• Aucun résultat trouvé

ON THE LIQUID GLASS TRANSITION

N/A
N/A
Protected

Academic year: 2021

Partager "ON THE LIQUID GLASS TRANSITION"

Copied!
4
0
0

Texte intégral

(1)

HAL Id: jpa-00220334

https://hal.archives-ouvertes.fr/jpa-00220334

Submitted on 1 Jan 1980

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ON THE LIQUID GLASS TRANSITION

M. Cyrot

To cite this version:

M. Cyrot. ON THE LIQUID GLASS TRANSITION. Journal de Physique Colloques, 1980, 41 (C8),

pp.C8-107-C8-109. �10.1051/jphyscol:1980828�. �jpa-00220334�

(2)

JOURNAL DE PHYSIQUE CoZZoque C8, suppZ&ent au n o 8, Tome 41, a o c t 1980, page

C8-107

ON THE LIQUID GLASS TRANSITION

M . Cyrot

L a b o r a t o i r e L o u i s NdeZ, C. N. R. S . , 166X, 38042 GrenobZe Cedex, France

ABSTRACT : We proposed a new model f o r t h e l i q u i d g l a s s t r a n s i t i o n based on t h e f o l l o w i n g assumptions : i n t h e l i q u i d phase, it e x i s t s f l u c t u a t i o n s o f l o n g l i f e time which l e a d t o inhomogeneities i n t h e l o c a l f r e e energy. A s t h e f r e e energy i s p o s i t i o n dependant, we d e s c r i b e t h e t r a n s i t i o n a s a p e r c o l a t i o n process.

We d i s c u s s t h e c o n d i t i o n s under which such a p r o c e s s i s p o s s i b l e .

The l i q u i d - g l a s s t r a n s i t i o n i s f a r from b e i n g understood. There a r e numbers o f reasons. The experimental s i t u a t i o n ( I ) i s n o t c l e a r due t o com- p l e t e l y d i f f e r e n t methods o f formation o f a g l a s s . T r a d i t i o n a l l y g l a s s e s a r e d e f i n e d a s bodies formed by continuous hardening o f a l i q u i d b u t now t h e y

can b e formed by v a r i o u s discontinuous condensation p r o c e s s e s . The approach t o t h e t r a n s i t i o n can b e s t u d i e d only i n t h e f i r s t case. I n t h e second pro- c e s s , one can only s t u d y t h e p r o p e r t i e s o f t h e l i q u i d phase which p e r m i t s amorphous s o l i d s . Thus it is c l e a r t h a t t h e r e c o u l d b e no phase t r a n s i t i o n a t a l l and t h a t t h e g l a s s t r a n s i t i o n would b e k i n e - t i c i n n a t u r e a g r a d u a l f r e e z i n g out o f e q u i v a l e n t c o n f i g u r a t i o n s . It seems s u r e t h a t t h e c r y s t a l l i n e s t a t e i s always more s t a b l e and g e n e r a l l y t h e r e e x i s t a r e c r y s t a l l i s a t i o n p r o c e s s when h e a t i n g t h e amorphous b o d i e s . The amorphous s t a t e i s t h u s me- t a s t a b l e and t h i s i s a reason o f t h e d i f f i c u l t i e s o f a t h e o r e t i c a l s t u d i e s . A simple s t u d y o f t h e l i q u i d - g l a s s t r a n s i t i o n would r e q u i r e t h a t no crys- t a l l i n e phase e x i s t s . Happily n a t u r e p r o v i d e s us with a system which can shed l i g h t on t h i s p r o b l e m : t h e s p i n g l a s s t r a n s i t i o n . I n t h a t c a s e , t h e ran- dom i n t e r a c t i o n between s p i n s does not permit an o r d e r e d s t a t e . Thus i n d e c r e a s i n g t e m p e r a t u r e s p i n s a r e o b l i g e d t o f r e e z e i n a d i s o r d e r e d manner and we have t h e e q u i v a l e n t of a l i q u i d - g l a s s t r a n s i t i o n without t h e d i f f i c u l t i e s o f a p o s s i b l e o r d e r e d s t a t e . We have c o n s i d e r e d i n a p r e v i o u s paper ( 2 t h i s problem and have shown t h e importance of t h e inhomogeneity i n t h e l o c a l f r e e energy o f t h e sys- tem. I f t h i s inhomogeneity i s l a r g e compared t o t h e f r e e z i n g t e m p e r a t u r e , we can d e f i n e d t h i s tempera- t u r e with t h e h e l p o f a p e r c o l a t i o n p r o c e s s . I f not,we have a g r a d u a l f r e e z i n g which i s p u r e l y k i -

