• Aucun résultat trouvé

LINEAR AND NONLINEAR SPIN WAVE EXCITATIONS IN SUPERLATTICES AND AT SURFACES

N/A
N/A
Protected

Academic year: 2021

Partager "LINEAR AND NONLINEAR SPIN WAVE EXCITATIONS IN SUPERLATTICES AND AT SURFACES"

Copied!
10
0
0

Texte intégral

(1)

HAL Id: jpa-00224164

https://hal.archives-ouvertes.fr/jpa-00224164

Submitted on 1 Jan 1984

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

LINEAR AND NONLINEAR SPIN WAVE EXCITATIONS IN SUPERLATTICES AND AT

SURFACES

R. Camley

To cite this version:

R. Camley. LINEAR AND NONLINEAR SPIN WAVE EXCITATIONS IN SUPERLAT- TICES AND AT SURFACES. Journal de Physique Colloques, 1984, 45 (C5), pp.C5-315-C5-323.

�10.1051/jphyscol:1984546�. �jpa-00224164�

(2)

JOURNAL DE P H Y S i v U t

Colloque C5, supplément au n04, Tome 45, a v r i l 1984 page C5-315

LINEAR AND NONLINEAR S P I N WAVE E X C I T A T I O N S I N SUPERLATTICES AND AT SURFACES

R . E . C a m l e y

Physics Department, University of CoZorado, CoZorado Springs, CO 80907, U.S.A.

Résumé - Nous d i s c u t o n s l e s ondes de s p i n s dans un super-réseau composé a l t e r n a t i - vement de couches magnétiques e t nonmagnétiques. Une couche magnétique i s o l é e a des ondes de s p i n s de s u r f a c e à ses l i m i t e s . Dans une s t r u c t u r e composée de couches, ces ondes i n t e r a g i s s e n t e t forment une bande d ' e x c i t a t i o n s volumique du super-réseau.

Sous c e r t a i n e s c o n d i t i o n s il e x i s t e a u s s i des modes de s u r f a c e du super-réseau s e m i - i n f i n i . Ces e x c i t a t i o n s peuvent ê t r e é t u d i é e s p a r d i f f u s i o n de l a l u m i è r e e t nous présentons l e s r é s u l t a t s de l a t h é o r i e e t l e s comparons avec ceux de

l ' e x p é r i e n c e . Nous d i s c u t o n s a u s s i comment l a n o n l i n é a r i t é de l ' é q u a t i o n de B l o c h p o u r l e s s p i n s c o n d u i t au couplage des ondes des s p i n s . Nous n o t o n s que l ' i n t e r a c - t i o n de deux ondes de s u r f a c e p e u t p r o d u i r e une t r o i s i è m e onde d e s u r f a c e a i n s i que l ' i n t e r a c t i o n de deux ondes de volume p e u t p r o d u i r e une onde de s u r f a c e . A b s t r a c t - We d i s c u s s t h e s p i n waves o f a s u p e r l a t t i c e composed o f a l t e r n a t e l a y e r s o f m a g n e t i c and nonmagnetic m a t e r i a l s . Each magnetic f i l m i n i s o l a t i o n has s u r f a c e

s p i n waves on i t s boundaries. I n t h e l a y e r e d s t r u c t u r e , t h e s e i n t e r a c t t o f o r m a band o f b u l k e x c i t a t i o n s o f t h e s u p e r l a t t i c e . Under c e r t a i n c o n d i t i o n s a s u r f a c e mode o f t h e s e m i - i n f i n i t e s u p e r l a t t i c e a l s o e x i s t s . These e x c i t a t i o n s can be probed by l i g h t s c a t t e r i n g experiments, and we g i v e t h e o r e t i c a l r e s u l t s and compare them w i t h experiment. We a l s o d i s c u s s how t h e n o n l i n e a r i t y o f t h e B l o c h s p i n e q u a t i o n l e a d s t o a m i x i n g o f s p i n waves. We n o t e t h e p o s s i b i l i t y o f two s u r f a c e waves i n t e r - a c t i n g t o produce a t h i r d s u r f a c e wave o r even o f two bu1 k waves i n t e r a c t i n g t o pro:

duce a s u r f a c e s p i n wave.

