• Aucun résultat trouvé

A NON-PERTURBATIVE GREEN FUNCTION TECHNIQUE FOR CALCULATIONS OF NON-LINEAR TRANSPORT PROPERTIES

N/A
N/A
Protected

Academic year: 2021

Partager "A NON-PERTURBATIVE GREEN FUNCTION TECHNIQUE FOR CALCULATIONS OF NON-LINEAR TRANSPORT PROPERTIES"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: jpa-00221673

https://hal.archives-ouvertes.fr/jpa-00221673

Submitted on 1 Jan 1981

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A NON-PERTURBATIVE GREEN FUNCTION TECHNIQUE FOR CALCULATIONS OF NON-LINEAR TRANSPORT PROPERTIES

A. Jauho, J. Wilkins, F. Esposito

To cite this version:

A. Jauho, J. Wilkins, F. Esposito. A NON-PERTURBATIVE GREEN FUNCTION TECHNIQUE

FOR CALCULATIONS OF NON-LINEAR TRANSPORT PROPERTIES. Journal de Physique Col-

loques, 1981, 42 (C7), pp.C7-301-C7-306. �10.1051/jphyscol:1981736�. �jpa-00221673�

(2)

JOURNAL DE PHYSIQUE

Colloque C7, supplément au n°10, Tome 42, octobr-e 1981 page C7-301

Résumé. - Nous avons développé un formalisme pour obtenir les propriétés de transport d'un champ électrique de force arbitraire à partir de fonctions de Green. Dans le cas spécial où un simple niveau résonnant est accouplé à des électrons de conduction notre formalisme a permis le calcul analytique exact de la fonction de Green pour une particule isolée. Nos résultats sont décrits pour la matrice Tdont la partie imaginaire (dans un champ électrique nul) donne la relation de diffusion. On trouve T (e) =v2/[e-E-ir (e,F)]

où E est l'énergie du niveau résonnant et F le champ électrique.

La fonction de largeur r(e,F) est la mesure de la corrélation des électrons de conduction au niveau résonnant. Dans le cas d'un potentiel gaussien pour l'impureté on trouve analytiquement la transition d'un cas dominé par les collisions jusqu'à l'état où les particules sont libres à mesure que le champ augmente.

A NON-PERTURBATIVE GREEN FUNCTION TECHNIQUE FOR CALCULATIONS OF NON-LINEAR TRANSPORT PROPERTIES

A.P. Jauho, J.W. Wilkins* and F.P. Esposito**

NORDITA, Blegdamsvej 17, DK-2100 Copenhagen, Denmark

* Cornell University, LASSP, Ithaca, N.Y. 14853, U.S.A.

**University of Cincinnati, Physics Department, Cincinnati OH 45221, U.S.A.

Abstract. - We have developed a Green function formalism to cal- culate transport properties in an arbitrarily strong static electric field- In the special case where an isolated resonant level is coupled to the conduction electrons our formalism has permitted an exact analytical evaluation of the single particle Green function. Our results can be characterized in terms of the T-matrix whose imaginary part (in zero electric field) gives the

scattering rate. We find T(e) = V§/[e-E-ir(e,F)], where E is the energy of the resonant level and F is the electric field. The width function r(e,F) is a measure of the coupling of the conduc- tion electrons to the resonant level. For a gaussian impurity potential we demonstrate analytically the transition from colli- sion dominated to free particle behavior as the electric field is increased.

1. Introduction. Most calculations of non-linear transport properties rely on perturbation theory, i.e. one expands the transport coeffici- ents in powers of the external field. Linear response theory has achieved a high level of sophistication and there exists a number of rigorous theorems and sum rules which impose constraints that all rea- sonable theories must satisfy. However, for non-linear transport theory no such information is available and even the existence of the perturbation series in powers of the external field has not been estab- lished .

We have chosen an alternate route in our calculation. Instead of first solving for the Green function in the presence of the scattering

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1981736

(3)

C7-302 JOURNAL DE PHYSIQUE

mechanisms and t h e n d o i n g p e r t u r b a t i o n t h e o r y i n t h e e x t e r n a l f i e l d , we b e g i n by ' d r e s s i n g ' t h e f r e e Green f u n c t i o n w i t h t h e e x t e r n a l f i e l d and t h e n u s e t h i s f i e l d - d e p e n d e n t Green f u n c t i o n i n s u b s e q u e n t c a l c u l a - t i o n s .

