• Aucun résultat trouvé

RAYLEIGH SURFACE WAVES (RSW) GENERATED BY PHOTOTHERMAL PROCESS : THEORY

N/A
N/A
Protected

Academic year: 2021

Partager "RAYLEIGH SURFACE WAVES (RSW) GENERATED BY PHOTOTHERMAL PROCESS : THEORY"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: jpa-00223173

https://hal.archives-ouvertes.fr/jpa-00223173

Submitted on 1 Jan 1983

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

RAYLEIGH SURFACE WAVES (RSW) GENERATED BY PHOTOTHERMAL PROCESS : THEORY

S. Huard, D. Chardon

To cite this version:

S. Huard, D. Chardon. RAYLEIGH SURFACE WAVES (RSW) GENERATED BY PHOTOTHER- MAL PROCESS : THEORY. Journal de Physique Colloques, 1983, 44 (C6), pp.C6-91-C6-96.

�10.1051/jphyscol:1983614�. �jpa-00223173�

(2)

JOURNAL DE PHYSIQUE

Colloque C6, suppl6ment au nalO, Tome 44, octobre 1983 page C6- 91

R A Y L E I G H SURFACE WAVES ( R S W ) GENERATED B Y PHOTOTHERMAL PROCESS :

THEORY

S . J . Huard and D. Chardon

I n s t i t u t dfOptique ThBorique e t AppZique'e, Laboratoire d'Expe'riences PondamentaZes en Optique, Betiment 503, Centre Universitaire d f @ s a y , B.? N046, 91406 Orsay Cedex, Frrmce

Resume : Une etude theorique de l ' e x c i t a t i o n d'ondes de Rayleigh i l a s u r f a c e de s o l i d e s i s o t r o p e s par voie thertroelastique e s t pr6sent6e. Nous donnons e n s u i t e une estimation du c o e f f i c i e n t de conversion thermique acoustique.

A b s t r a c t : Thermoelastic e x c i t a t i o n of RSW i s t h e o r e t i c a l l y i n v e s t i g a t e d on i s o t r o p i c s o l i d s . Thcrmal-.acoustic conversion e f f i c i e n c y i s evaluated.

I t i s well known t h a t Rayleiph s u r f a c e waves (RSW) can propapate on t h e s u r f a c e of s o l i d s . Generally, suck waves a r e e x c i t e d by p i e z o e l e c t r i c couplinc on non-isotro- pic s u b s t r a t e . On i s o t r o p i c m a t e r i a l s a thermoelastic coupling appears a s a s u i t a - b l e way t o generate RSW. Recently, experimental i n v e s t i c a t i o n s have been c a r r i e d out with heat sources c r e a t e d by o p t i c a l absorption / I , Z / , but no complete theory of t h i s e f f e c t e x i s t s .

In t h i s paper, we p r e s e n t a ~ o n o c h r o m a t i c approach of t h i s problem which l e a d s t o t h e exact determination of t h e d i s p l a c e c e n t vector f i e l d , s t r e s s e s and a l l o t h e r s thermal ahd e l a s t i c v a r i a b l e s . l!hile we have rnainly d e a l t with RSW, t h e method y i e l d s a l s o bulk waves [compressional and shear waves). From thermoelastic

equations / 3 / , which a r e coupled, s o l u t i o n s a r c expressed i n terms of thermal mode and of c o m p r ~ s s i o n a l and s h e a r modes a s usual.

A o n e dimensional s p a t i a l Fourier t r a n s f o r n connected w i t h s u i t a b l e outgoin? ( o r decaying) wave condition i s used t o solve t h e problem. In o r d e r t o prove t b e small influence of t h e gas above t h e s u b s t r a t e on RSW, we have compare? t h e s o l u t i o n s in two c o n f i g u r a t i o n s : s o l i d ln vacuum and sol id in a ?as ( a ~ r o r be1 ium). C'e have a l s o t h e o r e t i c a l l y s t u e i e d t b e amplitude of RSW on d i f f e r e n t i s o t r o p i c s o l i d s f o r t b e same beat source amplitude.

