d a t a with t h e SU/GBD model we can make t h e following i n f e r e n c e s with regard t o t h e s t r u c - t u r e of twist boundaries i n gold. A t low angles t h e <110> d e s c r i p t i o n ( r a t h e r than

<100>) i s c l e a r l y t h e p r e f e r r e d primary GBD d e s c r i p t i o n and t h a t any p e r t u r b a t i o n s i n t h e d i s t r i b u t i o n of t h e primaries predicted by t h e model must be so weak as t o be undetectable by p r e s e n t techniques. A t high angles (around 36.g0) p e r t u r b a t i o n s i n t h e <110> primaries appear which a r e s t r o n g enough t o give secondary GBD's whose Burgers v e c t o r i s of t h e p r i m i t i v e 1/10<310> type. These p e r t u r b a t i o n s a r e evidently o f t h e oblique kind, a s f o r example shown i n Fig. 5 , and can be understood on ener- g e t i c grounds s i n c e t h e long range e l a s t i c energy o f t h e 1/10<310> GBD's i s lower than t h e corresponding energy of t h e 1/5<210> GBD's which could conceivably have been produced by a p a r a l l e l p e r t u r b a t i o n . In general , i f t h e Burgers vectors o f t h e observed secondary G B D ' s a r e always p r i m i t i v e vectors o f t h e DSC l a t t i c e then they w i l l have occurred by oblique p e r t u r b a t i o n s i n t h e 1/2<110> primary a r r a y i f t h e

<110> ' 0 ' l a t t i c e i s a t 45' t o t h e CSL and by p a r a l l e l p e r t u r b a t i o n s i f t h e <110>

'O' l a t t i c e i s p a r a l l e l t o t h e CSL,

(12)

4. Comparison w i t h A t o m i s t i c C a l c u l a t i o n s - We now summarize t h e r e s u l t s of a v a i l - a b l e a t o m i s t i c c a l c u l a t i o n s f o r [OOl] t w i s t boundaries o b t a i n e d b y means o f molecular s t a t i c s and a p a i r - p o t e n t i a l model. The purpose h e r e i s t o determine how w e l l t h e c a l c u l a t e d s t r b c t u r k s conform t o t h e e x p e r i m e n t a l d a t a c i t e d above and t o t h e s t r u c - t u r a l u n i t model . T t i s c o n v e n i e n t t o d i s c u s s f i r s t t h e c a l c u l a t e d p r i m a r y r e l a x a - t i o n and t h e n t h e c a l c u l a t e d secondary r e l a x a t i o n . Brokman and B a l l u f f i ( 1 2 ) have analyzed t h e e a r l i e r c a l c u l a t i o n s o f B r i s t o w e and Crocker , ( l 3 ) , who employed an e m p i r i c a l p o t e n t i a l r e p r e s e n t i n g copper, f o r s e v e r a l s h o r t p e r i o d [O01 ] t w i s t boun- d a r i e s i n terms o f t h e p a t t e r n o f p r i m a r y r e l a x a t i o n and found t h a t f o r a l 1 boun- d a r i e s up t o 36.9' t h e p r i m a r y r e l a x a t i o n i s r o u g h l y r o t a t i o n a l about <110> ' 0 ' l a t t i c e elements. T h i s c o n c l u s i o n may a l s o be reached f r o m more r e c e n t c a l c u l a t i o n s b y Wolf ( 1 4 ) employing a v a r i e t y o f p a i r p o t e n t i a l s . However, t h e <110> p r i m a r y r e l a x a t i o n s a r e s t r o n g e r a t l o w a n g l e s and become weaker a t h i g h angles i n apparent disagreement w i t h t h e X-ray o b s e r v a t i o n s . The weakness o f t h e p r i m a r y r e l a x a t i o n a t h i g h angles, which i s t h e r e s u l t f o r a l 1 p o t e n t i a l s used t o date, has n o t been under- stood. To i l l u s t r a t e t h e t y p i c a l p a t t e r n o f c a l c u l a t e d p r i m a r y r e l a x a t i o n s a t low and h i g h angles we p r e s e n t t h e e q u i l i b r i u m s t r u c t u r e o f a L I 4 5 ( 8 = 6.7") and a Cl09 ( 8 = 33.4') [O01 ] t w i s t boundary computed w i t h t h e same p a i r p o t e n t i a l used b y B r i s t o w e and Crocker ( 1 3 ) . Comparison o f F i g s . 6 ( a ) and 7 ( a ) , w h i c h show t h e com- p u t e d displacement f i e l d s , c o n f i r m s t h a t t h e r e l a x a t i o n i s much s m a l l e r a t h i g h angle and t h a t i n b o t h cases i t i s c e n t e r e d on <110> ' 0 ' l a t t i c e elements. (However, n o t e t h a t because t h e El09 displacements a r e so small i t i s d i f f i c u l t t o s e p a r a t e t h e p r i m a r y and secondary d i s p l acement f i e l d s o r determine unambiguously t h e c e n t e r s of r o t a t i o n . ) S t r u c t u r a l u n i t d e s c r i p t i o n s o f t h e s e boundaries a r e a l s o g i v e n i n F i g s . 6 and 7. To h e l p determine which member o f t h e SU/GBD h i e r a r c h y i s m o s t p h y s i - c a l l y s i g n i f i c a n t , p r e v i o u s w o r k e r s have computed h y d r o s t a t i c s t r e s s f i e l d d i s t r i -

