• Aucun résultat trouvé

ON THE QUANTIFICATION OF DYNAMIC IN IMPACT LOADING AND THE PRATICAL APPLICATION FOR KId-DETERMINATION

N/A
N/A
Protected

Academic year: 2022

Partager "ON THE QUANTIFICATION OF DYNAMIC IN IMPACT LOADING AND THE PRATICAL APPLICATION FOR KId-DETERMINATION"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: jpa-00224757

https://hal.archives-ouvertes.fr/jpa-00224757

Submitted on 1 Jan 1985

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ON THE QUANTIFICATION OF DYNAMIC IN IMPACT LOADING AND THE PRATICAL APPLICATION FOR KId-DETERMINATION

W. Böhme, J. Kalthoff

To cite this version:

W. Böhme, J. Kalthoff. ON THE QUANTIFICATION OF DYNAMIC IN IMPACT LOADING AND

THE PRATICAL APPLICATION FOR KId-DETERMINATION. Journal de Physique Colloques,

1985, 46 (C5), pp.C5-213-C5-218. �10.1051/jphyscol:1985527�. �jpa-00224757�

(2)

JOURNAL DE PHYSIQUE

Colloque C5, suppl6ment au n08, Tome 46, ao0t 1985 page C5 -2 13

ON THE QUANTIFICATION OF DYNAMIC EFFECTS I N IMPACT LOADING AND THE

PRACTICAL APPLICATION FOR

Kid-DETERMINATION

W. BGhme and J.F. Kalthoff

Fraunhofer-Institut fur Werkstoffmechanik W8hZerstrasse 1 2 , 0-7800 Freiburg, F.R. G.

Resume

-

Nous presentons une etude systematique de l ' h i s t o i r e du chargement de l l e x t r e m i t @ de f i s s u r e pour des G c h a n t i l l o n s de f l e x i o n t r o i s - p o i n t s . Nous avons e f f e c t u e une analyse q u a s i s t a t i q u e ti l ' a i d e d'un modele mathematique s i m p l i f i e . Les e f f e t s dynamiques sont q u a n t i f i e s par des experiences. En se basant s u r c e t t e approche nous developpons une procedure q u i permet de p r e d i r e l ' h i s t o i r e du f a c t e u r d 1 i n t e n s i t @ de c o n t r a i n t e dynamique pour des c o n d i t i o n s d ' e s s a i a r b i t r a i r e s .

Abstract

-

A systematic study o f t h e crack t i p l o a d i n g h i s t o r y i s presented f o r impacted three-point-bend specimens. A q u a s i s t a t i c a n a l y s i s i s performed f o r a s i m p l i f i e d mathematical model and t h e dynamic e f f e c t s are q u a n t i f i e d by model experiments. Based on t h i s approach a procedure i s developed which e a s i l y allows t h e p r e d i c t i o n o f t h e dynamic s t r e s s i n t e n s i t y f a c t o r h i s t o r y f o r a r b i - t r a r y t e s t conditions.

I

-

INTRODUCTION

Three-point-bend specimens a r e w i d e l y used f o r determining f r a c t u r e toughness data under s t a t i c as w e l l as dynamic l o a d i n g conditions. I n s t a t i c f r a c t u r e mechanics t h e r e l a t i o n s h i p between t h e l o a d a p p l i e d t o t h e specimen, t h e geometry o f t h e specimen, and t h e s t r e s s i n t e n s i t y f a c t o r KI a t t h e crack t i p i s g e n e r a l l y w e l l known. For impact l o a d i n g c o n d i t i o n s a s i m i l a r simple r e l a t i o n s h i p cannot e x i s t because o f dy- namic e f f e c t s The p r o p o r t i o n a l i t y between t h e a p l l i e d l o a d P ( t ) and t h e crack t i p l o a d i n g Kayn(t) becomes t i m e dependent. The K Yn(t)-behavior, however, must be known f o r \he determination o f t h e impact f r a c i u r e toughness KId by t h e concept o f impact response curves C1,21.

