• Aucun résultat trouvé

STABILIZING EFFECT OF EMITTED CHARGES ON THE CONE-LIKE SHAPES OF ELECTRIFIED MENISCI

N/A
N/A
Protected

Academic year: 2021

Partager "STABILIZING EFFECT OF EMITTED CHARGES ON THE CONE-LIKE SHAPES OF ELECTRIFIED MENISCI"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: jpa-00225956

https://hal.archives-ouvertes.fr/jpa-00225956

Submitted on 1 Jan 1986

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

STABILIZING EFFECT OF EMITTED CHARGES ON THE CONE-LIKE SHAPES OF ELECTRIFIED

MENISCI

G. Joffre, M. Cloupeau

To cite this version:

G. Joffre, M. Cloupeau. STABILIZING EFFECT OF EMITTED CHARGES ON THE CONE-LIKE SHAPES OF ELECTRIFIED MENISCI. Journal de Physique Colloques, 1986, 47 (C7), pp.C7-359- C7-364. �10.1051/jphyscol:1986761�. �jpa-00225956�

(2)

JOURNAL DE PHYSIQUE

Colloque C7, supplément au n o 11, Tome 47, Novembre 1986

STABILIZING EFFECT OF EMITTED CHARGES ON THE CONE-LIKE SHAPES OF ELECTRIFIED MENISCI

G.H. JOFFRE and M. CLOUPEAU

Laboratoire d'Aérothermique du C.N.R.S., 4ter. Route des Gardes, F-92190 Meudon, France

Résumé : Lorsqu'un ménisque e s t formé à l ' e x t r é m i t é d ' u n c a p i l l a i r e e t p o r t é à un p o t e n t i e l é l e c t r i q u e suffisamment élevé, l e ménisque p e u t p r é s e n t e r l a forme d'un cône. Suivant l e s c o n d i t i o n s expérimentales, on observe à Ta p o i n t e du cône, l ' é m i s s i o n de charges p a r e f f e t de champ, l a p r o d u c t i o n de g o u t t e l e t t e s ou une dé- charge corona. La forme conique e s t e s s e n t i e l l e c a r e l l e permet l ' e x i s t e n c e des deux premiers phénomènes. Dans l e présent t r a v a i l , l e s p r o f i l s des ménisques é l e c t r i s é s o n t é t é c a l c u l é s en t e n a n t compte de l ' e f f e t r é g u l a t e u r que l e d é p a r t des charges exerce s u r l e champ é l e c t r i q u e au somnet du cône. Les c a l c u l s montrent notamment que l ' é q u i l i b r e d'un ménisque conique e s t p o s s i b l e pour t o u t e une gamme de v a l e u r s du p o t e n t i e l é l e c t r i q u e e t de l a p r e s s i o n hydrostatique.

A b s t r a c t : When a meniscus i s f o m e d a t t h e free end o f a c a p i l l a r y tube and i s sub- j e c t e d t o t h e e f f e c t o f a s u f f i c i e n t l y i n t e n s e e l e c t r i c f i e l d , t h e meniscus may d i s - p l a y t h e shape o f a cone. Depending upon t h e experiment c o n d i t i o n s , a f i e l d e f f e c t charge emission, the p r o d u c t i o n o f d r o p l e t s o r corona discharge may be observed a t t h e apex o f t h e cone. The cone shape i s e s s e n t i a l t o generate t h e f i r s t two pheno- mena. I n t h i s study, t h e p r o f i l e s o f e l e c t r i f i e d menisci were c a l c u l a t e d t a k i n g account o f t h e r e g u l a t i n g e f f e c t t h a t charge emission may e x e r t on the e l e c t r i c f i e l d a t t h e apex o f t h e cone. The c a l c u l a t i o n s p a r t i c u l a r l y show t h a t c o n i c a l me- niscus e q u i l i b r i u m i s p o s s i b l e over a whole range o f e l e c t r i c p o t e n t i a l and hydros- t a t i c pressure values.