b u t i o n s (1, 10). Here we adopt a new and s i m p l e method f o r choosing t h e s t r u c t u r a l u n i t model i n which t h e k i n e m a t i c a l d i f f r a c t i o n c o n t r a s t i s c a l c u l a t e d f o r t h e boun- d a r y u s i n g t h e well-known column t e c h n i q u e ( 1 5 ) . T h i s c a l c u l a t i o n i s s e n s i t i v e t o t h e displacement f i e l d i n t h e l a t t i c e i n t h e v i c i n i t y o f t h e boundary, and i t essen- t i a l l y maps t h i s f i e l d as i t would be seen b y means o f d i f f r a c t i o n c o n t r a s t i n a TEM image. S i n c e t h e displacement f i e l d o f a square g r i d o f screw GBD's conforms t o t h e square g r i d o f screw GBD's t h e method images d i r e c t l y t h e geometry o f t h e GBD g r i d . The s c a t t e r e d a m p l i t u d e f r o m t h e model b i c r y s t a l was c a l c u l a t e d u s i n g t h e r e l a t i o n (15) :

Y ( S ) = C exp L i 2ng . R ( z ) ] . e x p [ i 2,rrsz)

c o l umn - -

where R(z) = displacement i n t h e l a t t i c e due t o t h e g r a i n boundary, z = d i s t a n c e a l o n g t h e column (which i s normal t o t h e boundary p l a n e ) , g = d i f f r a c t i o n v e c t o r , and s = d e v i a t i o n parameter. Since a l 1 displacements a r e E n w n f r o m t h e a t o m i s t i c c a l c u l a t i o n , t h e s c a t t e r e d i n t e n s i t y 1 = YY*, i s e a s i l y o b t a i n e d f r o m t h e above e q u a t i o n b y s i m p l e summation. The r e s u l t ( w i t h g = <220>) f o r t h e c l 4 5 boundary i s shown i n F i g . 6 ( c ) and p r o v i d e s c l e a r evidence f o r t h e e x i s t e n c e o f a s e t o f screw GBD's r u n n i n g e s s e n t i a l l y p a r a l l e l t o t h e d i f f r a c t i o n v e c t o r . A s i m i l a r b u t o r t h o - gonal r e s u l t was o b t a i n e d f o r a second g normal t o t h e f i r s t g. The d i r e c t i o n s and spacings o f t h e s e screw GBD's i s e n t i r e i y c o n s i s t e n t w i t h t h e " s t r u c t u r a 1 u n i t r e p r e - s e n t a t i o n o f t h e boundary shown i n F i g . 6 ( b ) which i s a member o f t h e Cl/C5 system ( t h e m i n o r i t y u n i t s a r e <210>C5 u n i t s and t h e m a j o r i t y u n i t s a r e <llO>Cl u n i t s ) . We n o t e t h a t i t would a l s o have been p o s s i b l e t o choose a C l d e s c r i p t i o n i n which t h e m i n o r i t y u n i t s a r e o f <100> t y p e b u t t h i s would l e a d t o s l i g h t l y l a r g e r d i s t o r t i o n s of t h e u n i t s . The Zl/C5 d e s c r i p t i o n i s t h e r e f o r e a reasonable c o m ~ r o m i s e choice.