I n t h i s paper we f i r s t e x p l o r e t h e behaviour o f l o n g wavelength, m a g n e t o s t a t i c s p i n waves i n magnetic s u p e r l a t t i c e s . The p r o p e r t i e s o f t h e s e modes a r e governed, n o t by t h e s h o r t - r a n g e exchange i n t e r a c t i o n , b u t by macroscopic d i p o l e f i e l d s s e t up by t h e m o t i o n of t h e s p i n s p r e c e s s i n g around t h e magnetic f i e l d . These d i p o l e f i e l d s a r e c a l c u l a t e d t h r o u g h t h e use o f t h e m a g n e t o s t a t i c f o r m o f M a x w e l l ' s e q u a t i o n s . The e q u a t i o n s g o v e r n i n g t h e s p i n system, B l o c h ' s e q u a t i o n s , a r e l i n e a r i z e d whlch i s a p p r o p r i a t e f o r small ' a m p l i t u d e o s c i l l a t i o n s . I n t h e second p o r t i o n o f t h l s paper we c o n s i d e r some e f f e c t s which come f r o m t h e n o n l i n e a r terms i n t h e B l o c h e q u a t i o n s . A r e c e n t development i n r n a t e r i a l s c i e n c e i s t h e a p p l i c a t i o n o f e v a p o r a t i o n t e c h n i q u e s t o p r o d u c i n g modulated o r l a y e r e d s t r u c t u r e s . One t y p e o f s t r u c t u r e has a l t e r n a t i n g l a y e r s o f f e r r o m a g n e t i c and nonmagnetic m a t e r i a l s . The f e r r o m a g n e t i c l a y e r has a t h i c k n e s s dl and t h e nonmagnetic l a y e r has a t h i c k n e s s d2. The m a g n e t i z a t i o n i s p a r a l l e l t o t h e l a y e r s as i s t h e a p p l i e d f i e l d . T h i s geometry i s i l l u s t r a t e d i n F i g u r e 1. Because o f t h e p e r i o d i c i t y o f t h e s t r u c t u r e , i t i s sometimes c a l l e d a s u p e r l a t t i c e .

The l a y e r e d magnetic s t r u c t u r e has been i n v e s t i g a t e d now by s e v e r a l techniques;

s t a t i c m a g n e t i z a t i o n /1/, f e r r o m a g n e t i c resonance /2/, and r e c e n t l y by l i g h t s c a t - t e r i n g / 3 , 4 / . Some i n t e r e s t i n g and novel r e s u l t s have been found. I t i s t h e i n t e n - t i o n of t h i s paper t o b r i e f l y r e v i e w t h e t y p e s o f c o l l e c t i v e e x c i t a t i o n s w h i c h can o c c u r i n magnetic s u p e r l a t t i c e s and show how t h e unusual f e a t u r e s o f thesemodes may be seen i n a l i g h t s c a t t e r i n g experiment.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1984546

(3)

JOURNAL DE PHYSIQUE

NONMAGNETIC MEDIUM

I

d2

NONMAGNETIC MEDIUM I d 2 t Y

NONMAGNEFIC MEDIUM

1

d2

VACUUM

F i g . 1 - Sample geometry c o n s i d e r e d i n t h e p r e s e n t paper. One has a s e m i - i n f i n i t e s t a c k o f f e r r o m a g n e t i c f i l m s each o f t h i c k n e s s dl, and t h e y a r e separated by a non- magnetic f i l m o f t h i c k n e s s d2.

We s t a r t b y s i m p l y d e s c r i b i n g t h e n a t u r e o f t h e c o l l e c t i v e modes o f t h e magnetic s u p e r l a t t i c e . F i r s t c o n s i d e r a s i n g l e i s o l a t e d magnetic f i l m . T h i s f i l m can s u p p o r t b o t h b u l k and s u r f a c e spinwaves. The b u l k modes have a s t a n d i n g wave c h a r a c t e r p e r - p e n d i c u l a r t o t h e f i l m s u r f a c e s w i t h i n t h e magnetic m a t e r i a l and have d i p o l e f i e l d s which e x t e n d o u t s i d e t h e m a t e r i a l , d e c a y i n g e x p o n e n t i a l l y w i t h d i s t a n c e f r o m t h e

s u r f a c e s o f t h e f i l m . The s u r f a c e spinwaves i n t h e f i l m a l s o have d i p o l e f i e l d s ex- t e n d i n g beyond t h e magnetic m a t e r i a l . When we b r i n g s e v e r a l f i l m s t o g e t h e r , t h e y i n t e r a c t t h r o u g h t h e s e d i p o l e f i e l d s and produce a c o l l e c t i v e mode.

