• Aucun résultat trouvé

GIANT RESONANCES IN HEAVY ION COLLISIONS

N/A
N/A
Protected

Academic year: 2021

Partager "GIANT RESONANCES IN HEAVY ION COLLISIONS"

Copied!
12
0
0

Texte intégral

(1)

HAL Id: jpa-00224234

https://hal.archives-ouvertes.fr/jpa-00224234

Submitted on 1 Jan 1984

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

GIANT RESONANCES IN HEAVY ION COLLISIONS

A. Bonaccorso, M. Di Toro, U. Lombardo, G. Russo

To cite this version:

A. Bonaccorso, M. Di Toro, U. Lombardo, G. Russo. GIANT RESONANCES IN HEAVY ION COLLI- SIONS. Journal de Physique Colloques, 1984, 45 (C6), pp.C6-269-C6-279. �10.1051/jphyscol:1984632�.

�jpa-00224234�

(2)

JOURNAL DE PHYSIQUE

Colloque C6, suppldment a u n06, Tome 45, juin 1984 page C6-269

GIANT RESONANCES I N HEAVY ION COLLISIONS

A. Bonaccorso, M. Di Toro, U. Lombardo and G. Russo

I s t i t u t o DipartimentaZe d i Fisica, Uniuersita' d i Catania, I s t i t u t o NazionaZe d i Fisica NucZeare, Sez. d i Catania 5 7 , Corso ItaZia, 1-95229 Catania, I t a l y

Resume - Nous t r a i t o n s l e s resonances g6antes de d i p o l e i s o v e c t o r i e l l e s c o n s t r u i t e s s u r l e s Gtats de haut s p i n observees dans l e s r e a c t i o n s de fusion. Nous reproduisons l e s p r i n c i p a u x aspects des donnees experimen- t a l e s par l ' a n a l y s e des s o l u t i o n s de " s c a l i n g " des p e t i t e s o s c i l l a t i o n s hors de phase de deux f l u i d e s de Vlasov dans un r e f e r e n t i e l en r o t a t i o n . Nous considerons aussi l e problsme de l a p r o d u c t i o n de II sous l e s e u i l dans l e s c o l l i s i o n s e n t r e i o n s lourds. Nous montrons comment o b t e n i r une s e n s i b l e hausse dans l e rendement seulement en c o n s i d e r a n t des de- formations dynamiques c o l l e c t i v e s , du t y p e quadrupole ggant, dans l a pha- se d'approche.

A b s t r a c t - We discuss i s o v e c t o r g i a n t d i p o l e resonances b u i l t on h i g h s p i n s t a t e s observed i n f u s i o n r e a c t i o n s . We reproduce t h e main f e a t u r e o f t h e experimental data from t h e a n a l y s i s of s c a l i n g s o l u t i o n s f o r out-of-phase small o s c i l l a t i o n s o f two Vlasov f l u i d s i n a r o t a t i n g frame. We consider a l s o t h e problem o f subthreshold T-production i n heavy i o n c o l l i s i o n s . We show how t o g e t a n o t i c e a b l e increase o f t h e y i e l d j u s t c o n s i d e r i n g c o l - l e c t i v e dynamical deformations, o f g i a n t quadrupole type, i n t h e approaching phase.

Giant resonances are extremely important dynamical p r o p e r t i e s o f n u c l e i and we should expect t o see r e l a t e d e f f e c t s i n i o n - i o n c o l l i s i o n s . I n t h i s c o n t r i b u t i o n we a r e m a i n l y going t o discuss a t h e o r e t i c a l i n t e r p r e t a t i o n o f t h e main f e a t u r e s o f g i a n t modes b u i l t o n h i g h s p i n s t a t e s . I n t h e l a s t p a r t we a l s o show how a g i a n t quadrupo l e resonance c o u l d a c t as doorway s t a t e i n order t o enhance t h e r a t e o f subthreshofd a-production .

