• Aucun résultat trouvé

SURFACE POLARITON SOLITONS

N/A
N/A
Protected

Academic year: 2021

Partager "SURFACE POLARITON SOLITONS"

Copied!
10
0
0

Texte intégral

(1)

HAL Id: jpa-00224146

https://hal.archives-ouvertes.fr/jpa-00224146

Submitted on 1 Jan 1984

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

SURFACE POLARITON SOLITONS

A. Boardman, G. Cooper, P. Egan

To cite this version:

A. Boardman, G. Cooper, P. Egan. SURFACE POLARITON SOLITONS. Journal de Physique

Colloques, 1984, 45 (C5), pp.C5-197-C5-205. �10.1051/jphyscol:1984528�. �jpa-00224146�

(2)

JOURNAL DE PHYSIQUE,

Colloque C5, supplenient a u n04, Tome 45, a v r i l 1984 page C5-197

SURFACE POLAR 1 TON

SOLI

TONS

A.D. Boardman. G.S. Cooper and P. Egan

Department of Pure and AppZied Physics, University of SaZford, SaZford /VI:, W l ' , Y . K .

Résunié

-

Le problème de l a p r o p a g a t i o n de p u l s e s o p t i q u e s i n t e n s e s s u r l e s s u r f a c e s planes d i é l e c t r i q u e s f a i b l e m e n t non l i n é a i r e s e s t c o n s i d é r é . II e s t m o n t r é que des " s o l i t o n s b r i l l a n t s " peuvent e x i s t e r seulement s i l a d i s p e r s i o n de groupe e s t n é g a t i v e . P u i s q u ' e n l ' a b s e n - ce d ' a t t é n u a t i o n , l a d i s p e r s i o n de groupe e s t p o s i t i v e p o u r l e s p o l a - r i t o n s - p l a s m o n s de s u r f a c e , il e s t c o n c l u que l ' e x i s t e n c e des s o l i t o n s e s t c o n d i t i o n n é e p a r une courbure i n v e r s e i n d u i t e p a r l a c o l l i s i o n . La p r o p a g a t i o n dans des c o n d i t i o n s de d i s p e r s i o n normale c o n d u i t l e p l u s probablement à des p u l s e s pouvant ê t r e u t i l i s e s pour l a compres- s i o n d ' i m p u l s i o n s . Ces p u l s e s p r é s e n t e n t l e s p r o p r i é t e s s u i v a n t e s : sommet p l a t , é l a r g i s s e m e n t en fréquence e t c a r a c t è r e a i g u .

A b s t r a c t

-

The problem o f p r o p a g a t i n g i n t e n s e o p t i c a l p u l s e s on p l a n e weakly n o n l i n e a r d i e l e c t r i c s u r f a c e s i s considered. I t i s p o i n t e d o u t t h a t b r i g h t s o l i t o n s c a n e x i s t on1 y i f t h e group d i s p e r s i o n i s n e g a t i v e . Since, i n t h e absence o f dampinq, qroup d i s p e r s i o n i s ~ o s i t i v e f o r s u r f a c e lasm mon-~olaritons i t i s con- c l u d e d t h a t c o l l i s i o n - i n d u c e d 'bend-back' i s r e q u i r e d f o r s o l i t o n s t o e x i s t . P r o p a g a t i o n under normal d i s o e r s i o n c o n d i t i o n s i s much more l i k e l y l e a d i n g t o f l a t - t o p ~ e d , frequency broadened and pos- i t i v e l y c h i r p e d p u l s e s t h a t c o u l d be used f o r p u l s e compression.

1

-

INTRODUCTION

N o n l i n e a r e l e c t r o m a g n e t i c s u r f a c e and g u i d e d wave phenomena a r e c u r r e n t l y o f g r e a t i n t e r e s t / 1 - 8 / . Many o f t h e r e s u l t s were o b t a i n e d w i t h o u t assuming t h e n o n l i n e a r i t y t o be weak b u t i n a l 1 cases t h e source o f t h e n o n l i n e a r i t y i s a dependence o f t h e d i e l e c t r i c f u n c t i o n on t h e power c a r r i e d b y t h e wave.