The c o l l e c t i v e modes a r e t h u s made up o f b u l k o r s u r f a c e modes i n each l a y e r , modu- l a t e d by an envelope f u n c t i o n which d e s c r i b e s t h e r e l a t i v e a m p l i t u d e s between t h e d i f f e r e n t l a y e r s . We may have b u l k s u p e r l a t t i c e modes i n an i n f i n i t e s u p e r l a t t i c e where t h e envelope f u n c t i o n has a b u l k w a v e l i k e s t r u c t u r e . I n a s e m i - i n f i n i t e super- l a t t i c e , we may a l s o have s u r f a c e modes f o r which t h e envelope f u n c t i o n decays ex- p o n e n t i a l l y as one l e a v e s t h e s u r f a c e and p e n e t r a t e s i n t o t h e s t r u c t u r e . These two t y p e s o f modes a r e i l l u s t r a t e d i n F i g u r e 2.

We now o u t l i n e t h e b a s i c method used i n s o l v i n g f o r t h e d i s p e r s i o n r e l a t i o n f o r spinwaves on a s u p e r l a t t i c e and p r e s e n t some o f t h e r e s u l t s . The d e t a i l s o f t h e c a l c u l a t i o n a r e p r e s e n t e d elsewhere / 5 / . The method used i s s i m i l a r t o t h a t employed t o s o l v e t h e Kronig-Penney mode1 f o r e l e c t r o n p r o p a g a t i o n i n a p e r i o d i c p o t e n t i a l . We c o n s i d e r f i r s t t h e d e s c r i p t i o n o f spinwave e x c i t a t i o n s i n a i n f i n i t e l y extended s u p e r l a t t i c e , t h e n we t u r n t o t h e s e m i - i n f i n i t e a r r a y i l l u s t s a t e d i n F i g u r e 1. I n t h e m a g n e t o s t a t i c 1 i m i t we c o n s i d e r t h e demagnetizing f i e l d hd(X,t) generated b y t h e s p i n m o t i o n , which has v a n i s h i n g c u r l

and so one may w r i t e

(4)

BULK WAVE

SURFACE WAVE

nonmagnetic film

i /

T '

-\i i /

I 1

F i g . 2 - I l l u s t r a t i o n o f b u l k and s u r f a c e waves on a s u p e r l a t t i c e . I n each f i l m t h e r e i s a s u r f a c e wave. F o r t h e b u l k modes t h e r e i s a s i n u s o i d a l envelope f u n c t i o n ; f o r t h e s u r f a c e wave t h e r e i s an envelope f u n c t i o n which decays e x p o n e n t i a l l y as one moves away f r o m t h e upper s u r f a c e .

* +

where @,(;,t) i s t h e magnetic p o t e n t i a l

.

I f M ( x , t ) i s t h e t i 2 e and s p a t j a l l y v a r y i n g m a g e n t i z a t i o n a s s o c i a t e d w i t h t h e s p i n , we r e q u i r e t h e f i e l d b = fid + 4nM w h i c h has v a n i s h i n g d i v e r g e n c e :

+ V - b = O

* 3 ( 3

I n t h e magnetic medium b and h a r e r e l a t e d by t h e magnetic s u s c e p t i b i l i t y t e n s o r which, i n t h e l o n g wavelength v i m i t , depends o n l y on t h e f r e q u e n c y Q o f t h e s p i n m o t i o n . Thus

* W . - *

b = hd + 4nx(Q) hd ( 4

where t h e n o n v a n i s h i n g elements o f t h e t e n s o r x i n t h e f e r r o m a g n e t a r e

and

(5)

JOURNAL DE PHYSIQUE

The s u s c e p t i b i l i t y t e n s o r can be o b t a i n e d f r o m t h e l i n e a r i z e d B l o c h e q u a t i o n s .

