• Aucun résultat trouvé

DYNAMICS OF PRESSURIZED AND SUPERCOOLED WATER AND AQUEOUS SOLUTIONS STUDIED BY NMR

N/A
N/A
Protected

Academic year: 2021

Partager "DYNAMICS OF PRESSURIZED AND SUPERCOOLED WATER AND AQUEOUS SOLUTIONS STUDIED BY NMR"

Copied!
9
0
0

Texte intégral

(1)

HAL Id: jpa-00224265

https://hal.archives-ouvertes.fr/jpa-00224265

Submitted on 1 Jan 1984

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

DYNAMICS OF PRESSURIZED AND SUPERCOOLED WATER AND AQUEOUS

SOLUTIONS STUDIED BY NMR

H.-D. Lüdemann, E. Lang

To cite this version:

H.-D. Lüdemann, E. Lang. DYNAMICS OF PRESSURIZED AND SUPERCOOLED WATER AND

AQUEOUS SOLUTIONS STUDIED BY NMR. Journal de Physique Colloques, 1984, 45 (C7), pp.C7-

41-C7-48. �10.1051/jphyscol:1984704�. �jpa-00224265�

(2)

J O U R N A L DE PHYSIQUE

Colloque C7, supplément au n09, Tome 45, septembre 1984 page C7-41

DYNAMICS OF PRESSURIZED AND SUPERCOOLED WATER AND AQUEOUS SOLUTIONS STUDIED BY NMR

H.-D. ~ ü d e m a n n and E. W. Lang

I n s t i t u t für Biophysik und PhysikaZische Biochernie, Universitat Regensburg, Postfach 397, 0-8400 Regensburg, F.R. G.

1 2

Résumé

-

Les temps de r e l a x a t i o n ( T l ) pour lH, 1H e t 170 de 1 'eau l é g è r e e t -au l o u r d e o n t é t é é t u d i é s dans l a r é g i o n s u r f o n i u e j u s q u ' à 185 K. Les mesures couvrent une gamme de p r e s s i o n e n t r e 0 , l e t 300 MPa. Près de l a l i m i t e de s u r f u s i o n vers 195 K, l e s Tl présentent un minimum e t deviennent dépendants de l a fréquence.

On montre que l a dynamique des molécules d'eau peut ê t r e d é c r i t e p a r l e modèle de d i f f u s i o n r o t a t i o n n e l l e i s o t r o p e . Dans l a r é g i o n surfondue l e temps de c o r r é l a t i o n 7, e s t p l u s l o n g d'un f a c t e u r 103 q u ' à température ambiante.

&

1 2 17

A b s t r a c t - The s p i n l a t t i c e r e l a x a t i o n times ( T l ) f o r lH, 1H and 80 o f l i g h t and heavy water have been s t u d i e d i n t h e supercooled range down t o

185 K. The measurements cover t h e pressure range between 0 . 1 and 300 MPa. I n the extreme o f supercooling around

-

195 K t h e T l show a minimum and becone frequency dependent.

I t i s shown, t h a t the s i n g l e molecule dynamics o f water can be described by i s o t r o p i c r o t a t i o n a l d i f f u s i o n . I n the supercooled range t h e c o r r e l a t i o n time T2 i s compared t o ambient t e ~ p e r a t u r e s longer by more than a f a c t o r o f 103.

I N T R O D U C T I O N

A11 unusual p r o p e r t i e s o f l i q u i d water become more pronounced i n the supercooled range. A t ambient pressure water can be k e p t l i q u i d down t o

-

239 K, where i t c r y s t a l l i z e s homogeneously. Cooling b u l k samples t o t h i s temperature range f o r an extended p e r i o d o f time appears t o be extremely d i f f i c u l t and hampered by l a c k o f reproduci b i l i t y . Microscopic samples, i .e. dropl e t s o f pure water wi t h a diaineter of a few I.im suspended i n a c l o u d chamber o r i n an organic l i q u i d can very r e l i a b l e be supercooled t o t h i s temperature /1,2,3/. Emulsions o f water i n a m i x t u r e o f a l kanes can be s t a b i l i z e d by a d d i t i o n o f a water i n s o l u b l e emulqator l i k e s o r b i t a n t r i s t e a - r a t . I n such emulsions most o f the water d r o p i e t s remain l i q u i d i n t h e metastable

range between 273 K and 239 K f o r p e r i ods o f months /4/.