Morecver, n u r e r i c a l ccmputaticns show t h a t t h e thermal RSV conversion e f f i c i e n c y can be e a s i l y cval uated.

When a l i g h t beam 'ir focused'on t h e s u r f a c e o t an absorbin? s o l i d , a p a r t of t h e e l e c t r o m a g n ~ t i c power i s converted i n t o heat. Foreover, i f t h e l i g h t beam i s s i n e mcdulated, e l a s t i c waves a r e rcnerated by thermoelastic processes 141. In order t o s i m p l i f y t h e n ~ a t h e a a t i c a l t r e a t m e n t , only a l i n e source along t h e z-axis i s considered [Fig. I j .

When a s o l i d i s highly absorbing such a s a metal o r when t h e heat source appears on account of s u r f a c e plasmcn wave phenomena, t h e heat source can be reduced t o a surface l i n e source 6 ( 3 j 6 ( y ) . $very thernloelastic p r o p e r t i e s csn be derived from

&he+ t e m p e ~ a p r e f i e l d T ( r , t j = T ( r ) . e x p ( i w t ) and form t h e displacement v e c t c r u ( r , t j = ~ ( r ) . e x p ( i w t ) . (As usual in harmonic time-dependent processes, complex

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1983614

(3)

JOURNAL DE PHYSIQUE

.J t o c u s e d b e a m

F i c u r e 1 : N o t a t i o n s : @ power p e r u n i t l e n g t h a l o n g izhe z . a x i s .

'2

amp1 i t u d e s o f f i e l d s a r e used). I n o r d e r t o e x h i b i t c o m p r e s s i o n a l + w a ~ e s and+ shear waves, t h e d i s p l a c e m e n t vec$or+is s p L i t i n iir 10nciturJinal p a r t u L ( r ) = n r a d @ a n d i n i t s t r a n s v e r s e p a r t u ~ ( r ) = c u r l v where @ and v a r e t h e well-known e l a s t i c p o t e n t i a l s .

Because o f t h e symmetry o f t h e l i n e source on t h e s o l ~ d , e v e r y f i e l d i s z-indepen- d e n t ; i t comes t h a t o n l y t h e z-component o f t h e t r a n v e r s e p o t e n t i a l $ i s s i c n i f i - c a n t , so we s h a l l n o t e 142 = v.

D e a l i n g w i t h harmonic t h e r m o e l a s t i c processes i n i s o t r o p i c s o l i d s , t e m p e r a t u r e and e l a s t i c p o t e n t i a l s a r e c o u p l e d by t h e f o l l o w i n g e q u a t i o n s /3/ :

( I . a ) A T - T - i w n A @ = -A 6 ( x ) 6 ( y ) s

where AS i s t h e t h e r m a l d i f f u s i v i t y o f t h e s o l i d , kL and k ~ a r e r e s p e c t i v e l y t b e wave number o f t h e l o n p i t u d i n a l ( o r c o ~ p r e s s i o n a l ) and o f t h e t r a n v e r s e ( o r s h e a r ) wave, n and m a r e t h e c o u p l i n r c o e f f i c i e n t s b o t h of them b e i n g p r o p o r t i o n a l - t o t h e t h e r m a l t x p a n s i n n c o e f f i c i e n t / 3 / . A i s t h e m a ~ n i t u d e o f t h e l i n e h e a t source. It must be c u o t e d t b a t T and @ a r e d i r e c t l y c o u p l e d by e q . ( l . a j and e q . ( l . b ) when v

i s r e l a t e d t o @ o n l y t h r o u c h boundary c o n d i t i o n s on t h e y = 0 p l a n e . F o r s o l v i n g t h e r m o e l a s t i c e q u a t i o n s ( I ) , s u i t a b l e c o n d i t i c n s have t o be chosen on t h e p l a n e y = b. C e n e r a l l y , wben s u r f a c e wave c e n e r a t i c n i s s t u d i e d , t h e s u r r o u n d i n s a i r i s

