• Aucun résultat trouvé

An interpretation of the SIMP method based on topological sensitivity analysis

N/A
N/A
Protected

Academic year: 2021

Partager "An interpretation of the SIMP method based on topological sensitivity analysis"

Copied!
16
0
0

Texte intégral

(1)

HAL Id: hal-00496925

https://hal.archives-ouvertes.fr/hal-00496925

Preprint submitted on 1 Jul 2010

HAL

is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire

HAL, est

destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

topological sensitivity analysis

Samuel Amstutz

To cite this version:

Samuel Amstutz. An interpretation of the SIMP method based on topological sensitivity analysis.

2010. �hal-00496925�

(2)

SAMUELAMSTUTZ

Abstrat. SIMPisaverypopularmethodthatonvertsatopologyoptimizationprobleminto

anonlinearprogrammingproblemdenedoveraonvexset.Itbasiallyinvolvesapenalization

funtion,sofaronstrutedinempirialways. ThispapergivesaninterpretationoftheSIMP

methodintermsoftopologialsensitivity,andthereforeprovidesargumentsastothehoieof

thepenalizationfuntion.Asimplealgorithmbasedontheseoneptsisproposedandillustrated

bynumerialexperiments.

1. Introdution

LetD bea boundeddomainofRd,d= 2,3,withaLipshitzboundaryΓmadeoftwodisjoint

parts ΓD and ΓN, with ΓD of nonzeromeasure and ΓN of lass C1. We fous on the following

minimizationproblem,withthenotationspeiedbelow:

(γ,u)∈E×Vmin J(γ, u) (1)

subjetto

Z

D

γ∇u.∇ηdx= Z

ΓN

ϕηds ∀η∈ V. (2)

Forthetwounknownsγ anduthefeasiblesetsarerespetively

E:={γ:D→ {γ, γ+}, γ measurable}, V :={u∈H1(D), uD=0}.

Theonstantsγ+> γ >0, thedistribution ϕ∈H−1/2N),and thefuntionalJ :E × V →R

aregivendata. Foronvenienewedenotebyj(γ) :=J(γ, uγ)thereduedost,orobjetive,with uγ thesolutionof (2) . Subsequentlyγ anduγ willbereferred toas thedensity(or ondutivity) and the state, respetively. Note that, in many appliations, the weak phase approximates an

emptyregion,whihmeansthatγ≪γ+.

Duetothebang-bangnatureofthetargeteddensityγ,Problem(1) -(2)fallsintotheframework

oftopologyoptimization. Anumberofmethodshavebeendevisedforitssolution,whihwebriey

reall. Arstlassofmethods,sometimesknownaslassialshapeoptimization[14 ,20 ℄,relieson

theontroloftheinterfaeΓγ whereγjumps. Sensitivityanalysisoftheobjetivewithrespetto thepositionofΓγ leadstothenotionofshapederivative. Algorithmsbasedontheshapederivative produeinpriniplesmoothvariationsofΓγ,inpartiular,thenumberofitsonnetedomponents

annothange. This is a serious drawbakin many appliations. Animportant exeptionmust

neverthelessbementioned. Itonernslevelsetmethods[16 ,4 ,15℄,whereΓγ isrepresentedasthe zerolevel set of a smoothfuntion ψ dened over D. A Hamilton-Jaobiequation is then often usedtomovetheinterfaeinthedesireddiretion. Withinthissetting,onnetedomponentsan

anelormerge,butanhardlybereated,atleastintwodimensions. Infat,thesemethodslak

anuleationmehanism. Topologialsensitivityanalysis[12 ,13,19 ℄hasbeenpreiselyintrodued

to evaluate the variation of the objetive when γ is swithed within a small region. Therefore,

Keywordsandphrases. topologyoptimization,SIMPmethod,topologialsensitivity,topologialderivative.

(3)

thetopologial sensitivitymay be advantageouslyombinedwith levelset methods[3 , 11, 7 ℄. A

basially dierent lass of methods onsists in relaxing the onstraintγ(x) ∈ {γ, γ+}. This is

lassially ahieved by invoking the homogenization theory [1 , 9℄. This latter approah benets

fromnietheoretialproperties,likedierentiabilityandexisteneofglobalminimizers. However,

eventually retrieving a feasible solution requires a rather heuristi penalization post-proessing.