An analytic-experimental approach i s presented f o r determining t h e h i s t o r y o f t h e dynamic crack t i p l o a d i n g d u r i n g t h e impact processes. The procedure s p l i t s t h e problem i n t o two d i f f e r e n t tasks. F i r s t , a rough estimate o f t h e gross crack t i p loading, ~ ? . ~ . ( t ) , i s obtained

85

an a n a l y t i c a l , q u a s i s t a t i c consideration. Se- condly,a c o r r e c t i o n f u n c t i o n , k ' ( t ) , i s e x p e r i m e n t a l l y determined, which quanti- t a t i v e l y describes dynamic e f f e c t s . The combination af both allows a q u a n t i t a t i v e p r e d i c t i o n o f t h e dynamic s t r e s s i n t e n s i t y f a c t o r , K1Yn(t), by t h e r e l a t i o n s h i p :

~fJ'n((t) = ~ P - s - ( t ) X kdyn (1

D e t a i l s o f t h e procedure and a p p l i c a t i o n s t o various problems are given i n C3,41 and are summarized i n t h i s paper.

I 1

-

QUASISTATIC CONSIDERATIONS

The t e s t arrangement f o r three-point-bend specimens under impact loading i s shown schematically i n Fig. l a . The l o a d i n g behavior o f t h e crack i s deternined by many parameters, i.e. hammer mass M, impact v e l o c i t y v,, machine compliance C,

, specimen w i d t h W, specimen l e n g t h L, thickness B, crack l e n g t h a, specimen

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1985527

(3)

JOURNAL DE PHYSIQUE

~ q - ~ . ( t ) = vOY

iEt'

s i n

(Q

t.)

compliance CS, Young's-modu-

where C ~ C C C * and S = 4W. The f u n c t i o n Y = Y(a1W) i s t h e known s t a t i c r e l a t i o n - s h i p f o r KI-ietermination w i t h three-point-bend specimens a f t e r Srawley [61:

l u s E, P o i s s o n ' s - r a t i o v, mass d e n s i t y p, and support span S.

For a f i r s t estimate on t h e ge- n e r a l i n f l u e n c e o f these para- meters on t h e gross crack t i p

l o a d i n g behavior, a simple mass- spring-model i s i n t r o d u c e d as shown i n Fig. l b . The hammer i s replaced by a p o i n t mass and t h e specimen by a massless spring.

These assumptions can be made s i n c e t h e hammer mass i s u s u a l l y l a r g e compared t o t h e mass o f t h e specimen. I f necessary, t h e

C* = c:(~/w) = CS/(EB) i s t h e dimensionless specimen compliance f o r plane d r e s s a f t e r Bucci e t a l . C71:

I

a1

I

bl

I

/

v.

l

@ POINT MASS M

: '

SPRING ISPECIMENI:

COMPLIANCE CS

,,,,,.,

G I

I

The machine compliance Cm can e a s i l y be taken i n t o account i n eq. ( 2 ) by r e p l a c i n g C< by C:(1

+

Cm/Cs).

machine compliance can be taken Fig. 1

-

Q u a s i s t a t i c a n a l y s i s o f t h e impact event

i n t o account by another spring. by a simple mass-spring-model

This model represents a coarse simpl i f i c a t i o n o f t h e a c t u a l

processes since i t neglects dynamic e f f e c t s w i t h i n t h e specimen, e.g. wave propaga- t i o n processes. But i t leads t o a d i f f e r e n t i a l equation which e a s i l y can be solved.

The s o l u t i o n gives t h e displacement o f t h e specimen as a f u n c t i o n o f time. U t i l i z i n g w e l l known s t a t i c r e l a t i o n s h i p s f o r three-point-bend specimens C5-71 t h e displacement can be expressed i n terms o f s t r e s s i n t e n s i t y f a c t o r s , denoted as t o i n d i c a t e t h e q u a s i s t a t i c c h a r a c t e r o f t h e s o l u t i o n :

The d e r i v e d formula g i v e s a f i r s t overview on t h e g l o b a l crack l o a d i n g behavior and i t s dependence on t e s t parameters, as i l l u s t r a t e d i n Fig.2a-f. Only t h e f i r s t h a l f o f t h e p e r i o d o f t h e r e s u l t i n g s i n e - f u n c t i o n (eq. ( 2 ) ) i s shown. This i s t h e only t i m e i n t e r v a l o f i n t e r e s t i n impact t e s t s , since t h e t e s t s u s u a l l y are performed i n such a manner, t h a t t h e specimens break i n t h e f i r s t i n c r e a s i n g p a r t o f t h e sinusodial loa- d i n g curve. At t h e maximum t h e t o t a l k i n e t i c energy o f t h e hammer would have been completely converted i n t o s t r a i n energy o f t h e specimen. The r e s u l t s a r e presented i n a normalized form. The f u l l curves correspond t o f i x e d t e s t parameters. For lower1 higher values o f t h e t e s t parameter t h e crack l o a d i n g h i s t o r i e s are given by t h e dottedldashed curves. The arrows i n d i c a t e t h e changes obtained by i n c r e a s i n g t h e t e s t parameter.