Kanno e t a l . /5,6/ s t u d i e d i n such emulsions the pressure dependence o f the homogeneous n u c l e a t i o n tempe- r a t u r e (TH) o f l i g h t and heavy water t o a maximal pressure o f 300 MPa.

F i g . 1 compiles t h e r e s u l t s . These emulsions are due t o the mu1 t i p l e phase boundaries opaque white, and thus most spectroscopic methods cannot be applied.

F i g u r e 1

-

p - T - p r o j e c t i o n o f the phase

L - - - diagram o f H20 and D20. TM=mel ti n g tempe-

180 r a t u r e , TH=homogeneous n u c l e a t i o n tempe-

r a t u r e /5,6/.

0 50 100 150 200

-

250 piMPa) 300

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1984704

(3)

C7-42 J O U R N A L DE PHYSIQUE

E l e c t r o m a g n e t i c r a d i a t i o n i n t h e f r e q u e n c y range o f 10-400 MHz, as used i n NMR spectroscopy, r e a d i l y p e n e t r a t e s t h e m u l t i p l e phase boundaries o f t h e s e emulsions, and Hindman e t a l . /7,8/ c o u l d t h u s e x t e n d s p i n l a t t i c e r e l a x a t i o n t i m e ( T l ) measurements o f t h e deuterons i n heavy w a t e r and o f oxygen-17 n u c l e i i n e n r i c h e d l i g h t water t o s 240 K. Our group has a p p l i e d t h e s e emulsions i n s t u d i e s o f t h e p r e s s u r e dependence o f T l a t p r e s s u r e s up t o 300 MPa. We succeeded i n s u p e r c o o l i n g a t p > 200 MPa D20 t o 188 K and Hz0 t o 185 K, and were a b l e t o measure T l o f t h e deuterons /9/ and p r o t o n s / I O / under these c o n d i t i o n s . Unsurmountable e x p e r i m e n t a l d i f f i c u l t i e s l i m i t e d t h e t e m p e r a t u r e range f o r oxygen-17-Tl s t u d i e s i n l i g h t and heavy w a t e r t o T

2

240 K /Il/. I n t h e s e experiments a h i g h pressure-NMR-ce11 o f t h e s t r e n g t h e n e d g l a s s ce11 d e s i g n i n t r o d u c e by Yamada /12/ was a p p l i e d .

E X P E R I M E N T A L

The oxygen f r e e emulsions were p r e p a r e d by s l a s h i n a a t h o r o u g h l y degassed m i x t u r e o f water, m e t h y l c y c l o p e n t a n e and methylcyclohexane i n a s e a l e d ampoule t h r o u g h a s t a i n - l e s s s t e e l n e t . The emulsions a r e s t a b i l i z e d b y t h e a d d i t i o n o f 4 % W/W s o r b i t a n - t r i s t e a r a t (Span 65) t o t h e o r g a n i c phase. D e t a i l s o f t h e procedure have been p u b l i s h e d /Il/. The m o d i f i c a t i o n o f t h e s t r e n g t h e n e d g l a s s ce11 used i n t h e s e ex- p e r i m e n t s i s d e s c r i b e d i n t h e li t e r a t u r e /13/.

The s p i n l a t t i c e r e l a x a t i o n t i m e s T l o f t h e t h r e e n u c l e i were o b t a i n e d w i t h t h e usual

-

T

-

IT

-

T

- -

p u l s e sequence on a V a r i a n XL-100-15 FT NMR s p e c t r o m e t e r .

2 2

O p e r a t i n c a t 13.56 MHz f o r t h e oxygen-17, a t 15.35 f o r t h e deuterons and a t 100.1 MHz f o r t h e p r o t o n s . R e c e n t l y L. P i c u l e l l and E.W. Lang /14/ o b t a i n e d t h e d e u t e r o n - T l i n heavy w a t e r emulsions a t 39.14 MHz and a t 55.54 PIHz.

T H E O R E T I C A L

I n n u c l e a r magnetic r e l a x a t i o n experiments t h e c o u p l i n g o f n u c l e a r s p i n s w i t h t h e s u r r o u n d i n g l a t t i c e i s used t o o b t a i n i n f o r m a t i o n a b o u t m o l e c u l a r m o t i o n s /14,15/.