i g n o r e d : f o r example, when s u r f a c e e l a s t i c waves a r e induced on a s o l i d by weans o f a p i e ~ o e l e c t r ~ c t r a n s d u c e r , t h e power l o s s i n t h e a i r i s n e g l i r i b l e . B u t i n t h e p r e s e n t case, a p a r t o f t h e h e a t d i f f u s e s i n t o t h e f l u i d . I t becomes necessary t o t a k e i n t o account t h e thermal p r o p e r t i e s o f t h e upper medium t h r o u g h t k e thermo- dynamic e q u a t i o n s o f t h e f l u i d / 5 / :

which a r e snalogous t o eq. ( 1 ) . ( I t n u s t be quoted t h a t n o v i s c o s i t y e f f e c t s a r e considered, so shear waves can n o t e x i s t i n t h e f l u i d ) . I n ep. (21, AF i s t h e f l u i d t h e r m a l d i f f u s i v i t y , y i s t h e r a t i o o f s p e c i f i c h e a t s Cp/CV, a = (ap/aT), and k ~ i s t h e wave number o f t h e sound waves.

The u s u a l boundary c o n d i t ~ o n s a r e t h e c o n t i n u i t y o f t h e t e m p e r a ~ u r e , o f t h e h e a t flmw, o f 0 l e n o m l d i s p l a c m t uy a n d t h e c o n t i n u i t y o f t h e s t r e s s e s uxy, uyy. A t t h i s p o i n t , i t r u s t be n o t e d t h a t t h e i n f l u e n c e o f t h e f l u i d ( a i r ) i s weak because o f t h e r a t i o o f thermal c o n d u c t i v i t i e s K ~ / K F , much g r e a t e r t h a n I ( = 104 f o r aluminum- a i r system). TG e v a l u a t e t h e i r x f l u e n c e o f t h e gas on t h e e l a s t i c s u r f a c e waves g e n e r a t i o n , tws r e s c l u t i c n s have been c a r r i e d o u t . F i r s t , we c o n s i d e r t h a t vacuum

(4)

i s i n the y Z O h a l f space and then we s o l v e t h e r e a l problem ( s o l i d - g a s ) . 1-1 SOLIC IN VACUUM

I n t h i s case, the stresses ax? and uyf vanish on y = t! as a l s o t h e heat f l o w towards t h e $as. To solve eq. 1 ) a x- o u r l e r t r a n s f o r m i s used accordinp the d e f i n i t i o n :

2inux dx etc.. .

For a ~ i v e n u, t h e p r o b l e ~ i s reduced t o one dimension. The system'(1) becomes :

a z i 2 2 2

(3.a) , - ( 4 n u + i W, T t i u n kL $= - A 6(y)

aY A

i n which we have used eq. (1.b) t o s u b s t i t u t e A $ i n eq.(l.a). I n t h i s transforma- t i o n we s e t

I n t r o d u c i n y aL 2 = 4n2 u2 - k: and a: = 4n2 u2 + i f , i and 4 can be e a s i l y expressed f o r y < 0 :

- "9

( 4 ) T-(u,y) = a ( u ) e + as B ( U ) e OLY

where oL and a a r e chosen so t h a t only y decaying waves o r outgoing waves e x i s t i n t h e s o l l d . as tand tS - a r e r e l a t e d t o c o u p l i n g c o e f f i c i e n t s by

and

2 .

because f >> kL 7n t h e XPz frequency range. I n a s i m i l a r manner : (3.c) $(u,y) = y ( u J e OTY

4ni u2 - k 2 : o w i l l be chosen t o s a t i s f y the o u t c o i n ? wave c o n d i t i o n . :k:r&;~itudes a i u ) , & ( u ) 2nd v [ u ) o f t h e thermal mode (eYtY) , 1 o n p i t u d i n a l mode