Asimplied method, alledSolid IsotropiMaterial withPenalization(SIMP)[8 ,18, 10℄,is very

popularintheengineeringommunity. Itisbasedonthetwo followingpriniples. Firstly,theset

ofadmissiblevalues, γ+}issimplyhangedintoitsonvexhull, γ+],thusthewholetheory

ofhomogenizationisnotneeded. Seondly,thepenalizationisdiretlyinludedintheoptimization

proess by a modiationof the stateequation. Typially, thedensity γ in (2)is replaed by a

power lawθ(γ) =γp whih, forsome objetivefuntions,tends toenfore extremalvalues. This

formulationhasprovenpartiularlysimpleandeientinmanyimportantases. However,ithas

nopropertheoretialjustiation,andthehoieoftheexponentpisempirial.

The purpose of this paper is to give an insight into the SIMP method by interpreting the

assoiatedrstorderneessaryoptimalityonditionsin termsoftopologialsensitivity. Weshow

that speial penalizationfuntions θ an berelatedto isotropi topologialperturbations, whih providesalearmeaningtothesolutionsobtainedthroughthismodel. Thepowerlawpenalization

isretrievedinthelimitingaseγ→0.

The paper is organized as follows. Thenotion of topologial sensitivity is realled in Setion

2. The aforementioned relations between SIMP and the topologial sensitivity are exhibited in

Setion 3, omplemented by Appendix A. Those results are extended to the linear elastiity

settingin Setion 4. A gradient-likealgorithmbasedon theseoneptsis desribedin Setion 5.

Numerialexperimentsarereportedin Setions6and7.

2. Topologialsensitivity andoptimalityonditions

InthepaperweshallusethestandardnotationB(ˆx, ρ)fortheopenballofenterˆxandradius ρ,|A|fortheLebesguemeasure ofthesetA,andχAfortheharateristifuntionofA. Forany γ∈ E wedenethesets

[γ=γ+] :={x∈D, γ(x) =γ+}, [γ=γ] :={x∈D, γ(x) =γ} Dγ+:= int[γ=γ+], Dγ := int[γ=γ].

Wedenethefuntions:D+γ ∪Dγ →Rby s(x) =

1 if x∈Dγ,

−1 if x∈D+γ.

Belowwedene a notion ofloal optimalityrelativeto apartiular lassof perturbations. Of

ourse,moregeneralperturbationsouldbeonsidered,butatoolargelassmayresultinthenon

existeneofloaloptima,as showninAppendixA.

Denition 2.1. We say that γ ∈ E is a loal minimizer of j if, for every family (x1, ..., xN) ∈ (D+γ ∪Dγ)N,thereexistsρ >¯ 0suhthat,forall1, ..., ρN)∈RN+,

i=1,...,Nmax ρi<ρ¯=⇒j γ+ (γ+−γ)

N

X

i=1

s(xiB(xii)

!

≥j(γ).

Denition 2.2. Wesay that thefuntional j admits a topologial derivative g(ˆx)at thepoint ˆ

x∈D+γ ∪Dγ ifthefollowingasymptotiexpansionholdswhenρ→0:

j(γ+s(ˆx)(γ+−γB(ˆx,ρ))−j(γ) =s(ˆx)(γ+−γ)|B(ˆx, ρ)|gγ(ˆx) +o(|B(ˆx, ρ)|). (3)

(4)

d 2 3

k 2

γ+

3 γ++ 2γ

k+ 2

γ+

3 2γ+

Table1. Expressionsofk± fortheondutivityproblem.

Lemma 2.3. Supposethat γ isa loal minimizer of j and that j admits atopologial derivative gγ(x)atallpointx∈Dγ+∪Dγ. Then

gγ(x)≥0 ∀x∈Dγ,

gγ(x)≤0 ∀x∈Dγ+. (4)

Proof. Wehoosea singleperturbationentered atapoint,forinstanexˆ∈Dγ. By Denition

2.2wehave

j(γ+ (γ+−γB(ˆx,ρ))−j(γ) = (γ+−γ)|B(ˆx, ρ)|gγ(ˆx) +o(|B(ˆx, ρ)|).

InviewofDenition2.1thisquantityisnonnegativeassoonasρissuientlysmall. Dividingby

|B(ˆx, ρ)|andpassingtothelimitasρ→0entailsgγ(ˆx)≥0. Likewisegγ(ˆx)≤0whenxˆ∈Dγ+.