1. INTRODUCTION

I n 1914, Zeleny ( 1 ) s t u d i e d corona discharges produced from l i q u i d menisci, u s i n g an assembly i n which a c a p i l l a r y tube ( f i g . 1 ) was f e d w i t h l i q u i d under a var5able pressure, close t o zero. A v o l t a g e o f a few thousand v o l t s was then a p p l i e d between the meniscus formed a t t h e f r e e end o f t h e c a p i l l a r y tube and a p l a t e . Zeleny obser- ved t h a t d r o p l e t s c o u l d be e m i t t e d under t h e a c t i o n o f t h e e l e c t r i c a l f i e l d . Among t h e o p e r a t i n g modes which he described ( Z ) , t h e most i n t e r e s t i n g i s c e r t a i n l y t h a t i n which t h e meniscus takes t h e shape o f a cone, w i t h i t s apex extended by a v e r y f i n e f i l a m e n t , t h e breakage o f which r e s u l t s i n charged m i c r o d r o p l e t s .

It would seem t h a t these phenornena were n o t the s u b j e c t o f any f u r t h e r study u n t i l they were rediscovered ( 3 ) i n t h e e a r l y f i f t i e s . However, t h e y have since been t h e s u b j e c t o f many works ( 4 ) . I n p a r t i c u l a r , several authors (5,6) have attempted t o use t h i s process f o r e l e c t r i c a l p r o p u l s i o n i n space. Thus, i n 1961,,as p a r t o f a study concerning t h e p r o d u c t i o n o f charged d r o p l e t s i n a vacuum, u s i n g a l i q u i d me- t a l , Krohn ( 7 ) observed t h a t metal i o n s were a l s o e m i t t e d by t h e cone-shaped menis- cus. Various authors have attempted t o o b t a i n t h i s phenomenon w i t h o u t t h e r e being simultaneous emission o f d r o p l e t s . The i o n sources thus created were s t u e i e d f o r various a p p l i c a t i o n s , such as i o n i c p r o p u l s i o n , i o n i m p l a n t a t i o n , i o n i c microscopy, m i c r o l i t h o g r a p h y , etc.. . (8,9,10,11).

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1986761

(3)

JOURNAL DE PHYSIQUE

F i g . 1 - Experiment set-up and d e f i n i t i o n o f a few symbols

I n t h e case o f b o t h i o n emission and t h a t o f a f i n e spray, t h e cone-like shape o f the meniscus i s e s s e n t i a l as, i n t h e former case, i t a l l o w s i o n s t o be e x t r a c t e d by f i e l d e f f e c t and, i n t h e second case, i t a l l o w s a l i q u i d f i l a m e n t t o be created, t h e diameter o f which i s much s m a l l e r than t h a t o f t h e c a p i l l a r y tube.

Further, i n a l 1 t h e o r e t i c a l s t u d i e s concerning c a l c u l a t i o n o f the shape o f c o n e - l i k e menisci, no author has considered s p e c i f i c phenomena o c c u r r i n g a t t h e apex o f t h e cone and, notably, t h e presence o f t h e space charge (12).

The f i r s t work c a r r i e d o u t t o t h e o r e t i c a l l y j u s t i f y t h e existence o f cone-like menis- c i was t h a t o f T a y l o r (13). T h i s a u t h o r considered a s p e c i f i c geometrical c o n f i g u r a - t i o n formed by a s t r i c t l y c o n i c a l meniscus ( i .e, w i t h s t r a i g h t generating l i n e s ) , supported by a s e m i - i n f i n i t e cone t r u n k . He demonstrated t h a t , a t zero h y d r o s t a t i c pressure, c a p i l l a r y and e l e c t r o s t a t i c pressures can be balanced a t a l 1 p o i n t s , f o r a c r i t i c a l value o f e l e c t r i c a l p o t e n t i a l , p r o v i d i n g t h e h a l f - a n g l e o f t h e cone apex be 49.3 degrees .

This mode1 corresponds t o a v e r y p a r t i c u ' i a r case and i s s t i l l t h e s u b j e c t o f some discussion (14,15). However, more s o p h i s t i c a t e d s t u d i e s have since been c a r r i e d o u t . This i s n o t a b l y t h e case o f t h e works o f Basaran and Scriven (16) who, i n 1981, obtained t r a n s i e n t forms o f cone-shaped menisci using a f i n i t e element method.