Two i n t e r e s t i n g observations s h a l l be emphasized, which apply f o r t h e very beginning o f t h e impact process, i.e. t h e t i m e range o f p r a c t i c a l relevance:

(4)

F i r s t , q ' S ' ( t ) i s indepenent on t h e hammer mass M and t h e specimen t h i c k n e s s B. Secondly, ~ q . ~ . ( t ) v a r i e s v e r y l i t t l e w i t h c r a c k l e n g t h a/W f o r 0,2Sa/Ws0,5. Only f o r

s h o r t e r and a l s o f o r l o n g e r c r a c k s

..

m aspI

t h e s l o p e o f t h e ~ p ' ~ ' ( t ) - c u r v e -

HAMMER- MASS M

becomes l e s s steep. * - d - C

a

I n o r d e r t o examine t h e accuracy o f

t h e d e s c r i b e d a p p r o x i m a t i o n t h e c a l - i c u l ated, q u a s i s t a t i c c r a c k t i p l o a - >

d i n g ~ " ~ ' ( t ) i s compared t o t h e t z r e a l , experime t a l l y d e t e r m i n e d dy-

a

C

namic values KIYn(t). Data o b t a i n e d I V) w i t h specimens made from t h e model ma-

t e r i a l A r a l d i t e B by means o f t h e sha- dow o p t i c a l t e c h n i q u e C8 9 1 a r e g i v e n i n Fig. 3. O b v i o u s l y Kq.'.(t) r e p r e - s e n t s a good approxima$ion o f t h e g l o - b a l K!Yn(t)-curve, whereas t h e s t r e s s i n t e n s i t y f a c t o r s determined by a

s t a t i c f o r m u l a f

m

t h e measured LENGTH CRACK o~~

hammer1 oad, K:ta'(P show on1 y

poor agreement w i t h ~ i ! ~ ~ ~ ( t ) . D e t a i l s I

as t h e o s c i l l a t i o n s O! t h e ~ ; y n ( t ) - TIME t r e l a t ~ v e u n ~ t s

c u r v e o f course cannot be d e s c r i b e d F i g . 2

-

I n f l u e n c e o f System parameters by t h e q u a s i s t a t i c approximation. ( q u a s i s t a t i c )

0 5 % .. ..

I . - . IMPACT- .'-,

I VELOCITY V, - \

0 1 .

I 1 1

-

QUANTIFICATION OF DYNAMIC EFFECTS

The dynamic e f f e c t s n e g l e c t e d so f a r i n t h e c a l c u l a t i o n o f q . S . ( t ) a r e d e f i n e d a c c o r d i n g t o eq. (1) by t h e r a t i o :

1.60 1.40 1.20 1.W

0.80 0.60 0.40 0.20 0.00

5 10 15 20 25 30 35

DIMENSIONLESS TlME c , t / W

Fig. 3

-

Q u a s i s t a t i c a l l y c a l c u l a t e d Fig. 4

-

Dynamic c o r r e c t i o n f u n c t i o n kdyn, and measured l o a d i n g determined form d a t a g i v e n i n Fig. 3 h i s t o r i e s ( A r a l d i t e B)

(5)