n e t i c . I n t h i s p a p e r , we w i l l show t h a t t h e s e two p r o c e s s e s have t h e i r e q u i v a l e n t i n t h e l i q u i d - g l a s s t r a n s i t i o n . However t h e d i f f i c u l t i e s , t h e r e , stem from t h e f a c t t h a t f l u c t u a t i o n s o r inhomoge- n e i t i e s i n t h e system p e r s i s t o n l y d u r i n g a t y p i c a l time c o n t r a r y t o t h e s p i n g l a s s problem where inho- mogeneities a r e due t o s t a t i s t i c i n t h e random in- t e r a c t i o n s . We t h u s have t o c o n s i d e r a new parame- t e r which i s t h e t i m e of f l u c t u a t i o n s .

I n t h i s p a p e r , we want t o p r e s e n t a model f o r t h e g l a s s t r a n s i t i o n . This model i s based on t h e assump t i o n t h a t i n o r d e r t o be a b l e t o f r e e z e , t h e ma- t e r i a l s must show i n t h e l i q u i d phase l a r g e f l u c - t u a t i o n s which l a s t a l o n g t i m e compared t o t h e t i m e o f quenching t h e m a t e r i a l s . These f l u c t u a t i o n s can b e o f any t y p e s . I n a monoatomic m a t e r i a l s it can be f l u c t u a t i o n s o f d e n s i t y , i n a l l o y s f l u c t u a - t i o n s o f c o n c e n t r a t i o n s e t c . . . It i s only assumed t h a t t h i s inhomogeneity p e r s i s t s under t h e t i m e o f quenching t h e m a t e r i a l s . These inhomogeneities mean t h a t t h e energy o r r a t h e r t h e f r e e energy o f t h e s o l i d phase o b t a i n e d by quenching o r r a p i d de- c r e a s e o f t h e t e m p e r a t u r e i s p o s i t i o n dependant.

For i n s t a n c e i n an a l l o y p a r t o f t h i s a l l o y s cor- respond t o a w e l l d e f i n e d compounds with a l a r g e cohesive energy, o t h e r p a r t does not correspond t o a d e f i n e d compound and h a s a lower f r e e energy. Du- r i n g t h e d e c r e a s e o f t e m p e r a t u r e p a r t o f t h e a l l o y w i l l behave a s a s o l i d c l u s t e r d u r i n g t h e t i m e con- s i d e r e d and t h e thermodynamic o f t h i s p a r t c o r r e s - pond t o t h e thermodynamic o f t h e c l u s t e r . Other p a r t w i l l correspond t o t h e l i q u i d phase and have t h e thermodynamics p r o p e r t i e s o f t h e l i q u i d . More p r e c i s e l y a group o f atoms w i l l behave a s a c l u s t e r embedded i n t h e l i q u i d p h a s e i f i t s l i f e t i m e i s g r e a t e r t h a n t h e t i m e o f o b s e r v a t i o n -tM. An atom

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1980828

(3)

JOURNAL DE PHYSIQUE

w i l l b e l i n k e d t o a s o l i d - l i k e c l u s t e r if t h e pro- b a b i l i t y o f b r e a k i n g i t s l i n k s with t h e c l u s t e r i s s m a l l during t i m e TM. This p r o b a b i l i t y i s given by an Arrhenuis law. I f E i s t h e f r e e energy of i t s l i n k s with t h e c l u s t e r , we have :

- = - T

'

I e - k T E

T ( 1

t h e atom i s l i n k e d w i t h t h e s o l i d - l i k e c l u s t e r i f T < 'I&, if T < .rM t h e atom i s i n t h e l i q u i d phase.