Throughout t h e paper we measure f r e q u e n c ÿ i n u n i t s o f magnetic f i e l d and r i s a pheno- m e n o l o g i c a l s p i n damping t i m e . I t i s easy t o show t h a t i n t h e magnetic f i l m s i n t h e c o o r d i n a t e system o f F i g u r e 1, gm s a t i s f i e s

an a n i s o t r o p i c f o r m of L a p l a c e ' s equations,sometimes r e f e r r e d t o as t h e Walker equa- t i o n . I n t h e nonmagnetic f i l m and i n t h e vacuum, we must have

We must ç o l v e t h i s s e t o f e q u 9 t i o n s f o r 0, s u b j e c t t o t h e boundary c o n d i t i o n s t h a t t h e t a n g e n t i a l components o f hd and t h e normal components o f 6 a r e c o n t i n u o u s a t each i n t e r f a c e .

The s o l u t i o n f o r b u l k waves on a s u p e r l a t t i c e has t h e form o f a Rloch wave p e r p e n d i - c u l a r t o t h e l a y e r i n g and a p l a n e wave p a r a l l e l t o t h e l a y e r i n g . Thus we e x p e c t a s o l u t i o n o f t h e f o r m

Here Q, governs t h e s p a t i a l v a r i a t i o n o f t h e envelope f u n c t i o n , n indexes t h e l a y e r s ,

0 ( y - n L ) i s t h e s o l u t i o n o f L a p l a c e ' s E q u a t i o n o r t h e Walker E q u a t i o n f o r t h e appro- p r i a t e l a y e r and i s a f u n c t i o n o f t h e d i s t a n c e w i t h i n each f i l m , and f i n a l l y L =dl+d2 i s t h e p e r i o d o f t h e s t r u c t u r e .

I f we w i s h t o c o n s i d e r s u r f a c e waves on a s e m i - i n f i n i t e s u p e r l a t t i c e , Eq. ( 1 0 ) no l o n g e r h o l d s s i n c e t h e i n t r o d u c t i o n o f t h e s u r f a c e e l i m i n a t e s t h e p e r f e c t p e r i o d i c i t y . We t h e n l o o k f o r s o l u t i o n s w i t h a surface wave c h a r a c t e r . Thus we t a k e

Now cx governs t h e e x p o n e n t i a l decay o f t h e envelope f u n c t i o n as one moves away f r o m t h e s u r f a c e .

By u s i n g t h e e q u a t i o n s f o r t h e b u l k and s u r f a c e wave s o l u t i o n s g i v e n i n Eq. ( 1 0 ) and Eq. ( 1 1 ) i n L a p l a c e ' s e q u a t i o n o r i n t h e Walker e q u a t i o n and a p p l y i n g t h e a p p r o p r i a t e boundary c o n d i t i o n s as mentioned e a r l i e r , we o b t a i n t h e d i s p e r s i o n r e l a t i o n f o r t h e frequency R as a f u n c t i o n o f QI , Q,, , dl and d2. T h i s i s done f o r b o t h t h e b u l k and s u r f a c e s p i n waves. The complete e x p r e s s i o n s f o r t h e r e s u l t s a r e l e n g t h y , and we do n o t reproduce them here.

We w i l l i l l u s t r a t e t h e r e s u l t s w i t h some n u m e r i c a l examples. As a mode1 system we c o n s i d e r a l t e r n a t i n g l a y e r s o f f e r r o m a g n e t i c N i (M, = 480 G ) on nonmagnetic Mo. The a p p l i e d f i e l d H i s 1000 G. T h i s system has been s t u d i e d r e c e n t l y t h r o u g h B r i l l o u i n s c a t t e r i n g . We P i m i t o u r a t t e n t i o n t o p r o p a g a t i o n p e r p e n d i c u l a r t o t h e appl i e d f i e l d . I n F i g u r e 3 we p r e s e n t r e s u l t s f o r t h e frequency o f t h e v a r i o u s modes v e r s u s t h e r a t i o d l / d 2 . R e s u l t s a r e p l o t t e d f o r t h r e e d i f f e r e n t v a l u e s o f Q,, d l . The g e n e r a l