The r e l e v a n t i n t e r a c t i o n H a m i l t o n i a n f o r d i f f e r e n t c o u p l i n g s X i s g e n e r a l l y g i v e n i n a l a b o r a t o r v - f i x e d frame bv: O ,

w i t h S: d e n o t i n g i r r e d u c i b l e t e n s o r o p e r a t o r s o f rank 1 a c t i n g on s p i n v a r i a b l e s o n l y an8 t h e L?, a r e i r r e d u c i b l e t e n s o r o p e r a t o r s o f r a n k 1 a c t i n g on l a t t i c e de- grees o f freedom. We w i l l be concerned w i t h magnetic d i p o l e - d i p o l e and e l e c t r i c quadrupole c o u p l i n g s w h i c h a r e g i v e n by second r a n k t e n s o r s and a r e most c o n v e n i e n t - l y expressed i n a m o l e c u l e f i x e d p r i n c i p a l a x i s system. The frame t r a n s f o r m a t i o n f r o w t h e m o l e c u l e f i x e d t o t h e l a b o r a t o r y f i x e d a x i s system becomes t i m e dependent due t o m o l e c u l a r motions. I t i s t h i s t i m e dependence w h i c h c o n t a i n s i n f o r m a t i o n a b o u t m o l e c u l a r dynamics i n 1 iq u i d s . I n n u c l e a r magnetic r e l a x a t i o n experirnents one can observe two d i s t i n c t l y d i f f e r e n t r e l a x a t i o n r a t e s . I n thermal e q u i l i b r i um t h e n u c l e a r s p i n s a r e p o l a r i z e d para1 l e 1 t o t h e appl i e d s t a t i c magnetic i n d u c t i o n Bo, A p p l i c a t i o n o f a t i m e dependent magnetic i n d u c t i o n Bl(t) a t t h e f r e q u e n c y wg/2.rr i n - duces a n o n - e q u i l i b r i u m m a y e t i s a t i o n where components p a r a l l e l and p e r p e n d i c u l a r t o Bo r e l a x w i t h d i f f e r e n t r a t e s t o e q u i l i b r i u m . The f o r m e r i s c a l l e d t h e s p i n - l a t t i c e r e l a x a t i o n r a t e - a n d 1 i s due t o an energy exchange between t h e s p i n system

T l . 1

and t h e l a t t i c e . The l a t t e r 1s c a l l e d t h e s p i n - s p i n r e l a x a t i o n r a t e - and i s due t o

a l o s s o f phase coherence o f t h e s p i n s . T2

The e x p e r i m e n t a l l y o b s e r v a b l e r e l a x a t i o n r a t e s a r e p r o p o r t i o n a l t o c e r t a i n com- b i n a t i o n s o f s p e c t r a l d e n s i t y f u n c t i o n s JI, w h i c h i n t u r n a r e t h e F o u r i e r - L a p l a c e - t r a n s f o r m s o f t i m e a u t o c o r r e l a t i o n f u n c t i o n s o f t h e l a t t i c e o p e r a t o r s L,: f o r d i f f e r e n t c o u p l i n g s e v a l u a t e d a t t h e o b s e r v i n g frequency wo/2n:

(4)

I n the case o f e l e c t r i c quadrupole i n t e r a c t i o n s ( A = Q) the l a t t i c e f u n c t i o n s L i m depend o n l y on o r i e n t a t i o n a l v a r i a b l e s , namely t h e E u l e r angles s p e c i f y i n g t h e o r i e n t a t i o n of the molecule f i x e d frame w i t h r e s p e c t t o the l a b o r a t o r y a x i s system.

Thus t h i s i n t e r a c t i o n moni t o r s s i n g l e molecule r e o r i e n t a t i o n a l motions only. This i s the dominant r e l a x a t i o n mechanism f o r deuterons and oxygen-17-nuclei . For i s o t r o p i c r e o r i e n t a t i o n a l motions the a u t o c o r r e l a t i o n f u n c t i o n i s i n most cases exponential a t l o n g times w i t h a s i n g l e time constant, t h e c o r r e l a t i o n t i m e 72. The r e l a x a t i o n r a t e s are then given by

1 denotes t h e s p i n quantum number which i s 1=1 f o r deuterons and 1 = - fo r 0-17- 5 2

e2q

Q

n u c l e i .

(*)

t h e quadrupole c o u p l i n g constant i n frequency u n i t s and

n

the

Q

asymmetry parameter o f the trace1 ess diagonal e l e c t r i c f i e l d g r a d i e n t tensor a t the nucleus i n question.