Tox ideas,weassumeheneforththat theobjetivefuntionalisoftheform

J(γ, u) = Z

ΓN

ψuds+ℓ Z

D

γdx, (5)

withψ∈H−1/2N). Thesalar onstantan beseen asaLagrange multiplierassoiatedwith

avolumeonstraint. Thefollowingresultisprovenin[6℄.

Proposition 2.4. When J is dened by (5) , the redued ost j admits a topologial derivative gγ(x)ateahpointx∈Dγ± givenby

gγ(x) =k±γ(x)∇uγ(x).∇vγ(x) +ℓ,

wherethe adjointstatevγ ∈ V solves Z

D

γ∇vγ.∇ηdx=− Z

ΓN

ψηds ∀η∈ V, (6)

andtheexpressionof k± isreportedinTable1.

3. Convexifiation andonnetion withthe SIMP method

Weintroduetheauxiliary problem

min

(γ,u)∈E×V˜

J(γ, u) (7)

subjetto

Z

D

θ(γ)∇u.∇ηdx= Z

ΓN

ϕηds ∀η∈ V. (8)

Comparedwith(1) -(2) ,γ issoughtintheonvexset

E˜:={γ:D→[γ, γ+], γ measurable},

and the state equation is modied by the introdution of a smooth (at least C1) funtion θ : (γ−−, γ++) → (γ−−, γ++), with 0 < γ−− < γ < γ+ < γ++. We assume further that θ is

inreasingandsatises

θ(γ) =γ, θ(γ+) =γ+.

(5)

Forthis problemwedenotebyjθ(γ) :=J(γ, uθ,γ)thereduedost,withuθ,γ thesolutionof (8).

Proposition 3.1. The redued ost jθ is Fréhet dierentiable on L(D,(γ−−, γ++)) with the

derivativeinthe diretion δ∈L(D)givenby Djθ(γ)δ=

Z

D

gθ,γδdx, (9)

with

gθ,γ :=θ(γ)∇uθ,γ.∇vθ,γ+ℓ,

andtheadjoint statevθ,γ ∈ V solutionof Z

D

θ(γ)∇vθ,γ.∇ηdx=− Z

ΓN

ψηds ∀η∈ V. (10)

Proof. First,itstemsfromtheimpliitfuntiontheoremthatthemappingS:γ∈L(D,(γ−−, γ++))7→

uθ,γ ∈ V isFréhetdierentiable. Wewriteforsimpliityθ,γ :=DS(uθ,γthederivativein the

diretionδ∈L(D). Thenjθisdierentiablebyomposition,andthehain ruleyields

Djθ(γ)δ= Z

ΓN

ψu˙θ,γds+ℓ Z

D

δdx.

Onusing theadjointequation(10)to rewritetherstintegralweobtain

Djθ(γ)δ=− Z

D

θ(γ)∇vθ,γ.∇u˙θ,γdx+ℓ Z

D

δdx. (11)

Nowdierentiating(8)yields

Z

D

(γ)δ∇uθ,γ.∇η+θ(γ)∇u˙θ,γ.∇η]dx= 0 ∀η∈ V. (12)

Combining(11)and(12)provides(9) .

Fortheoptimalityof jθweusethestandard denitionrealledbelow. Inthesequelwesimply

denotebyk.k theL normonD.

Denition 3.2. Wesaythatγ∈E˜isaloal minimizerofjθifthereexists α >0 suhthat

∀˜γ∈E˜, kγ−γk ≤˜ α⇒jθ(γ)≤jθ(˜γ).

FromProposition3.1wederivethefollowingneessaryoptimalityonditions.

Corollary3.3. Supposethat γ isaloalminimizer ofjθ. Then

gθ,γ ≥0 a.e. on [γ=γ], gθ,γ = 0 a.e. on < γ < γ+], gθ,γ ≤0 a.e. on [γ=γ+].

(13)

Proof. By virtueoftheonvexityofwehavetheoptimalityondition Djθ(γ)(˜γ−γ)≥0 ∀˜γ∈E˜.

Consideranarbitrarypair(λ, δ)∈(γ, γ+)×L(D)withδ≥0a.e.,andset

˜

γ=γ+χ[γ≤λ]tδ.