(6)

f e a t u r e s o f a l 1 t h r e e s e t s o f curves a r e as f o l l o w s : 1 ) There i s a band o f b u l k s t a t e s ( b u l k s t a t e s f o r t h e s u p e r l a t t i c e - i n each f e r r o m a g n e t i c f i l m t h e r e i s a s u r f a c e w a v e - l i k e mode) w i t h a maximum range i n f r e q u e n c y f r o m K B t o .5(Ho + B )

where B = Ho + 4nMs, 2 ) I n general as Q,L i n c r e a s e s , t h e f r e q u e n c y o f t h e mode de- creases. For t h e v a l u e s of Q I , d2 used here, t h e d e n s i t y o f s t a t e s i s l a r g e s t near Q,L = T. As Q I , dl i s i n c r e a s e d , t h e d e n s i t y o f s t a t e s becomes more u n i f o r m o v e r t h e a l l o w e d frequency range. 3 ) There i s a s u r f a c e mode f o r which t h e f r e q u e n c y i s i n d e - pendent of t h e r a t i o d l / d 2 and equal t o t h a t o f t h e Damon-Eshbach f r e q u e n c y o f t h e s e m i - i n f i n i t e ferromagnet. T h i s mode e x i s t s however

2

i f dl > d2.

F i g . 3 - Frequency o f v a r i o u s modes vs t h e r a t i o d /d2. B u l k modes o f t h e s t a c k a r e shown w i t h a shaded r e g i o n t h e s u r f a c e modes a r e skown by a s o l i d l i n e .

One method t o probe t h e i n t e r e s t i n g f e a t u r e s o f t h e c o l l e c t i v e e x c i t a t i o n s i s t h r o u g h a l i g h t s c a t t e r i n g experiment. The geometry f o r such an experiment i s i l l u s t r a t e d i n F i g u r e 4. The i n c i d e n t l i g h t has f r e q u e n c y wo and wavevector ko. The i n c i d e n t wave may be s c a t t e r e d by t h e i n t e r a c t i o n w i t h a spinwave o f f r e q u e n c y Q and wavevector Q,,

.

The s c a t t e r e d l i g h t t h e n has a f r e q u e n c y us and wavevector k s where t h e f r e - quency s h i f t i s g i v e n by

Wo - W s = R

( 1 2 )

F i g . 4 - Geometry o f t h e l i g h t - s c a t t e - r i n g e x p e r i m e n t . The i n c i d e n t l i g h t , w i t h wavevector ko and frequency(;io, s t r i k e s t h e s u r f a c e a t an a n g l e 8, w i t h r e s p e c t t o t h e s u r f a c e normal. The s c a t - t e r e d l i g h t has wavevector k s and f r e - quency 0 S.

(7)

C5-320 JOURNAL DE PHYSIQUE

Thus i n a l i g h t s c a t t e r i n g experiment i f one p l o t s i n t e n s i t y o f t h e s c a t t e r e d l i g h t v e r s u s f r e q u e n c y s h i f t , and a peak a t a p a r t i c u l a r f r e q u e n c y s h i f t i s seen, t h i s corresponds t o s c a t t e r i n g f r o m a p a r t i c u l a r spinwave mode o f f r e q u e n c y R.

I n F i g u r e 5 we p r e s e n t a t h e o r e t i c a l c a l c u l a t i o n f o r t h e l i g h t s c a t t e r i n g spectrum f r o m a magnetic s u p e r l a t t i c e s t r u c t u r e . We i n v e s t i g a t e i n t h e t o p f i g u r e d2 = 3 d l so no s u r f a c e wave i s expected. We see a broad peak a t f r e q u e n c y j u s t above Rb. T h i s peak corresponds t o t h e s c a t t e r i n g f r o m t h e b u l k spinwave band o f t h e s u p e r l a t t i c e as can be seen by comparison w i t h F i g u r e 3. I n t h e l o w e r f i g u r e we g i v e t h e l i g h t s c a t t e r i n g spectrum i n t h e case d l = 3d2. I n t h i s case we see a new peak a t h i g h e r f r e q u e n c i e s i n a d d i t i o n t o t h e b r o a d band seen above. T h i s new peak i s due t o t h e s c a t t e r i n g f r o m t h e s u r f a c e spinwaves o f t h e s u p e r l a t t i c e . We n o t e t h a t t h e s c a t t e r - i n g f r o m t h e s u r f a c e spinwave peak i s s t r o n g l y n o n r e c i p r o c a l . The s u r f a c e spinwave peak appears o n l y on one s i d e o f t h e spectrum. T h i s f e a t u r e i s c o n s i s t e n t w i t h t h e r e s u l t s f o r t h e s c a t t e r i n g o f l i g h t f r o m s u r f a c e spinwaves on a s e m i - i n f i n i t e f e r r o - magnet and i s due t o t h e n o n r e c i p r o c a l n a t u r e o f t h e s u r f a c e spinwave mode.