However, t h e above works do n o t cover c e r t a i n experiments f a c t s concerning s t a b l e cone-shaped menisci :

- f i rs t l y , these cone-shaped menisci can e x i s t through a whole area o f e l e c t r i c a l p o t e n t i a l and h y d r o s t a t i c pressure values,

- secondly, t h e y have never been observed w i t h o u t a simultaneous charge emission due, depending upon circumstances, t o a corona disc.harge, t h e p r o d u c t i o n o f charged d r o p l e t s o r i o n emission. I n a l 1 these cases, a space charge i s c r e a t e d which e x e r t s a r e g u l a t i n g e f f e c t on the e l e c t r i c a l f i e l d a t t h e apex o f t h e cone and which seems indispensable f o r e q u i l i b r i u m t o be maintained.

Therefore, i n t h i s work, t h i s e f f e c t has been modelled and used i n a method (17), which a l lows e l e c t r i f i e d meni s c i shapes t o be c a l c u l a t e d w i t h no s i m p l i f i c a t i o n assumptions. For reasons discussed l a t e r i n t h e t e x t , t h i s m o d e l l i n g has been applied t o t h e case i n which a corona discharge occurs a t the apex o f t h e cone. I n fact, the c a l c u l a t i o n s performed a c t u a l l y r e s u l t i n t h e observed cone-1 i k e shapes.

(4)

2. THEORY 2.1 Equations

The problem t r e a t e d i s t h a t o f a meniscus formed a t t h e end o f a v e r t i c a l c a p i l l a r y tube ( f i g . 1 ) s e t t o e l e c t r i c a l p o t e n t i a l Uo i n r e l a t i o n t o a s e m i - i n f i n i t e horizontal p l a t e , l o c a t e d a t a d i s t a n c e D from t h e e x i t s e c t i o n o f t h e c a p i l l a r y tube, o f r a d i u s R. The shape o f the meniscus i s axisymmetrical and i s represented by t h e f u n c t i o n y ( r ) , where i s the r a d i a l coordinate normalised i n r e l a t i o n t o R. The meniscus i s formed by a l i q u i d o f d e n s i t y p i and w i t h surface t e n s i o n A.

The balance equation f o r t h e surface, considered as conducting, i s w r i t t e n i n a non- dimensional form (18,19) :

I n t h e f i r s t term, which represents h y d r o s t a t i c pressure, B i s equal t o p~ gR2/A, where g i s the a c c e l e r a t i o n due t o g r a v i t y . KH i s equal t o H/R, where H i s t h e h e i g h t (always counted p o s i t i v e l y upwards from the c a p i l l a r y tube e x i t s e c t i o n ) o f a column o f t h e same l i q u i d as t h a t forming the meniscus. The c o n s t a n t E i s equal t o 1 f o r a pendent meniscus and -1 f o r a s e s s i l e meniscus.

I n t h e second term, which represents c a p i l l a r y pressure, R1 and R2 are t h e main r a d i i -

o f c u r v a t u r e normalised i n r e l a t i o n t o R. I n c y l i n d r i c a l s y m e t r y , they a r e c a l c u l a - t e d as a f u n c t i o n o f t h e f i r s t d e r i v a t i v e & and second d e r i v a t i v e % o f 7, i n r e l a t i o n t o 7 .

I n t h e t h i r d tenn, which represents e l e c t r o s t a t i c pressure, Es i.s t h e f i e l d a t t h e -

s u r f a c e normalised i n r e l a t i o n t o Uo/D. KD i s equal t o D/R, EO i s t h e d i e l e c t r i c constant o f the surrounding medium.

To s o l v e equation ( l ) , Ës must be known a t each p o i n t on t h e surface, which means, i n p r i n c i p l e , t h a t the d i s t r i b u t i o n s o f f i e l d Ë and charges must be c a l c u l a t e d f o r a l 1 t h e space between t h e surface o f t h e l i q u i d and t h e p l a t e .