I - ISOVECTOR GIANT DIPOLE RESONANCES ON HIGH SPIN STATES

A g r e a t deal o f progress has been made t h e l a s t years i n t h e i n v e s t i g a t i o n o f GDR's b u i l t on h i g h s p i n s t a t e s observed i n h i g h energy y - r a y spectra from t h e deexcita- t i o n o f medium and heavy n u c l e i produced i n f u s i o n and deep i n e l a s t i c r e a c t i o n s /I/.

The appealing p h y s i c a l aspects o f such a study l i e i n t h e p r o p e r t i e s o f t h e GDR s t r e n g t h f u n c t i o n i n systems f a r from t h e ground s t a t e and i t s dependence on proper- t i e s o f hyghly e x c i t e d n u c l e i such as e x c i t a t i o n energy, s p i n and nuclear deforma- t i o n .

Although some experimental discrepancies s t i l l e x i s t , t h r e e main f e a t u r e s come' o u t from t h e a v a i l a b l e experimental data: 1) s t r e n g t h f u n c t i o n n o t much depending on the g.s. deformation, 2 ) s h i f t of t h e c e n t r o i d o f t h e resonance t o lower energies w i t h h i g h e r angular momenta (aER/AL *.05+.1 MeV/%), 3) GDR o v e r a l l widths much broader

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1984632

(3)

C6-270 JOURNAL DE PHYSIQUE

than the typical ground s t a t e GDR widths.

Several theoretical attempts t o t h i s problem have been proposed recently /2/, ranging from simple solvable models t o q u i t e huge cranked RPA calculations.

The approach proposed in t h i s paper i s fluid-dynamical in t h a t the c o l l e c t i v e nuc- l e a r dynamics i s developed in a phase space as a semiclassical l i m i t of the s e l f - consistent TDHF equations /3/. Consequently our r e s u l t s , which are q u i t e easy t o work out, can be obtained using r e a l i s t i c interactions and can be d i r e c t l y compared with f u l l cranked RPA calculations.

The key point of our approach i s t o assume t h a t f o r a Giant Collective s t a t e a l l t h e strength i s concentrated on only one level. This ansatz i s largely j u s t i f i e d from RPA calculations a s well a s from variational f l u i d-dynami cal approaches and i t corrg sponds t o take i n t o account only t h e lowest multipole d i s t o r t i o n s of the momentum d i s t r i b u t i o n during the vibration, which i s described as a scaling mode.

O u r general philosophy i s t o use t h i s simplifying assumption t o study Giant Resonan- ces in a q u i t e wider context, l i k e in a r o t a t i n g nucleus o r as doorway s t a t e s in par t i c u l a r reactions.

In t h i s paper we a r e a b l e t o show the e f f e c t s of dynamical deformations and Coriolis coupling on the frequencies and strengths of GDR's b u i l t on high spin s t a t e s . In p a r t i c u l a r an agreement with t h e above mentioned experimental features i s found.

I1 - CRANKED VLASOV EQUATION

The dynamics of a two-fluid system will derived from t h e Vlasov equation i n a frame rotating w i t h angular frequency (assumed t o be along the z-axis)

where h' = h-:.t i s t h e Wigner transform of t h e s e l f c o n s i s t e n t cranked Hamiltonian with a Skyrme interaction. The label q i s the isospin coordinate; quantities without any isospin labels a r e understood t o denote t o t a l values.

E q . (2.1) can be obtained+az a semiclassical 1 imit of t h e cranked TDHF equation f o r the Wigner transform f ( r , p ; t ) of the one-body density matrix.

q

Transforming i n the i n t r i n s i c coordinate (?'=?,%=~-m;x?) t h e equation of motion becomes

~ ~ , 1 ? , ~ ~ , e ) = { ~ ; ( t , ~ , t ) , P ~ ( 6 ~ , t ) ] + z m i : - ( ~ ~ x ~ # ~ ) ( 2 . 2 ) Q t

For Galinei invariant Skvrme forces the transformed cranked Hamiltonian assumes the form

K' + $(1)-i? + A g ( 4 ) - f .m ~ S X P I '

c; = tx=

1 *

where t h e e x p l i c i t expressions f o r m , A and B a r e given in r e f . /4/.