We m e n t i o n t h a t r e c e n t l y t h e s e t h e o r e t i c a l c a l c u l a t i o n s have been v e r i f i e d by e x p e r i - ments /3,4/. The experiments show c l e a r l y t h a t t h e s u r f a c e spinwave mode e x i s t s f o r d l > d2 and does n o t e x i s t f o r dl < d2. The d e t a i l s o f t h e l i g h t s c a t t e r i n g c a l c u l a - t i o n a r e g i v e n i n Ref. 5. Other t h e o r e t i c a l c a l c u l a t i o n s a r e a l s o i n agreement / 3 / . As n o t e d i n t h e i n t r o d u c t i o n , t h e B l o c h e q u a t i o n s which govern t h e s p i n system a r e n o n l i n e a r . I n many problems, as i n t h e d i s c u s s i o n above, we have l i n e a r i z e d t h e s e e q u a t i o n s t o l o o k o n l y a t small a m p l i t u d e o s c i l l a t i o n s . However, i n t e r e s t i n g e f f e c t s a l s o o c c u r i f t h e n o n l i n e a r terms a r e r e t a i n e d . I n t h i s s e c t i o n we r e v i e w some r e - c e n t work on t h e n o n l i n e a r m i x i n g o f b u l k and s u r f a c e m a g n e t o s t a t i c spinwaves i n i n f i n i t e and s e m i - i n f i n i t e ferromagnets.

We d e a l h e r e w i t h t h e m i x i n g o f two waves t o produce a r e s o n a n t l y enhanced t h i r d wave. We b e g i n o b t a i n i n g t h e c o n d i t i o n s under which a m a g n e t o s t a t i c wave d e s c r i b e d by a wavevector k and f r e q u e n c y w(k) can i n t e r a c t n o n l i n e a r l y w i t h a second magneto- s t a t i c wave o f wavevector k ' and f r e q u e n c y w ( k ' ) t o produce a wave w i t h wavevector k+k' and f r e q u e n c y w ( k ) + w ( k l ) , whose a m p l i t u d e i s r e s o n a n t l y enhanced. I n general

F i g . 5 - L i g h t - s c a t t e r i n g spectrum f r o m a s t r u c t u r e o f a l t e r n a t i n g l a y e r s o f N i and Mo. Here dl f d . We see a peak a t Rs i n t h e case dl > d2 due t o s c a t t e r i n g from s u r f a c e waves o f f h e l a y e r e d s t r u c t u r e . F o r dl < d 2 t h e r e i s no peak a t as.

t h i s r e q u i r e s t h a t t h e f r e q u e n c y and wavevector correspond t o a p o i n t on t h e d i s p e r - s i o n c u r v e o f t h e l i n e a r medium. Thus t h e resonance c o n d i t i o n i s

(8)

Because o f t h e unusual p r o p e r t y o f t h e m a g n e t o s t a t i c spinwaves c o n s i d e r e d h e r e -

t h e f r e q u e n c y depends o n l y on t h e d i r e c t i o n o f p r a p a g a t i o n - t h i s c o n d i t i o n may be s a t i s f i e d i n an unusual way. I f t h e d i r e c t i o n s o f k and k ' a r e f i x e d , v a r y i n g t h e magnitude o f k r e l a t i v e t o t h a t o f k ' v a r i e s t h e d i r e c t i o n o f t h e o u t p u t wave. Then by v a r y i n g t h e d i r e c t i o n o f t h e o u t p u t wave, one v a r i e s t h e f r e q u e n c y u n t i l t h e r e - sonance c o n d i t i o n i s s a t i s f i e d .