It i s now o f g r e a t i n t e r e s t t o e n q u i r e about t h e b e h a v i o u r p a t t e r n o f an i n t e n s e o p t i c a l p u l s e p r o p a g a t i n q a l o n g Say, t h e p l a n e s u r f a c e o f a semi- c o n d u c t o r o r a m e t a l . I n p a r t i c u l a r , i t i s i m p o r t a n t t o know i f such a p u l s e can e v o l v e t o a s o l i t o n .

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1984528

(3)

C5-198 JOURNAL DE PHYSIQUE

Some s t u d i e s i n t h i s d i r e c t i o n /3,9/ have a l r e a d y been performed b u t i n d u c e a s o l i t o n - l i k e b e h a v i o u r t h r o u g h a dopant o r t r a n s i t i o n p l a c e d a t t h e i n t e r - face between two d i e l e c t r i c media. T h i s i n t r o d u c e s a p o l a r i s a t i o n c u r r e n t i n t o t h e boundary c o n d i t i o n on t h e t a n g e n t i a l component o f t h e magnetic f i e l d . I t was shown i n one i n v e s t i a a t i o n t h a t s e l f - i n d u c e d t r a n s p a r e n c y /3/ may occur, t h r o u g h t h e d e v i c e s t a t e d above, and t h a t o p t i c a l s o l i t o n b e h a v i o u r i s a p o s s i b i l i t y t h r o u g h t h e e x i s t e n c e o f a sine-Gordon t y p e of e q u a t i o n . Both of these s t u d i e s , i n f a c t , use r e s o n a n t l y a b s o r b i n g media t h a t suddenly becomes t r a n s p a r e n t as t h e power i n t h e o ~ t i c a l p u l s e r i s e s above a c e r t a i n t h r e s h o l d .

Obviously, i t i s expected t h a t s u r f a c e plasmons can e x h i b i t i n t r i n s i c n o n l i n e a r i t y . T h i s i s d e t e c t a b l e b u t weak / I O / . N e v e r t h e l e s s an o p t i c a l K e r r e f f e c t o c c u r s t h a t o u g h t t o be s u f f i c i e n t t o s u s t a i n an o p t i c a l p u l s e t h a t may be a s o l i t o n . Because o f t h e weakness of t h e e f f e c t a t h e o r y t h a t r e l i e s upon t h i s assumption s h o u l d be v e r y s u i t a b l e f o r m a t e r i a l s l i k e semiconductors and m e t a l s . Such a t h e o r y has been d e v e l - oped and used w i t h g r e a t e f f e c t i v e n e s s f o r o p t i c a l f i b r e s /11 ,12,13/.

I t g i v e s t h e p u l s e envelope e q u a t i o n as a m o d i f i e d n o n l i n e a r S c h r o d i n g e r e q u a t i o n and i s , q u i t e g e n e r a l l y , a p p l i c a b l e t o a l 1 weakly n o n l i n e a r guided wave systems /12/.

I n o r d e r t o a p p l y t h i s t h e o r y i t i s necessary t o d e t e r m i n e

a7k, ,

where kr i s t h e r e a l p a r t o f t h e l i n e a r wave number and w i s t h e a n g u l a r frequency. au2 The p o s s i b i l i t y o f o p t i c a l s o l i t o n s t h e n depends o n l y upon t h e shape o f t h e s u r f a c e p o l a r i t o n d i s p e r s i o n curve.