In the following we shall focus our attention on the SKM force which reproduces very well the nuclear compressibilities and t h e symmetry energy near t h e nuclear sur- face 151.

I t i s worth noticing t h a t , l i k e i n the c l a s s i c a l case, the centrifugal and the Coriolis forces appear e x p l i c i t l y i n the ~ a m i l t o n i a n and in the equation of motion, respectively, as an e f f e c t of the rotation.

(4)

From eq.(2.2) we can generate an i n f i n i t e chain o f fluid-dynamical equations f o r t h e -+ k-moments o f t h e d i s t r i b u t i o n f u n c t i g n . I f we a r e able, w i t h some physical anaatz, t o t r u n c a t e t h e chain a t t h e lowest k-moments l e v e l , i n s t e a d o f t h e camplicated Cran ked Vlasov equation,+we should solve a s e t o f d i f f e r e n t i a l coupled equations f o r r e l a - t i v e l y few unknown ( r , t ) - f u n c t i o n s , as d e n s i t y , c u r r e n t , k i n e t i c energy t e n s o r and so on. These equations are completely c l a s s i c a l , quantum e f f e c t s being i n t h e i n i - t i a l c o n d i t i o n s and i n t h e t r u n c a t i o n procedure.

For s c a l i n g modes we can e x a c t l y c l o s e t h e fluid-dynamical chain a t t h e lowest two z-moments, c o n t i n u i t y and Eul e r equations / 3 / .

The equation f o r t h e z e r o t h 2-moment assumes t h e form

w i t h

and

As i t i s w e l l known t h e neutron-proton exchange o f a given i s o s p i n L y p e

disappears, being Jce

served i n any case.

c u r r e n t i s n o t conserved l o c a l l y due t o t h e presence o f the term i n t h e nun-local p o t e n t i a l . The t o t a l number o f nucleons i s g f c o u r s e , conserved. For i s o s c a l a r modes t h e source term

. Obviously, t h e t o t a l d e n s i t y i s l o c a l l y con For t h e f i r s t 2-moment we g e t t h e E u l e r equation

L a s t f o u r t e r m s i n t h e s e c o n d l i n e do n o t g i v e a n y c o n t r i b u t i o n a f t e r The k i n e t i c energy t e n s o r i s given by l i n e a r i z a t i o n

I 1 1 - ISOVECTOR DIPOLE MODE

I s o v e c t o r g i a n t d i p o l e rezo$ances a r e $e%cri bed as out-of-phase small amp1 i t u d e c o l - l e c t i v e o s c i l l a t i o n s s f ( r , k , t ) = - s f ,(r,k,t) o f t h e neutron/proton d i s t r i b u t i o n f u n c t i o n around t h e s t a t i o n a r y value 4 4fst(:,t,t). S c a l i n g deformations correspond t o a f l o w p a t t e r n given by an i r r o t a t i o n a l d i p o l e v e l o c i t y f i e l d . q

Using a g e n e r a l i z e d s c a l i n g generator /3/

(5)

JOURNAL DE PHYSIQUE

we have

I t i n v o l v e s second o r d e r d i s t o r t i o n s o f t h e momentum d i s t r i b u t i o n s w h i l e t a k i n g i n t o account t h e s h i f t o f t h e Fermi sphere t o t h e r o t a t i o n .