An a l t e r n a t i v e method t o f i n d a geometry f o r resonance i s t o f i x t h e d i r e c t i o n o f one o f t h e i n p u t waves and o f t h e generated wave, and t o f i n d t h e d i r e c t i o n o f t h e second i n p u t wave f o r which t h e resonance c o n d i t i o n h o l d s . I n t h i s case, t h e d i r e c - t i o n o f t h e generated wave may be f i x e d because t h e magnitudes o f t h e p r o p a g a t i o n wavevectors may be a r b i t r a r l y changed u n t i l t h e v e c t o r sum l i e s i n t h e p r o p e r d i r e c - t i o n . We w i l l s t u d y n o n l i n e a r m i x i n g u s i n g t h i s geometry.

The geometry i s i l l u s t r a t e d i n F i g u r e 6. An e x t e r n a l , c o n s t a n t magnetic f i e l d i s a p p l i e d a l o n g t h e z a x i s , and t h e s a t u r a t i o n m a g n e t i z a t i o n i s a l s o a l o n g t h i s a x i s . F o r b u l k waves we c o n s i d e r a f e r r o m a g n e t i c medium t h a t occupies a l 1 o f space. For s u r f a c e waves, we c o n s i d e r a s e m i - i n f i n i t e geometry where t h e f e r r o m a g n e t o c c u p i e s t h e r e g i o n y > 0.

We f i r s t c o n s i d e r two b u l k waves p r o p a g a t i n g i n t h e xz p l a n e as shown i n F i g u r e 6.

The g e n e r a l e q u a t i o n f o r t h e f r e q u e n c y of b u l k spinwaves as a f u n c t i o n o f t h e a n g l e o f p r o p a g a t i o n f3 w i t h r e s p e c t t o t h e x a x i s i s

F O

I p r o p a g a t i o n a l o n g t h e x a x i s t h e f r e q u e n c y i s t h u s ( ~ ~ 8 ) ~ ' ~ where B = Ho + 4nMs.

For convenience, we s e t t h e geometry o f t h e two i n c i d e n t waves so t h a t t h e o u t p u t wave i s always d i r e c t e d a l o n g x. Thus we l e t kz = -k; ( b u t n o t k, = k i ) . The c o n d i - t i o n r e l a t i n g 0 and 8 ' may then be found from Eqs. ( 1 3 ) and ( 1 4 ) .

T h i s c o n d i t i o n may be e a s i l y achieved f o r t y p i c a l v a l u e s o f Ho and MS as we w i l l see l a t e r .

Ho,MS, z

F i g . 6 ; The geometry c o n s i d e r e d i n t h i s paper. The two i n c i d e n t waves w i t h wave- v e c t o r k and 1' propagate a t angles 8 and 0 ' w i t h r e s p e c t t o t h e x a x i s . The gen- e r a t e d wave w i t h wavevector &+Io i s always d i r e c t e d a l o n g t h e x a x i s .

(9)

C5-322 JOURNAL DE PHYSIQUE

The c o n d i t i o n f o r resonance i n t h e m i x i n g o f s u r f a c e waves may be d e r i v e d s i i n i l a r l y . I n t h i s case, t h e f r e q u e n c y o f t h e s u r f a c e waves as a f u n c t i o n o f 0 i s g i v e n by

The s u r f a c e modes a r e r e s t r i c t e d t o propagate o n l y f o r a n g l e s l0l<8 where cos0 = ( H / B ) I / ~ . W i t h t h i s r e s t r i c t i o n , t h e resonance c o n d i t i o n r e l a t i n g t f i e a n g l e s 0 2nd 0 ' o f t h e two s u r f a c e waves i s g i v e n b y

Again, t h i s c o n d i t i o n may be achieved f o r t y p i c a l v a l u e s o f Ho and MS.