The d i f f r a c t i o n c o n t r a s t c a l c u l a t i o n cou1 d a l s o g i v e i n f o r m a t i o n about t h e secondary GBD c o n t e n t o f t h e Cl09 boundary which i s expected t o have Burgers v e c t o r 1/10<310>. However, when t h e d i f f r a c t i o n c o n t r a s t c a l c u l a t i o n was performed w i t h

9 = <620> no c l e a r evidence f o r l i n e c o n t r a s t a l o n g <310> was found. (Also, w i t h

= <420> t h e r e was no evidence f o r l i n e c o n t r a s t a l o n g <210>.) Consequently i t was

i m p o s s i b l e t o choose a most p h y s i c a l l y s i g n i f i c a n t SU/GBD d e s c r i p t i o n f o r t h e c a l c u -

l a t e d boundary, and we t h e r e f o r e s i m p l y p r e s e n t t h e two most l i k e l y a l t e r n a t i v e s i n

(13)

C4-166 JOURNAL DE PHYSIQUE

Fig. 6 ( a ) : Computed displacement f i e l d of El45 t w i s t boundary.

Arrows show relaxations xl . Ci r c l e s a r e CSL points.

Fig. 6(c) : Scattered i n t e n s i t y 1 calculated f o r rel axed Cl45 struc- t u r e u s i n g Eqn. 1 wîth g parallel t o one s e t of screw dislocations a s shown by arrows.

Fig. 7 ( b ) : Zl/E5 DB description of computed Cl09 structure. Shaded regions represent the secondary GBDs of b = 1/5<210>. Minority u n i t s are<llO>.

FSg.: Cl/C5 DB description of computed Cl45 structure. Shaded regions represent primary GBDs of b = 1/2<110>. Minority units a r e - <210>.

Fig. !(a): Coniputed displacement f i e l d o f El09 twist boundary.

Arrows show r e l axati ans xl . Circl e s a r e CSL points.

@ ' xb

A

x % &y\ , x ~:b&, 2 3

Ax

O

x ' " x

A A

x q ;

- /yxfi kî>* *

X A.. > X

x::

A

x ; :&,

,,*$y X;/=XyA;. \

AX A X -

-<,;y ,* z/xy/xxy *gx

A A

, y+;:..

A

Ly.;" $+fXA'S x .TA :

A

.,:<:;

&$<? A

x

A

x

A

; x

A

x ' ? Ax % A ' y ,;;2 / = , ;

@

,

X A

, .*%Y: \>,;*- x

A

'@

Fig. 7 ( c ) : Cl/C5 OB description of

computed Cl 09 s t r u c t u r e . Shaded

regions represent secondary GBDs of

b = 1/10c310>. Minority u n i t s a r e

- <1 oo>.

(14)

DB (MURS) r

219 227 2 9 P l i

Fig. 8. Forma1 SU/GBD hierarchical description of [Oll] twist boundaries: ( a ) 11/Z3 DB description, (b) 11/13/19/Cll DB description, and ( c ) Cl/C3/19/Cll/117/

119/127 DB description. The DB units and t h e i r period vectors are shown below the misorientation range i n each case. (For 19, C11, 117, Cl9 and C27 the interna1 contents of t h e u n i t s have been omitted f o r simplicity.) The shaded regions adjacent t o the DBs define the angular range over which the s t r u c t u r e can be represented by the appropriate GBD of Burgers vector b.

Structures which have dual dislocation descriptions a r e indicated by 1 :1.

(15)

C4-168 JOURNAL DE PHYSIQUE

t h e Cl/C5 system. F i g u r e 7(b) shows t h e 1/5<210> d e s c r i p t i o n i n which t h e m i n o r i t y u n i t s a r e <110> and Fig. 7 ( c ) shows t h e 1/10<310> d e s c r i p t i o n i n which t h e m i n o r i t y u n i t s a r e <100>. I n b o t h cases a l 1 t h e u n i t s show considerable d i s t o r t i m and a r e f a r from " i d e a l . " For t h i s boundary, then, any secondary r e l a x a t i o n s appear t o be considerably weaker than the primary r e l a x a t i o n s . These c a l c u l a t i o n s m y be explained i n terms o f d e l o c a l i z e d secondary GBD cores o r p o s s i b l y t h e d i s s o c i a t i o n o f p e r f e c t secondary GBD's i n t o p a r t i a l GBD1s. Such d i s s o c i a t i o n c o u l d be p r a c t i c a l l y i n d i s t i n - guishable from more u n i f o r m core spreading f o r a boundary o f t h i s p e r i o d i c i t y . I t