( e U i y ) and transverse rcode (euTY) a r e derived from boundary c o n d i t i o n s . We o b t a i n :

. ,

2 2 2 4 i a u t S ( 8 n u -kT) (ut

( u ) = --- --

A

- "L' A

w i t h A = ot a. - a s t S ~ L ~ l

i n which do = (8,' uZ - kT2)2 - 16n2 u2 uLuT

(5)

C6-94 JOURNAL DE PHYSIQUE

2 2 2 2

and bl = ( 8 n 2 uZ kT ) - 16n u utuT

Because >> k L ~ and l a s t S / << 1, i t appears t h a t t h e f i r s t t e r r in A i s preponde- r a n t unless no vanihes. I t i s important t o note t h a t A, = 0 y i e l d s t b e R a y l e i ~ h + phase v e l o c i t y alono t h e x.axis V R /6/. Usin? t h e expression u = grgd :d + c u r l y, t h e x. Fourier t r a n s f o r n fix and fiy of ux and uy a r e e a s i l y obtained a s a l s o Sxy and Syy.

1-2 SOLIC IN -- A CAS

The main modification r c f e r r e d t o t h e precedinc case l l e s in t h e boundary condi- t i o n s . Now, t h e c o n t i n u i t y of temperature, of heat flow and of normal displacement f o r y = 0 must be w r i t t e n . I'oreover, t h e n o r m a l - s t r e s s uyy equals t h e cas pressure p a t y = G .

From t h e l i k e n e s s of eq. 1 and eq. 3 a thermal mode and an a c o u s t i c a l rode a r e z l s o introduced in t h e pas ; outgoinc ( o r decayin?) wave c o n d i t i o n s a r e n a t u r a l l y taken i n t o account. The boundary i o n d i t i o n s lead t o f i v e l i n e a r equation which w i l l y i e l d t h e amplitude of each mode e i t h e r i n t h e s o l i d o r i n t h e cas. The s c l u t i o n i s numerically derived because no simple a l e e b r a i c expression can be obtained. The x-Fourier transform of t h e displacement i s c a l c u l a t e d a s in 5 1-1.

I 1 - NUPIERICAL RESULTS 11-1 RSK AYPLITUPE

Fio.2: Amplitude of normalized Iu^,,I-for vacuum and two gases

In order t o s i m p l i f y t h e physical i n t e r p r e t a t i o n , we have c a l c u l a t e d t h e d i s p l a c e - ment ux and uy on t h e y = 0 plane. Both \fix/ and Ifiy 1 e x h i b i t a sharp peak f o r

u = U R such-that ao(Up) = 0 correspondinc t o t h e Rayleirh phase v e l o c i t y .

J

k h i l e only 112 1 i s p l o t t e d on Ficure 2 n u ~ e r i c a l computations give t h e same shape f o r f i x f and in p a r t i c u l a r t h e same width a t half~naximum. I t appears t b a t t h e width A U i s rinimum when no gas i s p r e s e n t 1 t h i s confipuration corresponds a l s o t o t h e h i c h e s t peak. When a gas covers t h e s o l i d , t h e amplitude of t h e RSll decreases a s i t propagatesalonc t h e x-axis because of therrral l o s s e s . Accordino t o Fourier trans for^ p r o p e r t i e s , t h e damping length i s around I / A U .

4.

0.5 .

In every cases t h e narrowness of t h e peak near up j u s t i f i e s t h e vacuum model even f c r thermoelastic e x c i t a t i o n of RSW. fro^ now on we s h a l l use t h i s ~ o d e l . Because of t h e outgoino s u r f a c e wave c o n d i t i o n , only p o s i t i v e s p a t i a l frequencies u must be considered f o r x > 0 when t h e inverse Fourier transform i s c a l c u l a t e d . This o p e r a t i c n c i v e s t h e amplitude of ux and uv ( f o r exanple a t t = 0) versus x(Fi?. 3 ) .

nIurj

ax

lii

-- --

- -

u h m - 4

328.5 328.6 128.3.