Our assumption o f l a r g e inhomogeneities means t h a t it e x i s t s a range o f temperature where c l u s t e r s of t h i s t y p e can e x i s t d u r i n g t h e time TM. The f l u c - t u a t i o n i n f r e e energy W must b e such t h a t

W > kTG Log

-

L~ (?

To

Where T i s t h e g l a s s temperature. The l i f e t i m e o f G

t h e inhomogeneitymust be l o n g enough. This i s our second assumption. For t h e s p i n g l a s s problem, t h i s time i s i n f i n i t e .

When t h e temperature i s decreased, t h e s o l i d - l i k e c l u s t e r s grow. A t temperature TG

,

a l e c l u s t e r becomes i n f i n i t e and t h e v i s c o s i t y i s i n - f i n i t e . T h e r e f o r e , t h e g l a s s t e m p e r a t u r e i s d e f i n e d by a p e r c o l a t i o n p r o c e s s .

The F u l c h e r law ( 3 ) f o r v i s c o s i t y i s only r e l a t e d t o t h e growth of an i n f i n i t e c l u s t e r a s we w i l l d i s c u s s i n a next paper. It i s obvious t h a t t h i s F u l c h e r law can be observed only i n s i t u a t i o n where t h e time of f l u c t u a t i o n s i s very l o n g , which means t h a t t h e m a t e r i a l s w i l l n o t c r i s t a l l i z e . But t h i s i s n o t a s u f f i c i e n t c o n d i t i o n we must a l s o have a range o f W l a r g e enough. I T t h i s range i s n o t l a r g e enough, we w i l l have a d i f f e r e n t t y p e o f t r a n s i t i o n . We w i l l n o t be a b l e t o s e p a r a t e l i q u i d region from s o l i d - l i k e region. There w i l l b e a qua- s i homogeneous n u c l e a t i o n o f s o l i d - l i k e r e g i o n s . No i n f i n i t e c l u s t e r w i l l grow b u t t h e r e w i l l b e a con- t i n u o u s f r e e z i n g . This i s more s i m i l a r t o a micro- c r y s t a l l i n e m a t e r i a l s .

This model o f p e r c o l a t i o n i s very d i f f i - c u l t t o handle. I n o r d e r t o extend t h e d e s c r i p t i o n , we s e t up t h e f o l l o w i n g semi-phenological model.

We devide t h e m a t e r i a l s o f N atoms i n t o blocks o f n atoms. We have p = ; b l o c k s . N These b l o c k can b e e i t h e r i n t h e l i q u i d phase w i t h an energy which w i l l be t a k e n a s t h e zero o f energy. The amount of phase space w i l l be t a k e n a s t h o s e o f h a r d spheres i n t h e volume v o f t h e blocks

( v

-

n 6 ) n

b l o c k can b e a l s o i n t h e amorphous s t a t e with a f r e e energy E p e r atom which depends on t h e posi- t i o n o f t h e b l o c k s and which i s measured from t h e l i q u i d s t a t e . We c a l l P ( E ) t h e p r o b a b i l i t y t h a t a block h a s a f r e e e n e r g y € p e r atom. The p a r t i t i o n

f u n c t i o n i s i f we have p t l i q u i d - l i k e blocks and ( 1 - t ) p s o l i d - l i k e b l o c k s . (1-t)p

v - n 6 n p t

-8

.Z nEj

L

e jj.1

Q =

d t ( 3 )

o

(n! )pt

Such an e x p r e s s i o n f o r t h e p a r t i t i o n f u n c t i o n i s n o t v a l i d f o r an homogeneous system because t h e p t l i q u i d - l i k e b l o c k s can b e choosen a t random.

Let us c a l l -E t h e energy minimum f o r P ( E ) we de- f i n e E ( t ) as

E ( t

I - t =

P ( E ) dE -E

0

1

Thus we have Q = d t exp $ ( t )

When N o r p i s going t o i n f i n i t y , we can approxi- mate $ by t h e value o f t h e i n t e g r a n t a t t h e maxi- mum o f $ ( t ) .