i s known (13) t h a t t h e t h r e e h i g h e s t symmetry t r a n s l a t i o n s t a t e s o f 15 have very s i m i l a r energies f o r t h e copper p o t e n t i a l employed and t h e r e f o r e l a r g e domains o f them may c o e x i s t i n t h e boundary separated by p a r t i a l GBD1s. I n f a c t , i n c i p i e n t forms o f these domains n a t u r a l l y occur i n t h e dichromatic p a t t e r n o f any high-C boundary near C5. (We n o t e t h a t a s i m i l a r s t r u c t u r e c o n t a i n i n g these t h r e e domains, suggested by V i t e k e t a l . (16) f o r t h e Cl09 boundary, i s unacceptable s i n c e they a r e n o t separated by p a r t i f i GBD1s.) As an a d d i t i o n a l e x p l a n a t i o n i t i s a l s o p o s s i b l e t h a t t h e Cl09 boundary i s n o t c l o s e enough t o t h e DB (C5) t o d e t e c t i n d i v i d u a l w i d e l y spaced secondary GBD's.

I n f u r t h e r work, very r e c e n t c a l c u l a t i o n s on GBD core s ~ r e a d i n g , described i n ( I l ) , using the " s p l i n e 1" p o t e n t i a l f o r Cu and a pseudopotential f o r Al both used by Wo I f (14), have produced r e s u l t s i n d i c a t i n g s t r o n u e r r e l a x a t i o n s (and more l o c a l -

i z e d secondary GBD cores) i n near-C5 boundaries than those described above. Since these p o t e n t i a l s appear t o e x h i b i t small cusps i n the energy curve a t 15 (14) whereas t h e e m p i r i c a l p o t e n t i a l used by Bristowe and Crocker does n o t , t h e r e t h e r e f o r e seems t o be a d i r e c t c o r r e l a t i o n between t h e existence o f cusps and the l o c a l i z a t i o n o f GBD1s as m i g h t be expected. C a l c u l a t i o n s of t h e s t r u c t u r e o f t h e Cl09 boundary and o t h e r high-C boundaries using these p o t e n t i a l s (and p o s s i b l y o t h e r more r e a l i s t i c p o t e n t i a l s ) are therefore c l e a r l y necessary b u t have n o t y e t been performed. How- ever, on t h e b a s i s of these r e c e n t r e s u l t s , i t seems l i k e l y t h a t such c a l c u l a t i o n s would a l l o w a more d i s t i n c t SU/GBD d e s c r i p t i o n which would be o f t h e 1/10 <310>type.

5. Discussion and Concl usions

Several caveats should be mentioned a t t h i s p o i n t . The forma1 SU/GBD models presented i n 53 were based on dichromatic p a t t e r n s w i t h f u l l c r y s t a l d e n s i t y and w i t h the two c r y s t a l s i n the coincidence p o s i t i o n (131, i .e., no vacant s i t e s and a l s o no d i f f e r i n g t r a n s l a t i o n s t a t e s were a l lowed. Several a t o m i s t i c c a l c u l a t i o n s (4,13) have r e p o r t e d the importance o f i n t r o d u c i n g these a d d i t i o n a l v a r i a b l e s t o c r e a t e m u l t i p l i c i t i e s o f s t r u c t u r e s and p a r t i a l GBD's. While i t i s b e l i e v e d t h a t these are i m p o r t a n t p o s s i b i 1 it i e s the general framework o f t h e model w i l l remain t h e same.

We a l s o remark t h a t the [ O O l ] t w i s t system, on which Our a t t e n t i o n has been focused, i s a somewhat s p e c i a l system because o f i t s h i g h symmetry ( c u b i c ) and n o t e t h a t some of the f e a t u r e s described above may n o t occur i n more general t w i s t boun- daries, e.g., the p o s s i b i l i t y o f having b o t h p r i m i t i v e and n o n - p r i m i t i v e DSC l a t t i c e GBD's. As an example o f another system w i t h l e s s symmetry c u r r e n t l y b e i n g i n v e s t i - gated we i l l u s t r a t e i n F i g . 8 t h e forma1 h i e r a r c h y o f GBD d e s c r i p t i o n s f o r [ O l l ] t w i s t boundaries. I n t h i s system, i n c o n t r a s t t o t h e case o f [ O O l ] t w i s t boundaries, secondary GBD1s have been observed e x p e r i m e n t a l l y near 13 and c9, and a l s o evidence f o r r e l a t i v e l y deep c a l c u l a t e d secondary GBD cusps on t h e energy curve has been obtained (1 1 ) .