(6)

rnm

F i q . 3 : Amplitude o-F ux and u versus t h e d i s t a n c e x f r o r r t h e source Y

As usual a a/i o u t o f phase e x i s t s between ux and u , and t h e wavelenpth observed i s t h e R a y l e i a h wavelenoth. We have compared two s u g s t r a t e s (aluminum and c o p p e r ) . A small d i f f e r e n c e appears on t h e w l d t h o f t h e 10yl and lOxl peaks ; on copper RSK decay s l o w e r t h a n on aluminum.

11-2 THERMAL-RSN CCF!VEP.SICK EFFICIENCY

F o r e v a l u a t i n o t h e therrral-RSI! c o n v e r s i o n e f f i c i e n c y i t i s necessary t o c a l c u l e t e t h e f l u x 6 f t h e P l a s t i c P o y n t i n a v e c t o r t h r o u g h a x = c s t e p l a n e f o r a narrow s p a t i a l f r e q u e n c y band AU around UR.

The x corrponent of t h e t i m e averaged P o y n t i n n v e c t o r i S

1 a u

i s PX = [oXY (-3- a t + c.c.] because ox,

-

0

i e 1

P = [-iw'u*

X Oxy + C ' C '1

Because I O / and 10 / a r e narrow peaks, t h e y can be approximated w i t h 6 f u n c t i o n s so t b a t becomes

where Bu(y) and B G ( y ) a r e t h e a c p l i t u d e s o f O ( u ) and 6 ( u ) f o r u = uR.

Y XY

The x c o ~ p o n e n t of t h e P o y n t i n c v e c t o r i s d e r i v e d f r o m z = gr$d ;d + c z r l $ and f r o m e x p r e s s i o n ( 5 ) and ( 6 ) . An e v a l u a t i o n o f t h e Px f l u x p e r u n i t l e n c t h a l o n g t h e z. a x i s

1 eads t o 2

e ;d w i t h e z lo-' w-I, f o r aluminum. T h i s r e s u l t s shows t b a t a Great p a r t ;!'li Fhe l ? r h t absorbed i s used t o h e a t t h e s u b s t r a t e .

(7)

C6-96 JOURNAL DE PHYSIQUE

CONCLUSION

Ue have s t u d i e d t h e KSW e x c i t a t i o n by thermoelastic processes on i s o t r o p i c substra- tes. When the s o l i d i s covered w i t h a gas a r e s o l u t i o n o f rhermoelastic equations and thermodynamic equations i n t h e gas shows a weak i n f l u e n c e o f t h i s l a s t f l u i d . This a n a l y s i s j u s t i f i e s t h a t the gas i s u s u a l l y i c n o r e d when RSK are s t u d i e d even i n t h e case o f thermoelastic e x c i t a t i o n .

E h i l e e x p e r i s e n t a l i n v e s t i p a t i c n o f t e n use p u l s e sources, we have d e a l t w i t h harmonic sources. The knowinc of t h e phenomena versus t h e modulation frequency then a l l o w s a s p e c t r a l a n a l y s i s o f t h e pulsed case.

REFERENCES

/ I / A.M. AINDOIJ, R.J. DEWFURST and S.B. PALMER Opt. Com. - 42, ( 1 9 8 2 ) , 116 /2/ A.C. TP,M and H. COUFAL Appl. Phys. L e t t . - 42, ( 1 9 8 3 ) , 33.

/5/ Irl. NOWACKI : " T h e r m o e l a s t i c i t y " Pergamon Press, Oxford New-York, London, P a r i s 1962.

/4/ M.A. BICT J. Appl. Phys. - 27, (1956) 24C

j 5 f P.M. FCORSE and K.U. IPIGARD : " T h e o r e t i c a l Acoustics", Kc Graw F i l l , New-York 1968.

/ 6 / F.S. LOCKETT Jour. Pech. Phys. Sol. - 7, ( 1 9 5 8 ) , 71.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to