Assuming t h e nucleus t o undergo r i g i d ro_fations ( ?ft= 0 ) and i n t h e l i m i t of i r r o t a t i o n a l displacement f i e l d Jgav ,one ob b i n s from t h e c o n t i n u i t y equa- t i o n t h e simple r e l a t i o n 'C 9

which a l l o w s us 40 close t h e fluid-dynamical c h a i n a t t h e lowest two z-moments. I n f a c t , t h e f i r s t k-moments o f t h e t r a n s i t i o n d i s t r i b u t i o n f u n c t i o n can be expressed o n l y i n terms o f t h e s c a l i n g f i e l d 3 ( r , t )

9

The l i n e a r i z e d E u l e r equation becomes t h e equation of motion f o r t h e s c a l i n g f i e l d

(6)

where D i s t h e l o c a l p a r t o f t h e Skyrme HF p o t e n t i a l and p=-t-/4h2,t-=t,-t2.

9

I t describes t h e dynamics o f t h e c o l l e c t i v e motion and, i n p r i n c i p l e , can be solved by imposing s u i t a b l e boundary c o n d i t i o n s .

As f a r as we are i n t e r e s t e d i n gross p r o p e r t i e s o f t h e g i a n t modes such as c e n t r o i d energies and t r a n s i t i o n strengths i n terms o f t h e angular frequency, we f o l l o w a sim- p l i f i e d procedure.

L e t us assume f o r t h e s c a l a r f i e l d t h e usual Tassie-Bohr form

By t a k i n g t h e s c a l a r product o f eq.(3.7) w i t h each component o f t h e r e a l s c a l i n g f i e l d (3.8) and by i n t e g r a t i n g over t h e s p a t i a l coordinates we end up w i t h t h r e e d i f f e r e n t i a l coupled equations f o r t h e dqx,y ,r (t) unknown f u n c t i o n s .

As Vi(sS); = o V;,j t h e g r a d i e n t and divergence terms i n t h e l i n e a r i z e d E u l e r equation g i v e no c o n t r i b u t i o n a f t e r p r o j e c t i o n .

A c t u a l l y , from a d i r e c t e v a l u a t i o n o f t h e c o l l e c t i v e k i n e t i c energy, i t i s p o s s i b l e t o show how t h i s procedure gives t h e r i g h t c o l l e c t i v e mass. For r o t a t i o n s about t h e z-axis,the z-mode i s n o t a f f e c t e d by t h e presence o f c e t r i f u g a l and C o r i o l i s f o r ces b u t o n l y i n d i r e c t l y " f e e l s " t h e r o t a t i o n through dynamical deformations i n the s t a t i o n a r y d e n s i t y .

For a s t a t i o n a r y d i s t r i b u t i o n f u n c t i o n which i s i n v a r i a n t w i t h respect t o r o t a t i o n o f a about each o f t h r e e s p a t i a l orthogonal axes, t h e equation f o r t h e z-mode i s

w h i l e the x,y-modes, coupled o n l y through t h e C o r i o l i s term, s a t i s f y

where

d3;

c o l l e c t i v e i n e r t i a l parameter, w i t h Z = 9

(7)

C6-274 JOURNAL DE PHYSIQUE

k i n e t i c energy and i n t e r a c t i o n c o n t r i b u t i o n s , r e s p e c t i v e l y . I n t h e harmonic approximation eq. (3.9) g i v e s

w h i l e f o r t h e x,y-modes we g e t

w i t h c , = ~ ( c , ~ c ~ )

I t should be n o t i c e d t h a t t h e major c o n t r i b u t i o n s t o t h e i n t e g r a l s of eq.(3.11) come from t h e n u c l e a r surface. Thus, i t i s n o t t h e d e t a i l e d behaviour of t h e l o c a l densi t y i n s i d e t h e nucleus which i s important here, b u t r a t h e r t h e shape a t t h e surface.- The expressions f o r t h e d i p o l e frequencies, obtained so f a r a r e v e r y general and a l l o w f u l l s e l f - c o n s i s t e n t c a l c u l a t i o n s w i t h a f i n i t e temperature cranked HF code t o g e t t h e s t a t i o n a r y s o l u t i o n /6/.