W e d e r i v e f i r s t a n e x p l i c i t e x p r e s s i o n f o r t h e f i e l d - d e p e n d e n t f r e e Green f u n c t i o n . Our r e s u l t i s v a l i d f o r a n e l e c t r o n i n a n empty band and t h e r e have indeed been s p e c u l a t i o n s 1 t h a t t h i s might b e t h e a p p r o p r i a t e model f o r d e s c r i b i n g t r a n s p o r t i n submicron d e v i c e s . We proceed t o c a r r y o u t a n o n - l i n e a r , n o n - p e r t u r b a t i v e e v a l u a t i o n of t h e Green f u n c t i o n f o r t h e r e s o n a n t l e v e l model 2 (RLM). The RLM i s a model o f a n energy-dependent s c a t t e r i n g c e n t e r and a l l o f i t s e q u i l i b r i u m and l i n e a r t r a n s p o r t p r o p e r t i e s a r e known. Accordingly i t seemed an i d e a l c a n d i d a t e f o r a n o n - l i n e a r c a l c u l a t i o n .

2 . F i e l d dependent Green f u n c t i o n . The Green f u n c t i o n i s d e f i n e d i n t h e customary way:

+ +

+

G ( k , k ' , t - t ' ) = -i < ~ { c g ( t ) c j ; , ( t ' ) ]> ; (1) i t s dynamics a r e governed by t h e Hamiltonian (F + i s a s t a t i c e l e c t r i c f i e l d )

We have chosen a system o f u n i t s i n which h = me = ] e l = 1. The r e s u l t i n g e q u a t i o n o f motion f o r G i s

where we have used a c o o r d i n a t e system where t h e f i e l d d e f i n e s a pa- r a l l e l d i r e c t i o n and t h e o t h e r two s p a t i a l dimensions a r e r e f e r r e d t o a s t h e p e r p e n d i c u l a r d i r e c t i o n s . E q . ( 3 ) c a n b e s o l v e d t o g i v e

t-t' F -+ + -f

G ( k r k l , t - t f ) =

-

i6(ki-$1) 6 ( k , . -k:, - F ( t - t ' ) ) 8 (t-t' ) e x p [ - i I ~ ~ ( r ) d r ] ,

where 0 (4)

i s t h e time-dependent k i n e t i c energy. We may u n d e r s t a n d Eq.(4) a s a n a t u r a l m o d i f i c a t i o n i n an e l e c t r i c f i e l d of t h e z e r o - f i e l d Green f u n c t i o n ,

(4)

The two changes a r e ( i ) t h e s h i f t i n t h e k,, -momentum c o n s e r v a t i o n law t o a c c o u n t f o r t h e a c c e l e r a t i o n d u e t o t h e e l e c t r i c f i e l d and (ii) t h e t i m e e v o l u t i o n o f t h e k i n e t i c e n e r g y , E q . ( 5 ) .

3 . Resonant l e v e l model (RLM1. The r e s o n a n t l e v e l model i s c h a r a c t e - r i z e d by an energy l e v e l E which i n t e r a c t s w i t h t h e c o n d u c t i o n e l e c - t r o n s w i t h a m a t r i x e l e m e n t

v(Z)

:

where t h e c g ' s r e f e r t o t h e c o n d u c t i o n e l e c t r o n s and b i s t h e r e s o n a n t l e v e l d e s t r u c t i o n o p e r a t o r . The RLP.J1s Green f u n c t i o n s a t i s f i e s t h e e q u a t i o n

3 +

GRLM(l'k1"k , w ) = 6 (k-k') G o ( % , w )

+

G~ ( % , w ) ~ ( % ) g0(w) IV*

(if) ~"~(c,P,w)

( 8 )