We a l s o n o t e t h e p o s s i b i l i t y o f u s i n g two b u l k waves t o g e n e r a t e a r e s o n a n t l y en- hanced s u r f a c e wave. I n t h i s case t h e resonance c o n d i t i o n i s

w b ( k ) + w b ( k l ) = ws(k + k ' ) (18)

I n o r d e r t o o b t a i n f e e l i n g f o r t h e e f f i c i e n c y o f t h e g e n e r a t i o n o f t h e new wave, we c a l c u l a t e t h e t i m e average o f t h e square o f one o f t h e components o f m a g n e t i z a t i o n f o r b o t h t h e generated wave and t h e sum o f t h e i n p u t waves. The d e t a i l s o f t h e c a l - c u l a t i o n a r e p r e s e n t e d elsewhere /6/ ; here we g i v e o n l y t h e r e s u l t s . I f we t a k e t h e component o f r n a g n e t i z a t i o n a l o n g y, t h e n t h e t i m e average o f M$ f o r t h e gene a t e d wave we w r i t e as M$ t h e t i m e average o f M$ f o r t h e i n p u t waves we w r i t e as Ml.

E

Exami- n a t i o n o f t h e r a t i o o f t h e s e two v a l u e s a l l o w s one t o see t h e r e s o n a n t behav-iour c l e a r l y.

We c o n s i d e r t h e geometry shown i n F i g u r e 6 f o r b o t h b u l k and s u r f a c e waves. F o r t h e ferromagnet we t a k e y t t r i u m i r o n g a r n e t w i t h Ms = 140 G and a p p l y a f i e l d Ho = 50 G.

We f i x 8 = 500 and p l o t t h e r a t i o M2/b12 as a f u n c t i o n o f 8' i n F i g u r e 7. I n o r d e r t o t o c a l c u l a t e t h e s e c u r v e s we have NU>

-

301

aides

a phenomenological l i n e w i d t h o f 1 G. We see

2 2

F i g . 7 - M /M. vs. 8'. 8 i s f i x e d a t 50'. Note t h a t t h e resonance f o r t h e s u r f a c e 'waves occu$s A t a d i f f e r e n t f r e q u e n c y f r o m t h e r e j o n a n c e o f .the b u l k wave. I n t h e u n i t s used A i s t h e a m p l i t u d e of h x ( x , t ) = -a$(x,t)/axx f o r one o f t h e i n c i d e n t waves.

2

N

>

2 0 -

4500

N-'

3000

\

N O 1500 E

O

\ .

BULK WAVES

66. 67. 68') 63- 70. 71- 72.

8'

P -

SURFACE WAVES 1

- -

-

-

(10)

t h a t f o r 8 ' = 67.6U t h e r e i s a c l e a r resonance f o r t h e g e n e r a t i o n o f b u l k waves. For surface waves t h e r e i s a resonance a t 0 ' = 71.4O. For s u r f a c e wave b o t h 8 and 0 ' a r e w i t h i n t h e c r i t i c a l a n g l e which i s 8 0 . 4 ~ . I t i s i n t e r e s t i n g t o n o t e t h a t t h e r e s o - nance f o r t h e b u l k waves i s c l e a r l y b r o a d e r t h a n f o r t h e s u r f a c e waves. The p o s i t i o n s f o r t h e resonances f o r t h e b u l k and surTace waves agree w i t h Eq. ( 1 5 ) and Eq. ( 1 7 ) .

I n summary, we have seen t h a t t h e n o n l i n e a r terms i n t h e e q u a t i o n s o f m o t i o n can l e a d t o t h e m i x i n g o f b o t h b u l k and s u r f a c e spinwaves. The generated waves f r o m t h i s mix- i n g can be r e s o n a n t l y enhanced i f some s i m p l e c o n d i t i o n s on t h e d i r e c t i o n s o f t h e two i n c i d e n t waves a r e met.

1. Zheng, J.Q., K e t t e r s o n , J.B., F a l c o C.M., and S c h u l l e r I.K, J.App1 .Phys. 53 3150

(1982) -

2. ? h a l e r , B.J., K e t t e r s o n J.B., and H i l l i a r d J.E., Phys.Rev.Lett.

o,

336 (1978) 3. Grünberg, P. and Mika, K., Phys. Rev. E, 2955 (1983)

4. G r i m s d i t c h , M., Khan, M., Kueny A., and S c h u l l e r I . K . , ( u n p u b l i s h e d ) 5. Camley, R.E., Rahman T.S., and M i l l s , Phys. Rev. B27, 261 (1983) 6. Camley R.E. and Maradudin A.A., Phys. Rev. L e t t . 49, - 168 (1982)

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to