Fort >0suientlysmallwehaveγ˜∈E˜,hene Djθ(γ)(˜γ−γ) =t Z

[γ≤λ]

gθ,γδdx≥0.

(6)

Itfollowsthat

Z

[γ≤λ]

gθ,γδdx≥0 ∀δ∈L(D), δ≥0,

andsubsequentlythat

gθ,γ≥0a.e. [γ≤λ].

Similarlywendthat

gθ,γ≤0a.e. [γ≥λ].

Usingthatλ∈(γ, γ+)isarbitraryompletestheproof.

FromomparisonofLemma2.3andCorollary3.3,itappearsthat,apartfromtheonvexiation

ofthefeasibleset,thetwooptimalitysystemsessentiallydierbytheexpressionofthesensitivities.

Then a natural question arises: is there a funtion θ suh that those two sensitivities oinide?

ThisisaddressedbythefollowingTheorem.

Theorem 3.4. Set

θ(γ) =γ2+γ

γ+ if d= 2,

θ(γ) =−γ3+ 3(γ+2+ 2γ+γ+)

(2γ+)(γ++ 2γ) if d= 3,

(14)

andsupposethatγ∈ E and|D\Dγ\Dγ+|= 0. Thenthereholdsθ(γ(x)) =γ(x)andgθ,γ(x) =gγ(x)

foralmost all x∈D. Consequently,jθ(γ) =j(γ)andthe onditions (4)and (13)areequivalent.

Proof. In orderto fulllthe assertions ofthe theoremweneedto onstruta smoothfuntionθ

suhthat

θ(γ) =γ, θ(γ+) =γ+, θ) =kγ, θ+) =k+γ+. (15)

Thesimplest waytoahievethisistoseeka ubipolynomialinterpolation. Thereforeweset

θ(γ) =a3γ3+a2γ2+a1γ+a0.

Thentheonditions (15)areequivalentto





a3)3+a2)2+a1γ+a0, a3+)3+a2+)2+a1γ++a0+, 3a3)2+ 2a2γ+a1=kγ, 3a3+)2+ 2a2γ++a1=k+γ+.

(16)

ByGausselimination,wendthat theabovesystemadmitsa uniquesolutiongivenby

a3=k+γ++kγ−2 (γ+−γ)2 ,

a2=(1−k+γ+)(γ++ 2γ) + (1−kγ)(2γ+)

+−γ)2 ,

a1= 1−(1−k+γ+(2γ+) + (1−kγ+++ 2γ)

+−γ)2 ,

a0= γ+γ+−γ)2

(1−k+γ++ (1−kγ+ .

Nowusingtheexpressionsofk+and k fromTable1 resultsin (14) .

(7)

0 0.2 0.4 0.6 0.8 1 0

0.2 0.4 0.6 0.8 1

Figure 1. Funtionθforγ+= 1andγ→0,fromtoptobottom: ondutivity

3D,ondutivity2D,linearelastiity2D.

Remark 3.5. For γ+= 1andγ→0 wehave

θ(γ)∼γ2 ifd= 2, θ(γ)∼ −1

3+3

2 ifd= 3. (17)

Thesefuntionsareplotted inFigure1.

Remark 3.6. Ofourse,Theorem3.4doesnotimplythatProblems(1)-(2)and(7) -(8)areequiva-

lentsinethereisnoguaranteethatthesolutions(globalorloal)to(7) -(8)belongtoE. However,

forθ(γ) =γp,in theself-adjointaseandforadisreteversion,it isprovenin [17 ℄that solutions to(7)-(8)areneessarilyin E forpsuientlyhigh.

4. Generalizationin linearelastiity

Weonsidernowa linearelastiityproblemintwo spaedimensions. ThedomainD isdened

asbefore. Thestateisthedisplaementeld

u∈ V :={u∈(H1(D))2, uD=0},

andtheequilibrium equationreads

Z

D

γσ(u) :∇sη= Z

ΓN

ϕ.ηds ∀η∈ V.

Here σ(u) is the stress normalized to a unitary Young modulus,sη := (∇η +∇Tη)/2 is the

symmetrigradient(strain), andϕ∈(H−1/2N))2 is apresribed load. Thestressisomputed

bytheHookelaw

σ(u) =λtrsu+ 2µ∇su,

where(λ, µ)aretheLaméoeients. Thefollowingresultistakenfrom[6 ℄.