F o r t h i s , Poisson's equation and the c u r r e n t conservation e q u a t i o n must be s i m u l t a - neous solved. Considering t h e e l e c t r i c a l m o b i i i t y o f the i o n s t o be a constant K, t h i s i s w r i t t e n as f o l l o w s :

-+ -

d i v E = - T C $

peoD2

where 4 = - , peo being a c h a r a c t e r i s t i c value o f t h e d e n s i t y o f the charges O O

e m i t t e d a t the meniscus surface.

f

The equation system (1) (2) and ( 3 ) , i n which t h e unknowns a r e 7 , E and p, must t h e r e f o r e be solved.

2.2 Boundary c o n d i t i o n s

The boundary conditions. used f o r t h e meniscus p r o f i l e are : - z ( 1 ) = O and YF(0) = O

The c o n d i t i o n s adopted f o r p o t e n t i a l Ü a r e represented i n f i g u r e 2.

(5)

JOURNAL DE PHYSIQUE

Fig. 2 Fig. 3

Block diagram of meshing and boundary conditions Example of cone-shape p r o f i l e obtained

by cal culation Finally, as demonstrated by F e l i c i ( 2 0 ) , a condition fixing the value of emitted charges density p , must be imposed on the meniscus surface. This density will be expressed using a$ equation model l i n g charge emission.

2.3 Charge emission law

In the case of ion emission, i t i s very d i f f i c u l t t o define a s u i t a b l e charge emis- sion equation. In addition, extremely f i n e meshing would be required t o represent the t i p of the cone apex, which i s extremely pointed.

In the case of spraying, complex hydrodynamic phenomena should a l s o be considered.

This i s the reason f o r which i t was preferred t o model t h e regulating e f f e c t of charges in the case of corona e f f e c t . In order t o cover c e r t a i n c h a r a c t e r i s t i c pro- p e r t i e s of the corona discharge, the following assumptions were nade :

- charges are only emitted l o c a l l y f o r a f i e l d a t the surface, Es, above a c e r t a i n c r i t i c a l value, Ec, which i s an increasing function of the surface curvature 5,

- the density of the emitted charges, p , increases with the difference between the surface f i e l d , E s , and the c r i t i c a l f i e f d , Ec.

The equation adopted i s written a s follows :

(6)

I n t h i s expression, the constant G w i l l be between 9 and 14 (21,22).

RESULTS

3. -

Equations ( l ) , (2) and (3) a r e transformed i n t o d i s c r e t e format using f i n i t e d i f f e - rence formulae i n v a r i a b l e p i t c h meshing ( f i g . 2 ) .

Equation ( 2 ) has been handled using a p o i n t by p o i n t o v e r - r e l a x a t i o n method and equation ( 3 ) u s i n g the c h a r a c t e r i s t i c s method (19). Equation (1) was solved u s i n g Newton's method.

The c a l c u l a t i o n s g i v e t h e d i s t r i b u t i o n o f p o t e n t i a l s and charges i n space, t r a n s - f e r r e d c u r r e n t , 1, and d i s t r i b u t i o n o f surface charges on t h e meniscus.

This method gives r e s u l t s b a s i c a l l y s i m i l a r t o experiment observations concerning both meniscus c o n e - l i k e shapes and t h e values o f the p o t e n t i a l a p p l i e d and t h e c u r r e n t f o r which these menisci a r e obtained.

As an example, f i g u r e 3 shows the p r o f i l e c a l c u l a t e d f o r one o f t h e c a p i l l a r y geo- m e t r i e s adopted. The r a d i u s o f curvature a t the apex o f the cone i s , i n t h i s case, l i m i t e d by t h e p i t c h o f t h e meshing used. Except around t h e apex, increased meshing d e n s i t y has v i r t u a l l y no e f f e c t on t h e shape o f the cone, t h e generating l i n e o f which i s p r a c t i c a l l y s t r a i g h t , i n t h i s p a r t i c u l a r case.

Such cone-shape menisci a r e obtained over a s i g n i f i c a n t range o f h y d r o s t a t i c pressu- r e and e l e c t r i c a l p o t e n t i a l values.

Concerning t h e p o t e n t i a l , i t should be p o i n t e d o u t t h a t the e x t e n t o f t h i s range v a r i e s considerably w i t h t h e shape o f t h e c a p i l l a r y tube used.