3

4

I n E q . ( 8 ) go(w) i s t h e f r e e p r o p a g a t o r f o r t h e r e s o n a n t l e v e l , go(w) = ( w - ~ l - ' . The s o l u t i o n o f Eq. ( 8 ) c a n b e w r i t t e n a s

where

Consider now t h e d e f i n i t i o n o f t h e T-matrix, G = Go

+

GOT Go, which l e a d s t o t h e i d e n t i f i c a t i o n

I n t h e RLM one u s u a l l y t a k e s v(;) = Vo and a c o n s t a n t d e n s i t y o f s t a t e s and we do s o i n t h i s p a p e r . Of c o u r s e a more r e a l i s t i c d e n s i t y of s t a t e s c o u l d b e u s e d i n o u r formalism. Within t h e s e a p p r o x i m a t i o n s , Eq.(ll) h a s a s i m p l e i n t e r p r e t a t i o n i n t e r m s o f a l e v e l w i d t h

The imaginary p a r t o f t h e T-matrix ~ ( % , z , w ) i s t h e n e g a t i v e of t h e s c a t t e r i n g r a t e l / ~ ( w ) which h a s t h e expected r e s o n a n t s t r u c t u r e

4 . F i e l d dependence i n t h e RLM. We w i l l now t u r n t o t h e f i e l d depen- d e n t g e n e r a l i z a t i o n s o f Eqs. ( 8 ) and (11). I n p a r t i c u l a r we w i l l

(5)

C7-304 JOURNAL DE PHYSIQUE

examine t h e f i e l d dependence of t h e l e v e l w i d t h I'. The e q u a t i o n of motion a n a l y s i s l e a d i n g t o E q . ( 8 ) c a n b e r e p e a t e d e s s e n t i a l l y unchanged l e a d i n g t o

F + + F + -t

~ ( % , % ' , w ) = G ( k , k ' , w ) +

1

G ( k . q l l w ) ~ ( ~ 1 ) ~ * ( ~ 2 ~ g o ( ~ ) ~ ( ~ 2 ~ ~ ' I ~ ) - ( 1 4 ) + -+

91%

E q . ( 1 4 ) c a n a g a i n b e s o l v e d t o g i v e t h e f i e l d - d e p e n d e n t g e n e r a l i z a t i o n o f Eq. ( 9 ) :

F + + F + + F - t -t F - t +

~ ( g , g ' , w )

= G ( k r k a 1 w ) +

1

G ( k I q l l w ) T (ql,q2,w)G (q2,k',w), (15) + -+

9142 where

From E q . ( 1 6 ) we can i d e n t i f y t h e f i e l d - d e p e n d e n t g e n e r a l i z a t i o n o f t h e l e v e l w i d t h (from t h i s on we assume t h a t V(q) + i s r e a l ) :

From t h e form of Eq. (17) one c a n s e e t h a t

r

( w ,F) depends o n l y on even powers o f F. By p e r f o r m i n g a s e r i e s e x p a n s i o n i n powers of t h e e x t e r - n a l f i e l d we c a n r e c o v e r r e s u l t s s i m i l a r t o t h o s e which ~ a r k e r ~ ob- t a i n e d w i t h a s u p e r - o p e r a t o r formalism: t h e r i g h t - h a n d s i d e o f t h e t r a n s p o r t e q u a t i o n a q u i r e s a n a d d i t i o n a l f i e l d - d e p e n d e n t t e r m which i s p r o p o r t i o n a l t o t h e e n e r g y d e r i v a t i v e of t h e s c a t t e r i n g p o t e n t i a l .

I n s t e a d o f p u r s u i n g t h i s a n a l o g y f u r t h e r we w i l l e v a l u a t e E q . ( 1 7 ) e x p l i c i t l y f o r a model i n t e r a c t i o n . I n p a r t i c u l a r we have chosen

T h i s f u n c t i o n a l form h a s t h e a p p e a l i n g f e a t u r e s of making t h e i n t e - g r a l s i n Eq.(17) q u i t e s i m p l e and we c a n a l s o examine t h e e f f e c t s o f t h e r a n g e o f t h e i n t e r a c t i o n on t r a n s p o r t p r o p e r t i e s . The e x p r e s s i o n t o b e e v a l u a t e d i s

Using t h e c o n s t a n t d e n s i t y o f s t a t e s a p p r o x i m a t i o n and p e r f o r m i n g t h e t i m e i n t e g r a t i o n we o b t a i n

(6)

where

and A i ( x ) i s t h e Airy f u n c t i o n 4

.