Proposition4.1. WhenJ isdenedby (5) ,thereduedostj admitsatopologialderivativeg(x)

ateahpointx∈D±γ givenby gγ(x) = κ+ 1

2(κr±+ 1)

2σ(uγ)(x) :∇svγ(x) +(r±−1)(κ−2)

κ+ 2r±−1 trσ(uγ)(x)trsvγ(x)

+ℓ,

where

κ=λ+ 3µ

λ+µ , r+= γ

γ+, r+ γ,

(8)

andtheadjoint statevγ ∈ V solves Z

D

γσ(vγ) :∇sηdx=− Z

ΓN

ψ.ηds ∀η∈ V. (18)

Heneforth weplaeourselvesin theplane stressase. Thenthe Laméoeientsarerelated

tothePoissonratioν by

λ= ν

1−ν2, µ= 1 2(1 +ν),

whihentails

κ= 3−ν 1 +ν.

Weassumethat ν= 1/3,thusκ= 2,andthetopologialderivativeadmitsthesimplerexpression gγ(x) =k±γ(x)σ(uγ)(x) :∇svγ(x) +ℓ ∀x∈D±γ,

with

k= 3

+, k+= 3 γ++ 2γ.

Obviously, Lemma 2.3, Proposition 3.1 and Corollary 3.3 straightforwardly extend to the linear

elastiityaseforthegradient

gθ,γ(γ)σ(uθ,γ) :∇svθ,γ+ℓ.

Byarguingasin Theorem3.4,weobtain thefollowingresult.

Theorem 4.2. Set

θ(γ) =2γ3+ 3γ+γγ+ 2γ+γ+)

++ 2γ)(2γ+) , (19)

andsuppose thatγ∈ E and|D\Dγ \D+γ|= 0. Then jθ(γ) =j(γ),gθ,γ =gγ andthe onditions

(4)and (13)areequivalent.

Remark 4.3. For γ+= 1andγ→0 wehave

θ(γ)∼γ3. (20)

Thispowerlawpenalizationisthemostfrequentlyused withintheSIMPmodel.

5. Optimizationalgorithm

Thenumerialissueisthentosolvetheauxiliary problem(7) -(8) ,orequivalently

min

γ∈E˜

jθ(γ).

Two lasses of methods are of ommon usage in topology optimization in the ontext of SIMP,

for whih we refer to [10 ℄. On one hand the so-alled optimality riteria methods are eient

in some ases but theyare quite heuristi. On theother hand onvexapproximations methods,

liketheMethodofMovingAsymptotes(MMA),onsistiniterativelysolvingsimplersubproblems

onstrutedsoastoaountforapproximationsoftheobjetiveandpossibleonstraints,withthe

propertyofbeingseparableintheelements. Herewesimplyuseaprojetedgradientalgorithm.

Algorithm 1. (1) Initialization: hooseβ >0,α∈(0,1),γ0∈E˜.

(2) Loop whilen+1−γnk/kγnk ≤β:

γn+1= max(γ,min(γ+, γn−tn∇jθn))),

where tn=t0nαm andmis thesmallestintegersuhthat jθn+1)< jθn).

(9)

Intheomputationswehavealwaysusedα= 0.5,γ0≡(γ+)/2,andt0n=kγnk/k∇jθn)k.

For thedisretization of the stateequation weuse nite elements with pieewiselinearshape

funtionsona triangularmesh. WedenotebyVh theniteelementspaeandby{e1, ..., eN} the

niteelementbasis. Thedensityγisalsorepresentedonthis basis,as

γ=

N

X

i=1

γiei,

and thevetor1, ..., γN) is the designvariable. The equivalent density within eah elementis

omputedbyapplyingalinearinterpolationoperatorS∈ L(Vh,Th),whereThisthesetoffuntions

denedonD whihareonstantper element. Thenthedisretestateuθ,γ ∈ Vh isomputedby

Z

D

θ(Sγ)∇uθ,γ.∇ηdx= Z

ΓN

ϕηds ∀η∈ Vh,

andthedisreteostisdened by

jθ(γ) = Z

ΓN

ψuθ,γds+ℓ Z

D

Sγdx.