I t must be noted t h a t f o r a t o t a l s p i n I > 1 a s i n g l e r e l a x a t i o n time T i (i=1,2) i s obtained i n the motional narrowing l i m i t ( ~ 5 ~ 6 << 1 ) only. This i s g e n e r a l l y the case i n low molecular weight, low v i s c o s i t y liqu'ids. I n l i q u i d water t e c h n i c a l d i f f i c u l t i e s do n o t p e r m i t measurements o f oxygen-17-relaxation times o u t s i d e the motional narrowing 1 im i t , i .e. i n t h e deeply supercooled region.

I n the case o f magnetic di pole-dipole i n t e r a c t i o n s (h=D) the 1 a t t i c e functions Llm depend on o r i e n t a t i o n a l v a r i a b l e s as w e l l as on t h e d i s t a n c e r i between two i n t e r a c t i n ~ n u c l e i . Only i f the i n t e r a c t i n g p a i r o f n u c l e i belongs

20

the same

r i ç i d molecule i s t h e i r d i s t a n c e r i j independent o f time. I n t h i s case the i n t r a - molecular d i p o l a r i n t e r a c t i o n a l s o monitors s i n g l e molecule r e o r i e n t a t i o n a l motions o n l y and the i n t r a m o l e c u l a r r e l a x a t i o n r a t e s f o r l i k e spins a r e given by t h e same expressions as f o r t h e quadrupolar i n t e r a c t i o n . The mu1 t i p l y i n g f a c t o r i n f r o n t o f t h e brackets i n equ. (3) i s now given by

I f the two i n t e r a c t i n g n u c l e i belong t o d i f f e r e n t molecules, t h e i n t e r m o l e c u l a r d i - p o l a r i n t e r a c t i o n i s modulated by t r a n s l a t i o n a l and r o t a t i o n a l motions. The corres- ponding s p e c t r a l densi ty f u n c t i o n s are d i f f i c u l t t o o b t a i n and depend s t r o n g l y on the motional model. I n the present discussion we w i l l n o t consider t h i s c o n t r i b u t i o n i n d e t a i l , b u t i t w i l l be assumed t h a t the t o t a l d i p o l a r r e l a x a t i o n r a t e i s given by

1 - /l

- -

+ -

1

\

T? (?)i n t r a (Tlli n t e r

where

(k)

i s the i n t r a m o l e c u l a r r e l a x a t i o n r a t e i n the r i g i d molecule approxi- Tl i n t r a

mation. I t has been shown, t h a t a t temperatures below

-

350 K t h e p r o t o n r e l a x a t i o n i n l i q u i d l i g h t water i s completely described by t h e dipole-di pole-interaction /17,13/.

(5)

C7-44 JOURNAL DE PHYSIQUE

R E S U L T S

55.54 MHz 39.14MHz

15.35MHz

F i q u r e 2

-

Isotherms o f t h e deuteron

1

s p i n l a t t i c e r e l a x a t i o n times Tl i n D,O. r /23,24/. O /9/

F i g u r e 3

-

Isobars o f the deuteron s p i n 1 a t t i c e r e l a x a t i o n times T l i n super- cooled D20 a t t h r e e NMK-frequencies /9,13/.

I n F i g . 2 the deuteron s p i n l a t t i c e r e l a x a t i o n times T l o f heavy water are pre- sented. I n a l 1 o t h e r l i q u i d s s t u d i e d h i t h e r t o , a p p l i c a t i o n o f pressure a t constant temperature reduces t h e m o b i l i t y o f t h e molecules and thus shortens Tl. This be- haviour i s observed i n l i q u i d water a t temperatures above

-

350 K and below

-

200 K.

I n the i n t e r m e d i a t e temperature range the i n i t i a l a p p l i c a t i o n o f pressure leads t o a d r a s t i c increase o f T l . The various isotherms do show maxima a t pressures between 150 and 250 MPa. These maxima become most pronounced i n t h e supercooled range, where f o r i n s t a n c e the 249 K-isotherm increases by approximately 4,5 times.