I f f o r i n s t a n c e , we assume t h a t P ( E ) i s c o n s t a n t from -E t o 0 , we have :

and t h e maximum v a l u e o f $ ( t ) i s a t t a i n e d f o r

t = ( 1

+

log-) ( 9 )

€ 0

As one d e c r e a s e s t h e t e m p e r a t u r e , t h e number o f b l o c k s which becomes s o l i d - l i k e i n c r e a s e s . When t h e s e blocks form an i n f i n i t e c l u s t e r , we have t h e l i q u i d g l a s s t r a n s i t i o n . T G i s r e l a t e d t o a perco- l a t i o n p r o c e s s . The v a l u e o f t a t t h e p e r c o l a t i o n

1 1

t h r e s h o l d i s between

-

t o

t.

A t

TG,

t h e v i s - 3

c o s i t y i s going t o i n f i n i t y b u t t h e r e i s no s i n - g u l a r i t y a s f a r a s t h e thermodynamic q u a n t i t i e s a r e concerned.

Our thermodynamic d e s c r i p t i o n assumes t h a t a s o l i d - l i k e b l o c k remains s o l i d - l i k e d u r i n g a time- g r e a t e r t h a n T* i. e.

nE > kT Log

=-

TM Where

6

i s f o u r times t h e h a r d s p h e r e volume. These

(4)

According t o t h e r e s u l t ( 9 ) we must have i n o r d e r t o b e s e l f - c o n s i s t e n t

T~ V-n6

n > Log

-

/ ( I + Log -)

T o

However n cannot be t o o l a r g e because t h e range of P ( E ) i s a d e c r e a s i n g f u n c t i o n o f n and we must keep t h i s range much g r e a t e r t h a n TG.

Cohen and Grest ( 5 ) have a l s o d e f i n e d TG through a p e r c o l a t i o n t h r e s h o l d . The p e r c o l a t i o n p r o c e s s stems from a d e f i n i t i o n by t h e volume o f l i q u i d - l i k e and s o l i d - l i k e c e l l s . This i s an e x t e n s i o n o f t h e f r e e volume t h e o r y ( 6 ) and t h e . t r a n s i t i o n i s d r i v e n by t h e communal entropy. However s e r i o u s o b j e c t i o n s have been r a i s e d ( 7 ) t o t h i s p i c t u r e . The most s e v e r e i s t h e p e r f e c t l y l i n e a r b e h a v i o r o f t h e t h e r m a l expansion a s t h e f r e e volume be- comes q u i t e s m a l l . We p o i n t o u t t h a t o u r t h e o r y does not l i e on volume b u t on f r e e energy f l u c t u a - t i o n s and s o l i d - l i k e c l u s t e r s a r e n o t d e f i n e d through volume. Secondly, we t h i n k t h a t t h e time must e x p l i c i t l y e n t e r a t h e o r y of t h e l i q u i d g l a s s t r a n s i t i o n and o u r p e r c o l a t i o n p r o c e s s depends on it through e q u a t i o n 1 . Up t o now it seems very d i f f i c u l t t o s t u d y t h i s p e r c o l a t i o n p r o c e s s except perhaps i n t h e s p i n g l a s s t r a n s i t i o n which can b e looked a t a s a model.

REFERENCES

1. P. Chaudhari and D. T u r n b u l l , Science 199, 11 (1 978)

2 . M. Cyrot

,

t o b e p u b l i s h e d

3 . G.S. F u l c h e r , J. Am. Ceram. Soc. 8, 339 (1925) 4. K.K.S. Shante and S. K i r k p a t r i c k , Adv. Phys. 20,

325 (1971)

S. K i r k p a t r i c k , Rev. Mod. Phys.

45,

574 (1973) 5 M.H. Cohen and G.S. G r e s t , Phys. Rev. B. 20,

1077 (1979)

6.

M.H. Cohen and D. T u r n b u l l , J. Chem. Phys. 31, 1164 (1959)

I b i d , 34, 120, (1961) B i d , 52, 3038 ( 1970)

7. P.W. Anderson i n ILL condensed m a t t e r , Les Houches ( 1978)

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to