A s a check we n o t e t h a t t h e zero-

CO

f i e l d r e s u l t , Eq. ( 1 2 ) , can be r e c o v e r e d by n o t i n g t h a t

-

i d x A i ( x ) = 1.

For e x t r e m e l y h i g h f i e l d s t h e i n t e g r a l i n E q . ( 2 0 ) c a n be eva- l u a t e d by u s i n g an a s y m p t o t i c e x p r e s s i o n f o r t h e i n t e q r a l of an A i r y f u n c t i o n 5 and we g e t t h e f o l l o w i n g r e s u l t :

The s c a t t e r i n g i s t h u s s u p p r e s s e d and t h e t r a n s p o r t p r o c e s s becomes f r e e p a r t i c l e l i k e .

A n u m e r i c a l e v a l u a t i o n o f Eq. (20) w i t h p a r a m e t e r v a l u e s X = 20 A and ~ = 2 = 2 . 4 - 2Tr 1 0 1 2 ~ z y i e l d s t h e r e s u l t shown i n F i g . l a . We d i s t i n g u i s h t h r e e d i f f e r e n t r e g i o n s : 1) low f i e l d regime where t h e l e v e l w i d t h r e - t a i n s a p p r o x i m a t e l y i t s z e r o f i e l d v a l u e , 2) t r a n s i t i o n a l regime where t h e l e v e l w i d t h i s a d e c r e a s i n g f u n c t i o n of t h e e l e c t r i c f i e l d and 3 ) h i g h f i e l d regime where t h e l e v e l w i d t h i s v e r y s m a l l t h u s i n d i c a t -

FIELD ( V I M ) FIELD (VIM)

F i g . 1

( a ) The l e v e l w i d t h a s a f u n c t i o n of e l e c t r i c f i e l d f o r X = 20 A and v =

*

2 Tr = 2.4-1012 Hz. The f i e l d s t r e n g t h s F12 and F23 mark t h e t r a n s i - t i o n s between low f i e l d , t r a n s i t i o n a l and h i g h f i e l d regimes ( s e e t e x t ) .

(b) The t h r e e regimes f o r g e n e r a l v a l u e s of w . The l i n e a t w = wo d e n o t e s t h e f r e q u e n c y which was used w h i l e c o n s t r u c t i n g F i g . l a .

(7)

C7-306 JOURNAL DE PHYSIQUE

i n g d e c o u p l i n g of t h e c o n d u c t i o n e l e c t r o n s from t h e r e s o n a n t l e v e l ; s e e a l s o E q . ( 2 2 )

.

F i g u r e l b shows t h e s e t h r e e regimes f o r g e n e r a l v a l u e s of f r e - quency and e l e c t r i c f i e l d . The s h a p e s o f t h e s e b o u n d a r i e s c a n be u n d e r s t o o d by examining how a depends on t h e v a r i a b l e s w , A and F

(Eq. (21) )

.

For a f i x e d a i n t h e low f i e l d regime we f i n d w % F 2/3

,

which i s a l s o d i s p l a y e d by t h e boundary between r e g i o n s 1 and 2 i n F i g . l b . The v a l u e o f

a

a t which t h e z e r o f i e l d l e v e l w i d t h b e g i n s t o de- c r e a s e i s determined by t h e i n t e g r a l i n E q . ( 2 0 ) ; i t t u r n s o u t t h a t f o r a % 2 t h e i n t e g r a l h a s e s s e n t i a l l y a c h i e v e d i t s ' u l l v a l u e . Hence, f o r a 2 o r F ~

2

/w ~t h e l e v e l w i d t h i s a d e c r e a s i n g f u n c t i o n of t h e e x t e r - n a l f i e l d . T h i s c o n c l u s i o n i s independent of t h e c h o i c e o f t h e s c r e e n - i n g parameter and i n p a r t i c u l a r would remain v a l i d f o r A = 0 , i . e . c o r - r e s p o n d i n g t o a p o t e n t i a l which i s c o m p l e t e l y l o c a l i z e d i n r e a l s p a c e .