The data given i n F i g . 2 were obtained a t 15.35 MHz. F u r t h e r l o w e r i n g o f the temperature, which i n o r d e r t o a v o i d homogeneous n u c l e a t i o n must be done a t p >

225 MPa, leads t o a minimum i n T l , shown i n F i ç . 3. This minimum i s p r e d i c t e d by theory (equ. 3) t o occur f o r any l i q u i d o f s u f f i c i e n t l y low molecular m o b i l i t y . The theory demands, t h a t i n t h i s range the T become frequency dependent. The data obtained very r e c e n t l y by Lang and P i c u l e l l )13/ a t 39.14 MHz and 55.54 MHz ( F i g . 3) show t h i s expected behaviour.

The oxygen-17-Tl o f D 170 /Il/ show between 243 K and 450 K w i t h i n experimental e r r o r the rame pressure an$ d e n s i t y dependence as the deuteron Tl o f 02160. However, comparison o f the oxygen-17-Tl l i g h t and heavy water r e v e a l , t h a t the r a t i o

17

-

tT1(D2 O).T1 ' ( ~ ~ ' ~ 0 ) lp,T i s a f u n c t i o n o f temperature and pressure. F i ç . 4 pre- sents t h i s r a t i o a t two pressures.

These data a r e o f immediate relevance t o t h e usual a n a l y s i s o f biopolymer hydration, where t h e deuteron-Tl i n heavy water s o l u t i o n s a r e used t o o b t a i n t h e

(6)

i n t r a n o l e c u l e r c o n t r i butions t o proton r e l a x a t i o n i n l i g h t water. I t can be seen from t h e d a t a given in Fig. 4 , t h a t

250MPa t h e a p p r o p r i a t e s c a l i n g f o r t h e isotope e f f e c t of the c o r r e l a t i o n times, when

t

comparing l i g h t and heavy water, i s by

* * O . . .

i

no means s t r a i g h t - f o r w a r d and prone t o s i g n i f i c a n t e r r o r s . Fig. 5 gives t h e 225 MPa-isobar f o r t h e proton-Tl i n l i g h t water a t 100.1 MHz.

2 0-

15- -

10

O Again one observes t h e minimum o f Tl. In

o r d e r t o s e p a r a t e t h e intramolecular c o n t r i b u t i o n t o t h i s experimental r a t e ,

SMPa one can use t h e oxygen-17-Tl obtained i n

a

0. l i g h t water enriched with oxygen-17 / I l / .

* m .

* O However, technical d i f f i c u l t i e s 1 imi t

..

t h e s e measurements t o temperatures T >

0 240 K . For t h e extremely supercooled

$56 ' ' ' 3 6 0 ' ' '350' ' ' ' 4 b 0 ' ' '460' range a d i f f e r e n t approach has t o be

- T ( K ) used f o r t h e c h a r a c t e r i z a t i o n of t h e r o t a t i o n a l motion of t h e H20 molecule:

Figure 4

-

Dynamic i s o t o p e e f f e c t a t The.only way found h i t h e r t o i s t o study 5 MPa and 250 MPa a s obtained from t h e t h e proton-relaxation r a t e s of l i g h t r a t i o of t h e oxygen-17-Tl i n l i g h t and water enriched with oxygen-17. The geo- heavy water a s function of temperature. metric c o n s t r a i n t s of t h e water s t r u c -

t u r e , t h e small s i z e of t h e di pole

-6 moment of t h e oxygen-17 nucleus, and the

r dependence make t h e c o n t r i b u t i o n of t h e oxygen-17 t o proton r e l a x a t i o n p r a c t i - c a l l y an i n t r a m o l e c u l a r c o n t r i b u t i o n . Equ. (7) has i n t h i s case t o be w r i t t e n a s :

i n t r a i n t r a i n t e r

=

(:lHH

+ (k)170-H 1 +

(\XH

(8)

X = mole f r a c t i o n 0-17.

The term ( x / ( T ~ ) ; ~ ~ ~ ~ i s derived by s u b s t r a c t i n g e r e l a x a t i o n r a t e s

il

obtained

OH i n H21p0 from t h e corresponding d a t a

determined i n ~ 2 1 7 0 . Provided, t h e O-H

10; bond length and t h e H-H d i s t a n c e i n

5- l i q u i d water i s known and t h e isotropie

TI - r e o r i e n t a t i o n a l mode1 (equ. 3) can be

IS)

-

a p p l i e d i t i s s t r a i g h t - f o r w a r d t o c a l -

,-

c u l a t e t h e intermolecular c o n t r i b u t i o n

t o t h e proton r e l a x a t i o n i n l i g h t water.