Generally, t h e o r e t i c a l r e s u l t s demonstrate the main types o f phenomena observed i n experiments ( 1 8 ) .

4. CONCLUSION

The r e s u l t s obtained u s i n g t h e method developed t o determine the shape o f e l e c t r i f i e d menisci e m i t t i n g charges j u s t i f y the existence o f s t a b l e cone-shape menisci observed d u r i n g experiments.

The emission equation used models t h e case o f a corona discharge. The theory gives a c o r r e c t q u a l i t a t i v e d e s c r i p t i o n o f t h e main phenomena observed, notably, cone- shape menisci may be obtained over a s i g n i f i c a n t range o f p o t e n t i a l and h y d r o s t a t i c pressure values.

Whichever process i s used f o r charge emission, t h e cone-shape menisci obtained are o f s i m i l a r form. A meniscus shape c a l c u l a t i o n more s u i t a b l e f o r t h e i o n source case c o u l d be achieved, u s i n g a charge emission equation c o r k s p o n d i n g more a c c u r a t e l y t o t h e f i e l d emission phenomenon, i n t h e method described above, and by considerincj the f a c t t h a t i o n speed i s then a f u n c t i o n o f l o c a l e l e c t r i c a l p o t e n t i a l .

(7)

JOURNAL DE PHYSIQUE

References

1 ZELENY J., Physical Review, 3 (1914) 69.

2 ZELENY J., Proc. Cambridge P h i l . Soc., 18 (1915) 71.

3 VONNEGUT B., NEUBAUER R.Z., J . C o l l o ï d S., 7 (1952) 616.

4 KOZHENKOV V . I . , FUKS N.A., Russ. Chem. Rev., F5 (1976) 1179.

5 PFEIFER R.J., HENDRICKS C.D., Phys. F l u i d s , l O ( 1 9 6 7 ) 2149.

6 HOGAN J.J., HENDRICKS C.D., AIAA J., 2 (1965F296.

7 KROHN V.E., Prog. Astron. Rocketry, 6-(1961) 13.

8 SWATIK D.S., HENDRICKS C.D., AIAA J.T 6 (1968) 1596.

9 MAHONEY J.F., YAKIKU A.Y., DALEY H.L. ,MOORE R.D. and PEREL J., J. Applied Phys., 13 (1969) 5101.

10 ~ A M P I T T R., Nuclear Instruments and Methods, 189 (1981) 111.

11 BENASSAYAG G., SUDRAUD P. and JOUFFREY B., U l t r a M i croscopy, - 16 (1985) 1.

12 GOMER RI, Appl . Physics, 19 (1979) 365.

13 TAYLOR G.I., Proc. Roy. S E . o f London, A280 (1964) 383.

14 CUTLER P.H., CHUNG M., FEUCHTWANG T.E. anmZES E., Proc. 32nd I n t . F i e l d Emis- s i o n Symposium, P i t t s b u r g h , USA (1985). J. de Physique, (1986) n03, C287.

15 KINGHAM D.R., BELL A.E., Proc. 3 1 s t I n t . F i e l d Emission Symposium, P a r i s , France, (1984). J . de Physique, 45 (1984) no 12, C9.139.

16 BASARAN O.A., SCRIVEN L . E , Proc. 2nd I n t . C o l l . on Drops and Bubbles, Monterey, C a l i f o r n i a , USA (1981 Nov. 19-21) 32.

17 JOFFRE G.H., PRUNET-FOCH B., BERTHOMME S. and CLOUPEAU M., J. o f E l e c t r o s t a t i c s , 13 (1982) 51.

18 'TOFFRE G.H., CLOUPEAU M., J. o f E l e c t r o s t a t i c s ( t o be p u b l i s h e d ) . 19 JOFFRE G.H., Thèse d l E t a t , P a r i s (1984).

20 FELICI N., C.R. Acad. Sci., P a r i s , 256 (1963) 3254.

21 PEEK F.W., D i e l e c t r i c phenomena i n h i g h v o l t a g e engineering, Mc Graw H i l l , PI-Y., (1929).

22 ROUSSE J. , Thèse de Docteur-Ingénieur, P a r i s (1947) .

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to