As p r e l i m i n a r y c a l c u l a t i o n we s p e c i a l i z e o u r method f o r a c l a s s i c a l r o t a t i n g nucleus about t h e z-symmetry a x i s , which corresponds t o a maximum c o l l e c t i v i t y c o n d i t i o n f o r t h e r o t a t i o n .

This i s shown i n t h e n e x t s e c t i o n .

I V - EVALUATION OF THE DIPOLE ENERGIES

Although we have developed t h e formalism f o r a general case, i n order t o s i m p l i f y t h e d i s c u s s i o n and t o emphasize t h e main e f f e c t s o f t h e r o t a t i o n on t h e d i p o l e f r e - quencies, we s h a l l assume t h a t

and we n e g l e c t t h e Coulomb f i e l d . I n t h e Thomas-Fermi approximation f o r t h e k i n e t i c energy d e n s i t ~ ~ i n t e g r a t i n g by p a r t s eq.(3.11) we g e t C;=Z9E/A where

(8)

w i t h

f o r a x i a l l y symmetric dynamical deformations along z-axis (F = F ) we g e t x Y

w i t h

F o r t h e cranked s t a t i o n a r y d e n s i t y we assume an o b l a t e Wood-Saxon shape

ySt(*, p) = Po

i + exp T - Rte)

a d

w i t h po =0.145 f n r 3 , a=0.5 fm and R0(B) f i x e d by t h e c o n d i t i o n

p5 ( * t ~ ~ . ) ) = A

The e q u i l i b r i u m deformation B ( W ) i s constructed by t h e v i r i a l t e n s o r method /7/ which c o n s i s t s t o impose a balance among t h e f o r c e s a c t i n g o n t h e nucleus, namely pressure, surface, c e n t r i f u g a l , Coulomb and n u c l e a r forces. We s o l v e a n a l y t i c a l l y t h e i n t e - g r a l s (4.2), assuming w i t h a very good approximation

(9)

C6-276 JOURNAL DE PHYSIQUE

In t h i s way, e x p l i c i t expressions f o r the dipole frequencies are obtained

where

i s t h e dipole centroid energy f o r spherical nuclei in t h e non-rotating case, which provides a good estimate of t h e experimental values /8/.

Trasforming t o t h e laboratory system, we get four frequencies Q+t w and Q-A w , i n addition t o the unaffected n Z . ( ~ n i n t h e f i g . s )

The expected e f f e c t s are shown in fig.1 f o r 40Ca and in f i g . 2 f o r 1 6 8 ~ r . W predict e

(10)

a c l e a r increasing of the width mainly due t o a s p l i t t i n g of t h e giant level. The dipole absorption cross sections, e a s i l y computed in our approach /3/, are used as weights i n order t o get t h e average dipole energy (*Q),

1 2 hw (MeV)

We obtain a small s h i f t of the centroid of the resonance t o lower energies. This e f f e c t i s enhanced in the laboratory frame, b u t s t i l l the maximum s h i f t i s of the order of 1.5 MeV f o r angular v e l o c i t i e s which can be reached in r e a l i s t i c heavy ion reactions (%LIZ 1 MeV). Actually t h e rotation discussed here i s f u l l y classical and then the corresponding angular momentum completely c o l l e c t i v e . I f we take i n t o ac- count a l s o quantum alignement e f f e c t s of single p a r t i c l e spins we get a much lower c o l l e c t i v e angular momentum and a corresponding substantial decrease of the angular velocity and of the related e f f e c t s . In conclusion while we s t i l l predict a noti- ceable s p l i t t i n g i t i s hard t o say t h a t we should a l s o expect a systematic decrease of the peak energy t o lower values.