Arguingas inProposition3.1, wendthatthederivativeofthedisreteostis

Djθ(γ)δ= Z

D

(Sγ)∇uθ,γ.∇vθ,γSδ+ℓSδ]dx,

withthedisreteadjointstatevθ,γ solutionof

Z

D

θ(Sγ)∇vθ,γ.∇ηdx=− Z

ΓN

ψηds ∀η∈ Vh.

DenotingbyS theadjointoperatorofS weobtain thegradient

∇jθ(γ) =S(Sγ)∇uθ,γ.∇vθ,γ+ℓ).

Remark 5.1. Pieewise linear nite elements are seldom used in topology optimization beause

theyareknown to produeinstabilities in theform ofhekerboard patterns[2 , 10 ℄. However in

all the numerial tests performed this phenomenon has not been enountered. Probably this is

duetothefatthatthedesignvariableisheredenedatthenodes,whereasitisusuallyattahed

tothe elements. Hene, thanksto thepossibility to uselow ordertriangular nite elements, the

presentalgorithmprovestobeofremarkablysimpleimplementationandappropriateforarbitrary

domains.

6. Numerial examples inondutivity

Weusetheparameters γ+ = 1, γ = 10−5 andβ = 10−2. Intheexampleunder onsideration the domain D is a square of size 1.5, with the boundary onditions indiated on Figure 2. In

theobjetivefuntional wetakeψ=ϕ, henetheproblemis self-adjoint, i.e., vθ,γ =−uθ,γ. We

usea mesh ontainingN = 29041 nodes. Figures 3 and4 show theresultsoftwo omputations, orrespondingto the Lagrangemultipliers ℓ = 1 andℓ = 10. The implementation is doneunder Matlab. TheamountsofCPU timeused inthedierentomputations,performedona standard

(10)

nu=1

u= 0

Figure 2. Computationaldomainandboundaryonditions.

Figure3. Optimaldensityforℓ= 1(ase1,left),andℓ= 10(ase 2,right).

0 10 20 30 40 50 60

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5

number of iterations

cost function

0 5 10 15 20 25 30 35

5 6 7 8 9 10 11 12 13

number of iterations

cost function

Figure 4. Convergenehistoryforase1(left),andase2(right).

7. Numerialexamples inelastiity

For strutural optimization problems, in order to redue the risk to fall in loal minima and

saveomputertime,weuseasequeneofiterativelyrenedmeshes,likein[7℄. Theoptimizationis

rstperformedonaoarsemesh. Afteronvergene,themeshisrened,thedensityγisprojeted

ontothenewmesh,andtheoptimizationis ontinued. Thisproedureisrepeateduptothenal

desiredmesh. Wepresentthreeexamples.

7.1. Cantilever. Hereandinthesubsequentsetion7.2weuseγ+= 1,γ= 10−5andβ= 10−3.

Again we plae ourselves in the self-adjoint ase (ψ = ϕ), whih orresponds to the standard

omplianeminimization problem. Thedomain D isa retangleofsize 2×1 (seeFigure5,left).

TheLagrange multiplier is hosen as ℓ= 100. The suessive meshesonsist of 431,1661, 6521

and25841nodes. Theobtained distributionofmaterialisdepitedonFigure5,right.

7.2. Mast. Thedomain D isshownonFigure6,left,where thevertialandhorizontalbranhes

areretanglesofsizes 2×4and 4×2, respetively. TheLagrange multiplieris hosenasℓ= 50.

Références

Documents relatifs

It is used primarily to estimate acoustic velocities as a function of azimuthal position in slow formations, (i.e. those whose shear velocity is less than the

We demonstrate that our approach can allow for a more precise description of program states, and that it can also describe a large set of sensitivity techniques, both when

The topological asymptotic expansion for a class of shape functionals is derived in its general form in Section 4, and the concept of degenerate polarization tensor is introduced

Identification approaches based on the topological sensitivity (TS) combine sampling and small-defect asymptotics, as they quantify the perturbation undergone by the cost functional

(2007) under discussion is concerned with the evaluation of the perturbation undergone by the poten- tial energy of a domain Ω (in a 2-D, scalar Laplace equation setting) when a disk

On the contrary, based on available measurements of the track geometry and of the corresponding train dynamical responses, it can be shown that the method developed in Section II

We will consider first the forward method as in Section 4, where we will see that the smoothness of the coefficients is required in order to find explicit expressions for θ

Based on the deviations from experimental data and on the capabilities of the models, four predictive models were selected for fitting of new parameters for binary and ternary