I I - ENVELOPE SOLITON THEORY

Suppose t h a t @ ( x , t ) i s t h e t o t a l e l e c t r i c f i e l d o f e l e c t r o m a g n e t i c wave guided i n t h e x - d i r e c t i o n by a system t h a t , i n t h e f i r s t i n s t a n c e , w i l l be assumed t o be o p t i c a l l y l i n e a r . Furthermore, l e t us assume t h a t any non- l i n e a r i t y t h a t can o c c u r i s s u f f i c i e n t l y weak f o r t h e t r a n s v e r s e inhomogen- e i t y t o be i n c l u d e d through t h e use o f t h e t o t a l d i s p e r s i o n e q u a t i o n of t h e waves. The d i s p e r s i o n e q u a t i o n o f t h e s e guided waves can then be d e f i n e d as k 2 = f ( w ) , where k i s t h e g u i d e d wave number, and we can i n t r o d u c e an e f f e c t i v e ( m a t e r i a l p l u s waveguide) d i e l e c t r i c f u n c t i o n ceff(w) and a f u n c t i o n where

Here, a denotes t h e F o u r i e r t r a n s f o r m , O corresponds t o a d i s v i a c e m e n t and

&eff

c o r r e s ~ o n d s t o an e f f e c t i v e r e f r a c t i v e i n d e x . F o r t h e surface guided wave 4 and O a r e t h e n r e l a t e d t h r o u g h t h e one-dimensional wave

(4)

e q u a t i o n .

Now suppose t h a t a p u l s e i s p r o p a g a t i n g and t h a t i t c o n s i s t s o f a c a r r i e r frequency wo modulated by a s l o w l y v a r y i n q envelope A ( x , t ) i n t h e form

@ ( x , t ) = A(x,t)expi [kox - wot] (2.3)

where k 2 = k Z o = f (r u O ) and

and

(2.7) Hence f o r a l i n e a r medium t h e s l o w l y v a r y i n g p u l s e envelope e q u a t i o n i s t o t h e o r d e r i m p l i e d i n e q u a t i o n ( 2 . 4 ) .

T h i s e q u a t i o n n e g l e c t s t h i r d - o r d e r terms and dampinq. Damping, o f course, can be q u i t e i m p o r t a n t and w i l l be i n t r o d u c e d below. T h i r d - o r d e r terms a r e o f importance c l o s e t o k z = O and c a r e must be t a k e n t o i n c l u d e them i f t h i s i s t h e case. I n a n o n l i n e a r medium t h e d i s p e r s i o n e q u a t i o n becomes k 2 = f o ( ~ , / @ 1 2 ) where now

and a i s t h e n o n l i n e a r c o e f f i c i e n t which i s made n o n d i s p e r s i v e b y mak- i n g i t depend upon a f i x e d c a r r i e r frequency wO. Since t h i s i s t h e case c e f f ( t - t ' ) , i n e q u a t i o n ( 2 . 1 ) , can be r e p l a c e d by ~ ( t - t a ) + a ! m ! 2 6 ( t - t ' ) t o g i v e , a f t e r d e n o t i n g

a L

as t h e l i n e a r p a r t o f a ,

2 A

F o r a p u l s e s o l u t i o n ! $ i 2 = A l i and iT < -

-

i w 0 eiwrt so t h a t

(5)

J O U R N A L DE PHYSIQUE

Thus t h e f i n a l envelope e q u a t i o n becomes

where i t has been assumed t.hqt. i t i s ?*n?roximately t r u e , f o r a s l o w l y v a r y i n g envelope, t h a t

I n t h e d i m e n s i o n l e s s c o o r d i n a t e s

where v =l/k,', i s a c t u a l l y t h e v e l o c i t y o f a n o n - v a r y i n g envelope p u l s e , t h e f i n a l envelope e q u a t i o n reduces t o t h e now f a m i l i a r s o - c a l l e d non- 4 1 in e a r Schrodinger e q u a t i o n

I t i s i n t e r e s t i n g t o n o t e h e r e t h a t t h e ( ç , ~ ) c o o r d i n a t e s may be s c a l e d i n any way d e s i r e d t o f i t any p a r t i c u l a r s o l u t i o n t o an a c t u a l g u i d e d wave. T h i s s c a l i n g has t h e e f f e c t o f a l t e r i n q v t h e r e l a t i o n s h i p o f p u l s e

¶ '

h e i g h t t o w i d t h and t h e s e t t l i n g times o f any t r a n s i e n t e f f e c t s .