The r e s u l t s of t h i s s e p a r a t i o n a r e given

0 5 -

i n Fig. 6 . I t can be seen, t h a t t h e ano- malies of t h e dynamics of t h e water mole- c u l e s manifest themsel ve i n t h e i s o b a r s

01, f o r t h e i n t r a m o l e c u l a r c o n t r i bution as

well a s i n t h e i n t e r m o l e c u l a r terrns.

005- Contrary t o t h e behaviour observed i n

normal l i q u i d s , where pressure produces a l a r g e r change of t h e intermolecular r a t e s /18,19/ one observes, t h a t i n

Oo1-i5 jo j5 ' 5

--

5'0 1 0 0 0 i ~ - l ) 5'5 supercooled water t h e intramolecular c o n t r i b u t i o n has a s i g n ~ f i c a n t l y more

T pronounced pressure and temperature de- Figure 5 - 225 MPa-isobar of t h e proton pendence.

s p i n l a t t i c e r e l a x a t i o n times (Tl) i n supercooled H20 a t 100.1 MHz. /10,25/.

(7)

JOURNAL DE PHYSIQUE

D I S C U S S I O N

The frequency d i s p e r s i o n o f the deute-

' n - 2 1 3 K ron-Tl around 200 K ( F i g . 3) o f f e r s the

223K unique p o s s i b i l i t y t o t e s t the appl i-

c a b i l i t y o f t h e motional model proposed i n the t h e o r e t i c a l s e c t i o n . From the

ZL3K

minimum c o n d i t i o n f o r the t h r e e curves

::::

one can d e r i v e the quadrupole c o u p l i n g

283K 2B3K constant and wi t h the c o n s t a n t d e r i v e d

one can f i t equ. ( 3 ) and ( 4 ) t o t h e

3 2 3 ~ experimental r e s u l t s . The 1 ines drawn

through the experimental p o i n t s are d e r i v e d from such a procedure. They i n - d i c a t e , t h a t t h e model o f i s o t r o p i c r e -

0 0 1

- o so ioo

-

i s o pIMPal ZOO h r r

-

Ï P I M P ~ I r & wi t h i n experimental e r r o r . F u r t h e r o r i e n t a t i o n a l motions f i t s the data support f o r t h i s conclusion i s drawn F i g u r e 6

-

Isotherms o f the

( )

and from the f i n d i n g t h a t i n t h e r e g i o n o f

1 i n t r a overlap the experimental deuteron- and

( )

c o n t r i b u t i o n s t o t h e p r o t o n oxygen-17-Tl do possess an i d e n t i c a l

1 i n t e r temperature and pressure dependence.

r e l a x a t i o n i n supercooled water. I n equ. ( 5 ) the quadrupole coup- l i n g constant (qcc) i s defined. I t i s a measure f o r t h e g r a d i e n t o f the e l e c t r i c f i e l d a t the quadrupolar nucleus. I n hydrogen bond forming systems the degree o f bond formation must i n f l u e n c e t h i s q u a n t i t y . Table 1 contains t h e qcc i n various phases of D20. I n the gas phase and i n s o l i d s the qcc can be determined e x p e r i m e n t a l l y . The data d e r i v e d from the minimum c o n d i t i o n o f the deuteron-Tl curve /13/ a r e a l s o i n - c l uded. V a r i a t i o n o f temperature and pressure i n 1 i q u i d water i n f l uences hydrogen bonding and o b v i o u s l y the qcc must be a f u n c t i o n o f temperature and pressure.

Table 1: Deuteron quadrupole c o u p l i n g constant o f D20

3

2 (kHz) i1 Ref.

h

I c e I h 213.4

+

0.3 0.112

+

0.005 20

~HDO vapour 318.6

+

2.4 0.06

+

0.16 21

1

supercool ed

1 iq u i d 201 2 5

However, r e l i a b l e estimates o f t h i s e f f e c t c o v e r i n g the whole l i q u i d range are l a c k i n g , and the c a l c u l a t i o n presented i n t h e f o l l o w i n g were performed w i t h the con- s t a n t qcc given i n Table 1.