F i n a l l y Our conclusions are:

( i ) The systematics o f [ O O l ] t w i s t boundary s t r u c t u r e can be understood f o r m a l l y i n terms o f a s t r u c t u r a l u n i t / g r a i n boundary d i s l o c a t i o n (SU/GBD) h i e r a r - c h i c a l model .

( i i ) The physical s i g n i f i c a n c e o f i n d i v i d u a l members of t h e h i e r a r c h y can be

determined by a t o m i s t i c c a l c u l a t i o n and a l s o comparison w i t h experimental obser-

v a t i o n .

(16)

( i ii ) Comparison o f t h e SU/GBD model w i t h a v a i l a b l e experimental r e s u l t s f o r g o l d i n d i c a t e t h a t t h e p r i m a r y r e l a x a t i o n i s o f t h e <110> t y p e and i s s t r o n g (cor- responding t o almost f u l l - r e v e r s a 1 r o t a t i o n s ) f o r 0 < 36.9'. I n a d d i t i o n , observed secondary GBD's near Z5 must r e s u l t from " o b l i q u e " p e r t u r b a t i o n s i n the a r r a y o f primary GBD1s.

( i v ) Comparison o f t h e SU/GBD model w i t h corresponding a t o m i s t i c pair-poten- t i a l model c a l c u l a t i o n s which are a v a i l a b l e i n d i c a t e s a s t r o n g primary <110> r e l a x a - t i o n a t low angles ( 8 < 22.6O) b u t a p r o g r e s s i v e l y weaker r e l a x a t i o n a t h i g h e r angles. The weakness o f t h e primary r e l a x a t i o n a t h i g h angles, which i s a t variance w i t h t h e experimental r e s u l t s , has n o t been understood. Separately. no evidence i s found f o r t h e existence o f s i g n i f i c a n t secondary r e l a x a t i o n s when a t l e a s t one e m p i r i c a l p a i r p o t e n t i a l i s employed. However, v e r y r e c e n t GBD c o r e c a l c u l a t i o n s i n d i c a t e t h a t s t r o n g e r secondary r e l a x a t i o n s can be obtained w i t h o t h e r p o t e n t i a l s and t h e r e f o r e i t i s l i k e l y t h a t b e t t e r agreement w i t h observations can be achieved i n f u t u r e work.

Acknoviledgment - This research was supported by the U.S. Department o f Energy under Contract NO. DE-FG02-84-ER-45116.

References

( 1 ) SUTTON, A.P., and VITEK, V., P h i l . Trans. Roy. Soc. Lond. (1983) 1.

(2) SUTTON, A.P., and VITEK, V., P h i l . Trans. Roy. Soc. Lond. A309 (1983) 37.

( 3 ) SUTTON, A.P., and VITEK, V., P h i l . Trans. Roy. Soc. Lond. A309 (1983) 55.

( 4 ) WANG, G.J., SUTTON, A.P., and VITEK, V., Acta Met. 32 ( 1 9 8 v 0 9 3 . ( 5 ) BISHOP, G.H., and CHALMERS, B., S c r i p t a Met. 2 ( 1 9 6 v 133.

( 6 ) BALLUFFI, R.W., and BRISTOWE, P.D., S u r f . S c i . 144 (1984) 28.

( 7 ) SUTTON, A.P., Met. Reviews i n press.

( 8 ) BALLUFFI, R.W., and OLSON, G.B., Trans. AIME i n press.

( 9 ) SUTTON, A.P., P h i l . Mag. A46 (1982) 171.

(10) SCHWARTZ, D., SUTTON, A . p T a n d VITEK, V., P h i l . Mag. i n press.

(1 1) BALLUFFI , R.W., BRISTOWE, P.D., BABCOCK, S.E., CHAN, S.W., KVAM, E.P., and LIU, J.S., 3. de Physique, t h i s volume.