V - COLLECTIVE DYNAMICAL EFFECTS ON SUBTHRESHOLD II-PRODUCTION IN HEAVY ION COLLISIONS The production of pions in heavy ion reactions f a r below the f r e e N N s c a t t e r i n g thre- shold i s maybe the f i r s t experimental evidence of new phenomena we could observe in medium energy heavy-ion c o l l i s i o n s . Of course one should take i n t o account the mo- mentum d i s t r i b u t i o n of nucleons in the two c o l l i d i n g ions, but a l l the calculations performed with Fermi gas models or more r e a l i s t i c shell model wave functions, give production r a t e s well below (of about a f a c t o r 100) t h e experimental values observed a t CERN i n the 12C+12C a-inclusive reaction a t the energy region 60-85 MeV/A /9,10/.

These r e s u l t s a r e inducing a search f o r production mechanisms d i f f e r e n t from the NN c o l l i s i o n (cooperative process, pionic fusion, nuclear bremsstrahlung e t c ...).

In t h i s contribution we would l i k e t o show how a c o l l e c t i v e d i s t o r t i o n in t h e momell turn d i s t r i b u t i o n s of the nucleons inside the approaching two ions can account f o r a large part of t h e observed discrepancy. We are assuming a diabatic polarization of the two ions along the l i n e which connects the two centres, which corresponds t o t h e

(11)

C6-278 JOURNAL DE PHYSIQUE

s e t up o f a g i a n t quadrupole o s c i l l a t i o n , whose d i s t r i b u t i o n f u n c t i o n i n phase space can be e a s i l y w r i t t e n i n t h e s c a l i n g approximation. I n o u r c a l c u l a t i o n we c o n s i d e r an harmonic o s c i l l a t o r s h e l l model t o d e s c r i b e 1 2 C /11/ and then we s c a l e c o o r d i n a - t e s and momenta i n a quadrupole way a l o n g z ( d i r e c t i o n between t h e two c e n t r e s )

where a i s t h e a m p l i t u d e o f t h e deformation. The p r o d u c t i o n c r o s s - s e c t i o n has t h e s t r u c t u r e

ua - (Glauber f a c t o r ) . (Phase space f r a c t i o n ) . ~ Y ( E ~ ~ ) - ( P a u l i b l o c k i n g ) . ( a a b s o r p t i o n ) where: t h e Glauber f a c t o r g i v e s t h e average number o f f i r s t NN c o l l i s i o n s ;

t h e phase space f r a c t i o n g i v e s t h e p a r t o f phase space a v a i l a b l e t o produce p i o n s i n t h e cm o f t h e t w c o l l i d i n q nucleons: -

a:N i s t h e p i o n p r o d u c t i o n c r o s s s e c t i o n f o r f r e e NN s c a t t e r i n g ;

P a u l i b l o c k i n g and a - a b s o r p t i o n a r e e f f e c t s t o t a k e i n t o account i n t h e e x i t channel.

A l l t h e s e terms a r e a f f e c t e d by t h e c o l l e c t i v e d e f o r m a t i o n i n t h e approaching phase.

We have focused o u r a t t e n t i o n on t h e phase space f r a c t i o n . F i g . 3 shows t h e b e h a v i o u r o f t h i s q u a n t i t y as a f u n c t i o n o f t h e d e f o r m a t i o n parameter a f o r a 12C+12C c o l l i s i o n

(12)

a t 85 MeV/A. It i s v e r y i n t e r e s t i n g t h e i n i t i a l i n c r e a s e o f t h e curve ( a l a r g e r t h a n .25 have n o p h y s i c a l meaning). We can go f r o m l e s s t h a n 1% o f phase space avaL l a b l e t o about a 30%.

We can c o n s i d e r as a minimum v a l u e o f a t h e z e r o p o i n t m o t i o n a m p l i t u d e f o r a sca- l i n g quadrupole mode o b t a i n e d f r o m t h e e q u a t i o n

w i t h

which l e a d s t o aZp .08.