C5-216 JOURNAL DE PHYSIQUE

I n eq. ( 3 ) kdyn i s a t i m e dependent "d namic c o r r e c t i o n f u n c t i o n " which q u a n t i f i e s t h e dynamic e f f e c t s . T h i s f u n c t i o n kdyX i determined f r a n e x p e r i m e n t a l l y o b t a i n e d a c t u a l dynamic s t r e s s i n t e n s i t y f a c t o r s K!yn(t) and t h e v a l u e s

v.'.,

c a l c u l a t e d by eq. ( 2 ) . The c o r r e c t i o n f u n c t i o n determined f r a n t h e r e s u l t s presented i n Fig. 3 i s shown i n Fig. 4 t o g e t h e r w i t h a d d i t i o n a l r e s u l t s . I n t h i s p l o t t h e t i m e i s norma- l i z e d by t h e p r o p a g a t i o n t i m e o f l o n g i t u d i n a l waves across t e specimen w i d t h ; c l i s t h e l o n g i t u d i n a l wave v e l o c i t y f o r p l a n e s t r e s s . The v a l u e kByn = 1 r e p r e s e n t s t h e q u a s i s t a t i c behavior. The o b t a i n e d d e v i a t i o n s from t h i s v a l u e a r e due t o dynamic e f - f e c t s . These e f f e c t s a r e l a r g e i n t h e b e g i n n i n g o f impact event. They decrease w i t h i n c r e a s i n g t i m e and approach t h e

q u a s i s t a t i c s t a t e v i a an o s c i l - l a t i o n w i t h damped amplitude.

Fig. 5 shows kdyn-data o b t a i n e d under d i f f e r e n t impact c o n d i t i o n s . Specimens o f d i f f e r e n t s i z e s W b u t g e o m e t r i c a l l y s i m i l a r shape were impacted a t d i f f e r e n t v e l o c i t i e s by d r o p w e i g h t s o f d i f f e r e n t mass.

D e s p i t e o f t h e s e v a r i a t i o n s i n t e s t c o n d i t i o n s a l l d a t a f o l l o w

a

t h e same curve. h i s r e s u l t im-

p l i e s t h a t t h e k Yn-curve i s i n - Oo00 5 10 15 20 25 30 35 dependent o f t h e s e parameters, i.e. DIMENSIONLESS TIME CI~IW

W, vo, and M as f a r as t h e impact

energy i s s u f f i c i e n t l y l a r g e . F i g . 5

-

Dynamic c o r r e c t i o n v a l u e s kdyn D e t a i l e d e x p e r i m e n t a l i n v e s t i g a t i o n s and s t u d i e s on dynamic e f f e c t s l e a d t o a s y s t e - m a t i c o v e r v i e w on t h o s e dynamic events, which s i g n i f i c a n t l i n f l u e n c e t h e dynamic c r a c k t i p b e h a v i o r [41. S p e c i f i c c h a r a c t e r i s t i c s o f t h e kdJn-curves were c o r r e l a t e d t o p h y s i c a l processes. The r e s u l t s o b t a i ed a r e i l l u s t r a t e d i n a c o n c l u d i n g manner by t h e schematic r e p r e s e n t a t i o n o f t h e kayn- c u r v e g i v e n i n Fig. 6. A rough separa- t i o n i s made i n t o a t i m e range which i s s t r o n g l y i n f l u e n c e d by dynamic e f f e c t s and an n e a r l y q u a s i s t a t i c t i m e range. The dynamic range i s d i v i d e d i n t o f i v e r e g i o n s

0-0.

The b e g i n n i n g o f t h e r e g i o n s i s determined by s i g n i f i c a n t dynamic events.

T h e i r a d d i t i o n a l i n f l u e n c e i s i n d i c a t e d by arrows (see Fig. 6 and [41):

a

F i r s t c o n t a c t between t h e i m p a c t i n g hammer and t h e specimen: e l a s t i c waves s t a r t t o propagate i n t o t h e specimen.

@

The f i r s t shear wave generated a t t h e l o a d i n g p o i n t reaches t h e c r a c k t i p : t h e f i r s t s i g n i f i c a n t i n c r e a s e i n c r a c k l o a d i n g i s o b t a i n e d .

a

The f i r s t l o n g i t u d i n a l wave f r o n t l i n t e r a c t i n g w i t h t h e l o w e r bounda-

I-

dynaml~ally influenced

'

nearly quasistotc

. . . . . . . .. ,. . .

r y o f t h e specimen e x c i t e s R a y l e i g h ttme range Iood8ng behavlor

waves which p r o p a g a t e a l o n g t h e L c r a c k s u r f a c e s and t h e n reach t h e