For h i g h f i e l d s it f o l l o w s from Eq.(21) t h a t t h e f r e q u e n c y and t h e f i e l d a r e r e l a t e d by U % F ' which i s confirmed by t h e h i g h f i e l d s l o p e of t h e boundary l i n e s . The boundary between r e g i o n s 2 and 3 h a s been chosen t o mark where a changes i t s s i g n . The e x a c t p o s i t i o n of t h i s l i n e depends on t h e c h o i c e of A .

I t i s i n t e r e s t i n g t o n o t e t h a t f o r a f u l l y l o c a l i z e d p o t e n t i a l ( A = O ) t h e r e g i o n 3 d o e s n o t e x i s t a t a l l , i . e . no m a t t e r how s t r o n g t h e f i e l d i s i t i s n o t a b l e t o s u p p r e s s t h e s c a t t e r i n g t o t a l l y . The s m a l l - e s t a t t a i n a b l e l e v e l w i d t h i s one t h i r d of t h e z e r o f i e l d v a l u e . We g i v e t h e f b l l o w i n g q u a l i t a t i v e e x p l a n a t i o n of t h i s e f f e c t . I n E q . ( 1 9 ) t h e r e a r e two f a c t o r s i n t h e exponent which c a u s e r e d u c t i o n from t h e

2 2

z e r o f i e l d v a l u e : ( i ) -i/24 ~~t~ and ( i i ) -A2/4 F t

.

The f i r s t one can b e a s s o c i a t e d t o p r o p a g a t i o n between c o l l i s i o n s whereas t h e second one r e f e r s t o something which happens " i n s i d e " t h e c o l l i s i o n . The r a p i d o s c i l l a t i o n s caused by ( i ) a r e s u f f i c i e n t t o r e d u c e t h e s c a t t e r - i n g s t r e n g t h b u t one needs t o b e a b l e t o g o

"

i n s i d e " t h e c o l l i s i o n b e f o r e a f u l l s u p p r e s s i o n i s a c h i e v e d and t h i s i s , o f c o u r s e , impossib- l e f o r a f u l l y l o c a l i z e d p o t e n t i a l .

T h i s r e s e a r c h was s u p p o r t e d i n p a r t by t h e ONR under c o n t r a c t N0014-80-C-0489.

R e f e r e n c e s :

1) K . Hess and N . Holonyak, J r . , P h y s i c s Today, October 1980, p.40 2) M. Salomaa, Z e i t s c h r i f t f . Physik B25, 49 (1976)

3 ) J . R . B a r k e r , J - P h y s . C5, 2663 ( 1 9 7 3 F

4) M. Abramowitz and I.A. S t e g u n , e d i t o r s , "Handbook of Mathematical Functions!', Washington D.C.: N a t i o n a l Bureau o f S t a n d a r d s (1964) pp. 446-452

5) Ref. 4 . Ch. 1 0 , p . 449, Eq.(4.82)

Références

Documents relatifs

THEOREM 1.8.— Let D CC C 71 be a pseudoconvex domain admit- ting a bounded uniformly Holder continuous plurisubharmonic exhaustion function and having the property, that any point q

Similarly, one could vary the p -adic field K in a family of finite field exten- sions of Q p and one may study the behavior of the degree function and its dependence on K.. We would

Transport routes for sterols either from the ER or the plasma membrane into mitochondria thus appear to have evolved at some point and may already be present in yeast, where they

For various electronic applications, such as the camelback diode and transistor devices, i t i s required to have extremely sharp and abrupt high density doping

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

(a) The Fourier transform of voltage fluctuations measured at the driving frequency co (solid curve) and at its erst harmonic (dashed curve) in a wire.. The aperiodic

means of the Green function an inverse operator for differential problems with homogeneous boundary conditions is defined in the weighted Sobolev spaces, cf.. Some

Recall that a positive current in Ω ⊂ C 2 is laminar if it expresses as an integral of integration currents over a measurable family of compatible holomorphic disks (compatible