(12) BROKMAN, A., and BALLUFFI, R.W., Acta Met. 29 (1981) 1703.

(13) BRISTOWE, P.D., and CROCKER, A.G., P h i l . M a c A 3 8 (1978) 487.

(14) WOLF, D., Acta Met. (1984) 245; (1984) 7 3 5 .

(15) HIRSH, P.B., HOWIE, A., NICHOLSON, R.B., PASHLEY, D.W., and WHELAN, M.J., i n

" E l e c t r o n Microscopy o f Thin C r y s t a l s u (Butterworths, London, 1965) Ch. 7.

(161 VITEK, V., SUTTON, A.P., WANG, G.J., and SCHWARTZ, D., S c r i p t . Met. (1983) 183.

DISCUSSION

D. Wolf: I n my own c a l c u l a t i o n s on (100) CSL t w i s t boundaries i n A l , Cu, Ag, and Au (Acta Meta11 , 1984), some p o t e n t i a l s y i e l d e d minor cusps near t h e Z =5 o r i e n t a t i o n s whereas o t h e r gave completely smooth energy vs. m i s f i t - a n g l e curves. Have you checked whether t h e p o t e n t i a l you used g i v e s a s m a l l energy cusp f o r Z = 5 ? Would you expect t h a t i f a p o t e n t i a l does n o t show such a cusp you would a l s o n o t expect secondary g r a i n boundary d i s l o c a t i o n s nearby?

P.D. Bristowe: F o r t h e copper e m p i r i c a l p o t e n t i a l used i n t h i s paper no

c a l c u l a t i o n s o f h i g h - 2 boundaries w i t h i n do o f 2=5 have been made b u t a l 1

i n d i c a t i o n s a r e t h a t t h e energy curve i s smooth and t h a t t h e r e f o r e t h e secondary

(17)

C4-170 JOURNAL DE PHYSIQUE

GBDs would be d e l o c a l i z e d and t h i s is supported by Our d i f f r a c t i o n c o n t r a s t c a l c u l a t i o n s . However, a s mentioned i n t h e t e x t , r e c e n t GBD c o r e c a l c u l a t i o n s employing o t h e r p o t e n t i a l s used by y o u r s e l f which do g i v e small cusps have e s t a b l i s h e d a c o r r e l a t i o n between GBD l o c a l i z a t i o n and t h e e x i s t e n c e o f cusps.

H. Sawhill: 1 t h i n k t h a t t h e discrepancy between observed secondary d i s l o c a t i o n s near .2=5 and t h e l a c k o f c o n t r a s t p r e d i c t e d using kinematic d i f f r a c t i o n theory is n o t such a major discrepancy. I f you look a t Bloch Wave s c a t t e r i n g (dynamic d i f f r a c t i o n ) you w i l l s e e t h a t t h e r e s u l t s i n f a c t do p r e d i c t t h a t t h e s e small p e r t u r b a t i o n s w i l l be seen i n t h e b r i g h t f i e l d images.

P.D. Bristowe: F i r s t l y , it should be emphasized t h a t we have used t h e kinematic c a l c u l a t i o n o f t h e d i f f r a c t i o n c o n t r a s t a s a simple t y p e o f "phase i n t e g r a l probe1>

f o r i n v e s t i g a t i n g t h e p o s s i b l e e x i s t e n c e o f a s y s t e m a t i c displacement f i e l d

a d j a c e n t t o t h e boundary which would be a s s o c i a t e d w i t h t h e presence o f p h y s i c a l l y

s i g n i f i c a n t GBDs. The method c l e a r l y revealed t h e presence o f primary GBDs i n t h e

1145 boundary (Fig. 6 c ) . The f a c t t h a t no d e t e c t a b l e d i f f r a c t i o n c o n t r a s t was

p r e s e n t i n t h e s i m i l a r c a l c u l a t i o n f o r t h e E l 0 9 boundary must i n d i c a t e t h a t only

displacement f i e l d due t o secondary GBDs i n t h i s boundary is exceedingly weak by

c m p a r i s o n a s concluded i n t h e t e x t . We f e e l it u n l i k e l y t h a t t h i s r e s u l t w i l l be

overturned by t h e r e s u l t s o f dynamical c a l c u l a t i o n s . Nevertheless, we plan t o

confirm t h i s i n f u t u r e work.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to