e i 6 x ~ o s e c h [ ( t - x k ~ ) / A ] i s a s o l u t i o n o f e q u a t i o n ( 2 . 1 2 ) where A ii a h a l f - w i d t h . On s u b s t i t u t i o n i n t o (2.12) t h i s g i v e s

where F = ( t - x k A ) / ~ . E q u a t i o n (2.16)shows t h a t t h e a m p l i t u d e o f t h e ~ u l s e has t h e f o r m

T h i s s o l u t i o n i s o n l y p o s s i b l e when k:<O and i s known as a b r i g h t s o l i t o n . Dark s o l i t o n s o f t h e form ak:tanh(F) can a l s o e x i s t when kO>O. B r i g h t s o l i t o n s c o n s i s t o f a s t a b l e i n t e n s e p u l s e o f l i g h t movinq a g a i n s t a dark background and propaqate i n r e g i o n s o f anomalous d i s p e r s i o n (kO<O). Dark s o l i t o n s c o n s i s t o f an i l l u m i n a t e d backqround s u o o o r t i n g an i n t e n s e p r o p a g a t i n g b l a c k h o l e . The l a t t e r i s u n l i k e l y t o be o f any p r a c t i c a l i n t e r e s t .

(6)

I f damping e x i s t s i n t h e medium t h e n $ ( x , t ) i s m o d i f i e d t o e x p ( i k x - i w t ) e x p ( - y x ) . Then, p r o v i d e d t h a t ki i s n o t t o o l a r g e compared t o kr, t h e e f f e c t o f

damping on t h e p u l s e envelope can b e a p p r o x i m a t e l y i n t r o d u c e d t h r o u g h t h e a d d i t i o n o f i ( y / k o ) q t o t h e non1 i n e a r S c h r o d i n g e r e q u a t i o n .

F o r any g u i d i n g system, then, t h a t i s weakly n o n l i n e a r i t i s a q e n e r a l f e a t u r e t h a t an e x a m i n a t i o n o f t h e d i s p e r s i o n curves and t h e damping r a t e s w i l l show t h e r e g i o n s o f s o l i t o n p r o p a g a t i o n . T h i s i s done i n t h i s paper f o r a model o f p l a s m o n - p o l a r i t o n s i n a semiconductor. The r e s u l t s a r e t h e n i l l u s t r a t e d w i t h t y p i c a l p u l s e development p i c t u r e s t h a t can be e x p e c t e d f o r b o t h anomalous and normal d i s p e r s i o n regimes.

III

-

SURFACE POLARITON MODE DISPERSION I N A SEMICONDUCTOR

A s u i t a b l e model d i e l e c t r i c f u n c t i o n f o r a semiconductor w i t h s u f f i c i e n t l y h i g h c a r r i e r d e n s i t y i s

S ( Q ) = E - 1

n(st + i n ) (3.7

where EL i s t h e h i g h f r e q u e n c y l a t t i c e d i e l e c t r i c c o n s t a n t . The dimension- l e s s frequency i s n = U J / U where UJ i s t h e plasma frequency d e f i n e d

P' P

w i t h o u t cL and t h e d i m e n s i o n l e s s c o l l i s i o n f r e q u e n c y i s n = v/w where P v i s a c o n s t a n t . I f t h e s u r f a c e mode wave number k i s d e f i n e d as k =

2 K

t h e n t h e s u r f a c e p o l a r i t o n d i s p e r s i o n c u r v e i s

C

The r e a l and i m a g i n a r y o a r t s o f K a r e Kr and Ki g i v e n by

I f d i f f e r e n t i a t i o n w i t h r e s p e c t t o n i s denoted, f o r example, by

KEK'

t h e n

and

K" r s

?

r =

(ak

r

+ . i ~ r +

bKi

+

bKi

-

2(2~,k, t 2 ~ ~ i ~ ) k ~ ) / (~IKF

+

KPI) ( 3 . 5 ) Now a=N/D, b=nQ3/D so t h a t

The n o n l i n e a r i t y i s i n t r o d u c e d t h r o u g h t h e r e l a t i o n s h i p

(7)

JOURNAL DE PHYSIQUE

where K;(W) i s t h e l i n e a r d i s p e r s i o n law. This means t h a t a = J ~ ~ C ? / ( E ( 0 )

+

1 ) 2

O O ( 3 . 5 )

f o r n o , t h e dimensionless c a r r i e r frequency. E, i n equation ( 3 . 5 )

a r i s e s because t h e d i e l e c t r i c function of t h e material i s E ~ ( w ) + t 2 ) ~ I 2 .