From the Tl- and T2-data c o l l e c t e d one c a l c u l a t e s t h e o r i e n t a t i o n a l c o r r e l a t i o n time as f u n c t i o n o f temperature and pressure. I n simple l i q u i d s t h e i s o b a r i c and i s o c h o r i c temperature dependence o f T2 can o f t e n be represented by a simple

Arrhenius equation. I t i s w e l l known t h a t the dynamics o f water cannot be described by t h i s simple approach. The slope o f the i s o b a r s increases w i t h f a l l i n g temperature.

For normal viscous l i q u i d s t h e i s o b a r i c temperature dependence o f t h e dynamic p r o - p e r t i e s i s o f t e n w e l l represented by the VTF-equation:

where To i s the i d e a l glass temperature. The ï d e r i v e d f o r p > 150 MPa a r e w e l l represented by equation ( 9 ) /Il/. Least square$ f i t t i n g o f the-ï2 l e a d t o the i d e a l glass t r a n s i t i o n temperatures given i n Fig. 7. The To do show a pronounced i s o t o p e

(8)

Figure 7

-

p-T-projection of the phase Figure 8

-

Representation of some r2- aiagramof i-i20 and D20, including: TS= isobars as function O-f the reduced tempe-

temperature of s i n g u l a r i t y , T,=ideal ratures / I l / ('2: orientational corre- glass t r a n s i t i o n temperature. TS was l a t i o n time, TS s i n u l a r i t y tem e r a t u r e ) .

1

S

obtained by f i t t i n g the r2 data to the 0 Calculated from 1g0-T~ in H 2 O ;

Speedy-Ançell equation. @ calculated from ~ : O - T ~ in ~ ~ ' ~ 0 ;

A

calculated from : H - T ~ in 020 / 9 / ; i c a l c u l a t e d from :H-T~ in D20 /23,24/.

e f f e c t , and a small increase of To with pressure. A t lower pressures the T2 change in the supercooled range much f a s t e r with f a l l i n g temperature, than predicted by the VTF-equation. This i s most evident, i f the l e a s t squares f i t t i n g i s r e s t r i c t e d t o the range of To-values commonly accepted in the l i t e r a t u r e .

Speedy and Ange11 /22/ proposed t o describe the temperature dependence of a variety of s t a t i c and dynamic properties of supercooled water by a fractional power law, a s used in the theory of c r i t i c a l phenomena:

T-T -y

.2 =

(+)

(10)

S

The s i n g u l a r i t y temperature TS a t ambient pressure i s found f o r al1 properties studied h i t h e r t o a few degrees below TH, the homogeneo~ls nucleation temperature.

Fig. 7 includes TS f o r l i g h t and heavy water as obtained from l e a s t squares f i t t i n g t o the rotational correlation time f o r 0 . 1 (MPa) < p < 150 (MPa). For higher pressures the f i t becomes progressivly worse. A t p > 150 MPa The VTF equation pro- vides obviously a superior f i t . Comparing the f i t s of ~2 f o r l i g h t and heavy water t o equ. (10) reveals, t h a t a t constant pressure only TS for the two l i q u ~ d s i s

(9)

C7-48 JOURNAL DE PHYSIQUE

d i f f e r e n z . A t c o n s t a t ??essure t h e -r2 f o r l i g h t and heavy w a t e r f a 1 1 i n a l o g ~2 v e r s . l o g ( T - T ~ ) . T ~ - ~ p l o t on a s i n g l e s t r a i g h t l i n e , i f f o r TS t h e s i n g u l a r i t y temperatures g l v e n i n F i g . 7 a r e i n s e r t e d . The dynamics o f t h e w a t e r molecules a r e thus i d e n t i c a l i n t h e two systems a t equal d i s t a n c e f r o m t h e s i n g u l a r i t y temperature.

F i g . 8 c o l l e c t s a s e t o f T ~ - i s o b a r s i n t h i s r e p r e s e n t a t i o n . C O N C L U D I N G R E M A R K S

The e v a l u a t i o n o f t h e d a t a d e r i v e d from t h e NMR-experiments i s s t i l l i n a rudimen- t a r y s t a t e , s i n c e f o r a s u c c e s s f u l and c o n c i s e d e s c r i p t i o n o f t h e r e s u l t s o b t a i n e d one w o u l d need a v a r i e t y of thermodynamic and s p e c t r o s c o p i c data, t h a t a r e s t i l l l a c k i n g f o r t h e e x t r e m e l y supercooled range. The e x p e r i m e n t a l d i f f i c u l t i e s en- countered i n t h i s area o f t h e phase diagram a r e enormous, e s p e c i a l l y i f one cannot make use of t h e emulsion technique. Our group i s i n t h e process o f s t u d y i n g super- c o o l e d s a l t s o l u t i o n s and s o l u t i o n s o f hydrophobic mode1 compounds i n w a t e r . The r e - su1 t s o b t a i n e d i n t h e s e areas a r e presented i n two s h o r t communications a t t h i s workshop.