T h e r e f o r e we c o u l d e a s i l y g a i n a f a c t o r between 10 and 20 j u s t t a k i n g i n t o account c o l l e c t i v e d e f o r m a t i o n s i n t h e i n i t i a l stage o f t h e r e a c t i o n . More p r e c i s e c a l c u l a - t i o n s a r e under way a l o n g t h i s l i n e /12/. The i n t e r p r e t a t i o n o f t h e enhancement as due t o a g i a n t quadrupole resonance a c t i n g as doorway s t a t e i s perhaps t o o n a i v e . However t h i s r e s u l t c e r t a i n l y shows t h a t dynamical d e f o r m a t i o n s i n the approaching phase can be e x t r e m e l y i m p o r t a n t t o e x p l a i n t h e h i g h r a t e o f produced s u b t h r e s h o l d p i o n s .

REFERENCES

/ I / K.A.Snover "Giant D i p o l e Resonances B u i l t on E x c i t e d S t a t e s " Proc. o f HESANS 8 3 ' Conference Orsay Eds. N.Van G i a i and N.Marthy, J o u r n a l de Physique i n press and r e f e r e n c e s t h e r e i n .

/2/ I.N. M i k h a i l o v i n "Nuclear C o l l e c t i v e Dynamics" Proc.Brasov I n t e r n . Summer School (1982). O.Bucurescu, V.Ceausescu, N.V.Zamfir Eds. (World S c i . Pub1 . , S i l l gapore) ( 1 983) 263.

K.Neergard Phys.Lett. llOB(1982) 7.

J.L.Egido and P.Ring, Phys.Rev. C25(1982) 3239.

R.R. H i l t o n "The r o t a t i n g g i a n t d i p o l e " Proc. T o p i c a l M e e t i n g on N u c l e a r F l u i d Dynamics ( T r i e s t e , l 9 8 2 ) Ed.s M.Di Toro,M.Rosina and S . S t r i n g a r i (IAEA,Vienna) 1983 p.67.

J . W i n t e r and P.Schuck " S e m i c l a s s i c a l approach t o g i a n t resonances o f r o t a t i n g n u c l e i " idem. p.61.

/3/ M. Di Nardo,M. Di Toro,G.Giansiracusa,U.Lombardo and G.Russo, Phys.Lett. 125B

(1983) 240 and 132B ( 1 9 8 3 ) l l .

M. Di T o r o ,G. G i a ~ a c u s a ,U.Lombardo and G. Russo " F l u i d Dynami c a l D e s c r i p t i o n o f G i a n t Resonances on H i g h S p i n S t a t e s " P r o c . o f HESANS 8 3 ' Conference Orsay i n press.

/4/ Y.M.Enge1 ,D.M.Brink,K.Goeke and D.Vautherin, N u c l e a r Phys. - A249(1975) 215.

/5/ H . K r i v i n e , J . T r e i n e r and O.Bohigas, Nucl.Phys. =(1980)155.

/6/ A.L.Goodman " F i n i t e Temperature Mean F i e l d Theory o f N u c l e i , Proc.Nuclear Theory Summer Workshop (Santa B a r b a r a ) l 9 8 1 , World S c i .Pub1 . Singapore,p.255.

/7/ I.N. M i k h a i l o , see r e f . / 2 / .

/8/ B.L.Berman and S.C.Fultz, Rev.Mod.Phys. - 47(1975) 743.

/9/ T.Johansson e t a l . Phys. Rev.Lett. s ( 1 9 8 2 ) 732.

/ l o / R.Shyam,J.Knoll GSI p r e p r i n t Aug.1983.

C. Guet p r i v a t e communication.

/11! C.Guet Nucl .Phys. A400(1983) 191

B.Jakobsson P h y s i c s r i p t a - T5 ( 1 983) 207

/12/ L.Fassina M.Sc.Thesis Catania U n i v . 1984,unpublished.

A.Bonaccorso,M.Di T o r o and L.Fassina ( t o b e p u b l i s h e d ) .

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to