I f t h e r e f r a c t i v e index of t h e material i s n = n o + n 2 ( E I 2 then i t i s aoprox- imately t r u e t h a t c2=nonz. I t has been assumed here t h a t measurements / I O / of n, a t a c e r t a i n wavelength a r e v a l i d over a much wider wave- length range. Typically no%4, n?0J10-7

-

a t 5 Sm wavelength /S/ f o r InSb.

A p l o t of

Kr

a g a i n s t il and ri i s shown i n F i g . 1 f o r a range of frequency c l o s e t o the ( c L + 1 ) - 4 region f o r InSb. Note t h a t i n t h e small q p a r t of t h e p l o t

Kr

->

-

because t h i s corresponds t o a pole i n the (Kr,n)

curve t h a t appears a s c o l l i s i o n a l dampinq d i e s away. This pole corresponds t o t h e s u r f a c e plasmon resonance region. As r- i n c r e a s e s the s u r f a c e plasmon-polariton curve, f o r a r e a l frequency and complex wave number s o l u t i o n , exhibi t s 'bend-back'

.

As t h i s occurs, Kr swi tches from normal (K,.,O) t o anomalous ( $ - < O ) group d i s p e r s i o n . For q = O only normal group d i s p e r s i o n i s p o s s i b l e . I t i s c a l l e d qroup d i s p e r s i o n because

F i g . 1

-

Group d i s p e r s i o n K r of a s u r f a c e p o l a r i t o n on InSb. E L = 1 6 . Al1 f r e q u e n c i e s scaled with U,

P '

(8)

Kr i s t h e r a t e o f change w i t h frequency o f t h e grouo v e l o c i t y . F i g . 1 shows t h a t b r i g h t s o l i t o n s a r e c o l l i s i o n - i n d u c e d and t h a t t h e r e i s t h e n a p e n a l t y t o pay through damping i n t r o d u c e d b y Ki. Ki i s d i s o l a y e d i n F i g . 2 where i t i s i n t e r e s t i n g t h a t , a l t h o u g h Ki=O a t Q=O, i t can become q u i t e l a r g e even as q+O. I n t h i s r e g i o n of (Ki ,2,n) space t h e group v e l o c i t y i s changing v e r y r a p i d l y which can account f o r t h i s ' r e s o n a n t ' i n c r e a s e i n Ki.

A t y p i c a l development o f a damped ( 2 s e c h ( ~ ) i n p u t ) s o l i t o n i s g i v e n i n F i g . 3. Such a f i g u r e can, as p o i n t e d o u t above, be s c a l e d t o f i t any system so i t i s g i v e n h e r e i n a r b i t r a r y u n i t s m e r e l y t o show t h e p u l s e

Ill k

F i g . 2

-

Ki t h e i m a g i n a r y p a r t o f t h e wave v e c t o r f o r InSb w i t h E L = l 6.

development i n a damped system w i t h anomalous d i s p e r s i o n . I t a p p l i e s t o r e g i o n s o f F i g . 1 f o r which Kr<O. F o r such s u r f a c e p o l a r i t o n s i t s p r o p a g a t i o n frequency range i s, a p o a r e n t l y , v e r y s m a l l and q u i t e p r o b a b l y i n v o k e s severe c o l l i s i o n a l damping i n o r d e r t o e x i s t . As t h e p u l s e progresses damping causes t h e p e r i o d t o ' s t r e t c h ' /10,11,12/ and i t a c q u i r e s a shape s i m i l a r t o t h e i n p u t b u t w i t h a d i m i n i s h e d a m p l i t u d e . F i g . 4 shows t h e p u l s e development f o r normal d i s n e r s i o n and w i t h damping.