A C K N O W L E D G E M E N T

The work p r e s e n t e d h e r e was o n l y f e a s i b l e t h r o u g h t h e e x p e r t t e c h n i c a l a s s i s t a n c e o f Mr. S. Heyn, R. K n o t t and E. Treml. The c a l c u l a t i o n s were performed a t t h e Computer-Center o f t h e U n i v e r s i t a t Regensburg. Generous f i n a n c i a l s u p p o r t was ob- t a i n e d f r o m t h e DFG and t h e Fonds d e r Chemie.

R E F E R E N C E S

/ 1/ C.A. ANGELL, i n F. Franks ed. "Water

-

A Comprehensive T r e a t i s e " , Plenum Press, New York 1982, V o l . 7, p. 1 f f

/ 2/ C.A. ANGELL, Ann. Rev. Phys. Chem. 1983, 34, 593

/ 3/ E.W. LANG, H.-D. LÜDEMANN, Angew. Chemie I n t . Edn. 1982, 21, 315

/ 4/ D.H. RASMUSSEN, A.P. McKENZIE, i n H.H. J e l l i n e k : "Water S t r u c t u r e and t h e Water Polymer I n t e r f a c e , Plenum Press, New York 1972, p. 126 f f

/

5/ H. KANNO, R.J. SPEEDY, C.A. ANGELL, Science, 1975, 189, 880 / 6/ C.A. ANGELL, H. KANNO, Science 1976, 193, 1121

/ 7/ J.C. HINDMAN, A. SVIRMICKAS, J . Phys. Chem. 1973, 77, 2487 / 8/ J.C. HINDMAN, J. Chem. Phys. 1974, 60, 4488

/ 9/ E.W. LANG, H.-D. LÜDEMANN, Ber. Bunsenges. Phys. Chem. 1980, 84, 462 /IO/ E.W. LANG, H.-D. LÜDEMANN, J. Chem. Phys. 1977, 67, 718

/Il/ E.W. LANG, H.-D. LÜDEMANN, B e r . Bunsenges. Phys. Chem. 1981, 85, 603 /12/ H. YAMADA, Rev. S c i . I n s t r u m . 1974, 45, 640

/13/ E.W. LANG, H. -D. LÜDEMANN, L. PICULELL, J . Chem. Phys., i n p r i n t

/14/ A. ABRAGAM, "The P r i n c i p l e s o f N u c l e a r Magnetism", O x f o r d U n i v e r s i t y Press,l961 /15/ H.W. SPIESS, i n : P. D i e h l , E. F l u c k , R. K o s f e l d eds."NMR-Basic P r i n c i p l e s and

Progress", S p r i n g e r B e r l i n 1978, Vol. 15, p. 55 f f /16/ D.W.G. SMITH, J.G. POWLES, Molec. Phys. 1966, 10, 451 /17/ R. HAUSSER, Z. N a t u r f o r s c h u n g A, 1963, 18, 1143

/18/ H. HAUER, E.W. LANG, H.-D. LÜDEMANN, B e r . Bunsenges. Phys. Chem. 1979, 83,1262 /19/ J . HAUER, E.W. LANG, H.-D. LÜDEMANN, Chem. Phys. 1981, 62, 195

/20/ D.T. EDMONDS, A.L. MACKAY, J . Maon. Resonance 1975, 20, 515

/21/ P. THADDEUS, L.C. KRISHER, T.H.N. LOUBSER, J . Chem. Phys. 1964, 40, 257 /22/ R.J. SPEEDY, C.A. ANGELL, J . Chem. Phys. 1976, 65, 8 5 1

/23/ T. DeFRIES, J. JONAS, J. Chem. Phys. 1977, 66, 896 /24/ T. DeFRIES, J. JONAS, J . Chem. Phys. 1977, 66, 5393

/25/ J . JONAS, T. DeFRIES, D.J. WILBUR, J . Chem. Phys. 1976, 65, 582

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to