T h i s i s a more p r o b a b l e s i t u a t i o n f o r s u r f a c e p o l a r i t o n s i n which t h e p u l s e a c q u i r e s a f l a t - t o p appearance. I t i s n o t a s o l i t o n b u t , s i n c e t h e p r o p a g a t i o n i n t h e n o n l i n e a r g u i d e broadens and c h i r p s t h e pulse, due t o p o s i t i v e group v e l o c i t y d i s ~ e r s i o n and s e l f - p h a s e modulation, i t can be a means o f p u l s e compression. T h i s c a n b e done b y s e n d i n g t h i s now l i n e a r l y frequency swept p u l s e t h r o u g h a l i n e a r l y d i s p e r s i v e d e l a y l i n e /14/.

(9)

JOURNAL DE PHYSIQUE

2 N 3 ORDER S O L I T O N W l T H D A M P l Y G

F i g . 3 - Anornalous d i s p e r s i o n . Development of 2sech(T) i n p u t pulse in a r b i t r a r y u n i t s showing t h e r o l e of damping.

NORMAL D I S P E R S I O N U l T H D A M P l N G

F i g . 4 - Nornial d i s p e r s i o n . Developnent of 2 s e c h ( T ) i n p u t pulse i n a r b i t r a r y uni t s .

(10)

I V

-

CONCLUSION

I t i s concluded t h a t b r i q h t s o l i t o n s can e x i s t o n l y i n c o l l i s i o n a l s o l i d s t a t e plasmas and t h e n o n l y i n a narrow f r e q u e n c y range about CO P 1-1

.

Dark s o l i t o n s may e x i s t o v e r t h e r e s t o f t h e frequency range b u t t h e s e a r e o f t h e o r e t i c a l i n t e r e s t o n l y . The m a j o r i t y o f a s u r f a c e plasmon- p o l a r i t o n d i s p e r s i o n c u r v e i s a r e g i o n o f normal group d i s p e r s i o n w i t h K,>O. I n t h i s r e g i o n an o p t i c a l p u l s e w i l l a c q u i r e a f l a t - t o p o e d appearance and be frequency broadened and p o s i t i v e l y c h i r p e d . T h i s i n i t s e l f c o u l d be o f g r e a t o r a c t i c a l s i g n i f i c a n c e suggesting, as i t does, a scheme f o r p u l s e compression.

REFERENCES

MARADUDIN A.A., Zei t.Phys.6 4 1 (1981) 341.

AGRANOVICH V.M., BABICHENKO V . S . and CHERNYAK V.Ya., Sov.Phys.JETP L e t t .

31

(1981) 512.

AGRANOVICH V.M., RUPASOV V . I . and CHERNYAK V.Ya., Sov.Phys.JETP L e t t .

33

(1981) 33.

KAPLAN A.E., IEEE J.Quant.Elec.

QE-17

(1981) 336.

BOARDMAN A.D., EGAN P. and SHIVAROVA A., App.Sci.Res. (1983) ( i n t h e p r e s s ) .

AGRANOVICH V.M. and CHERNYAK V.Ya., Sol .St.Comm. (1982) 1309.

AKHMEDIEV N.N., Sov.Phys.JETP (1982) 299.

STEGEMAN G . I . , IEEE J.Quant.Elec.

-

QE-18 (1982) 1610.

PONATH H.E. and SCHUBERT M., O p t i c a Acta.

-

8 8 (1983) 650.

CHEN Y.J. and CARTER G.M., App.Phys.Lett.

3

(1982) 307.

HASEGAWA A. and KODAMA Y., O p t i c s L e t t . 7 (1982) 285.

BOARDMAN A.D. and COOPER G.S., (SPIE Soc.Phot.0pt.Inst.Eng.

(1983) ( i n t h e p r e s s ) .

BLOW K.J. and DORAN N.J., 0pt.Com.

-

42 (1982) 403.

GRISCHROWSKY D. and BALANT A.C., App.Phys.Lett.

2

(1982) 1 .

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to