6

c r a c k t i p : an a d d i t i o n a l c r a c k t i p

5

l o a d i n g i s obtained. L

@

A f t e r r e f l e c t i o n o f t h e f i r s t com-

6

p r e s s i v e waves a t t h e l a t e r a l boun-

3

d a r y l o n g i t u d i n a l t e n s i l e waves

g

r e a c h t h e c r a c k t i p : a f u r t h e r i n c r e a s e i n c r a c k t i p l o a d i n g i s

2

obtained. I I

@

Caused by p r e v i o u s l o s s o f c o n t a c t l I

b e h a v i o r ( s e e C101) a d d i t i o n a l im- l I I I

p a c t events o c c u r between specimen 0 ; / ' l '

i

I

and supports, and t h e t h e r e b y ex- LIW T&.?S/W .1; ,."S

c i t e d shear waves s i g n i f i c a n t 1 y C, W DIMENSIONLESS TIME =$/W

i n f l u e n c e t h e c r a c k t i p : an a d d i t i - F i g . 6

-

Dynamics o f impact event onal c r a c k t i p l o a d i n g i s obtained. (schematic)

(6)

As can be seen from F i g . 6, t h e onset t i m e s o f t h e c o n s i d e r e d dy- namic e f f e c t s a r e c o r r e l a t e d t o on- l y t h r e e g e o m e t r i c a l parameters a/W, L/W and S/W. These a r e c a l l e d dyna- m i c parameters. Since S/W = 4 h o l d s

f o r most t e s t d e v i c e s t h e p r a c t i c a l - l y r e l e v a n t dynamic parameters a r e o n l y a/W and L/W. These two parame- t e r s a r e used t o c l a s s i f y specimens as d y n a m i c a l l y d i f f e r e n t types. For f o u r t y p e s o f specimen, Type I t o Type I V t h e e x p e r i m e n t a l l y d e t e r - mined kay"curves a r e g i v e n i n

O W o 5 10 15 m s 30 o 5 a 15 m 25 M

DIMENSIONLESS TlME c l t / W m i c e f f e c t s . On1 y reduced dynamic

e f f e c t s a r e o b t a i n e d f o r specimens Fig. 7

-

Dynamic c o r r e c t i o n f u n c t i o n s kdYn w i t h s h o r t e r c r a c k l e n g t h (Type 11)

f o r f o u r d i f f e r e n t specimens and p a r t i c u l a r l y f o r specimens o f l a r g e l e n g t h (Type I and 111).

Because o f t h e n o r m a l i z e d p l o t used i n F i g . 7 t h e d a t a a l s o a p p l y f o r d i f f e r e n t m a t e r i a l s , i n p a r t i c u l a r f o r s t e e l s , as shown i n t h e n e x t chapter.

I V

-

APPLICATIONS

The e v a l u a t e d q a s i s t a t i c f o r m u l a (eq. ( 2 ) ) i n c o m b i n a t i o n w i t h t h e dynam'c c o r r e c - t i o n f u n c t i o n kBy\an be used t o p r e d i c t t h e dynamic c r a c k t i p l o a d i n g K?y"t):

K ? Y ~ ( ~ ) = q - S - ( t ) x kdyn(cl t l ~ ) (4

T h i s i s s c h e m a t i c a l l y i l l u s t r a t e d i n can be c a l c u l a t e d by

specimens o f l a r g e and small s i z e a r e considered. The d a t a o f t h e Charpy- specimens (Fig. 10) a r e n o r m a l i z e d by t h e impact v e l o c i t y v, a c c o r d i n g t o e (2). I n b o t h cases t h e p r e d i c t e d Kg$"t)-curve (dashed l i n e ) i s com- pared t o t h e measured impact response c u r v e ( f u l l l i n e ) . The r e s u l t s i n d f c a - t e t h a t t h e p r e s e n t e d procedure a l l o w s

TIME t a q u a n t i t a t i v e p r e d i c t i o n o f t h e r e a l dynamic c r a c k t i p l o a d i n g w i t h an ac- F i g . 8

-

Procedure t o p r e d i c t h e dynamic

h

c u r a c y which i s s u f f i c i e n t f o r engi-

c r a c k t i p l o a d i n g ~ ~ y " ( t ) n e e r i n g purposes. I n c o m b i n a t i o n w i t h a t i m e t o f r a c t u r e measurement and f o l l o w i n g t h e impact response c u r v e concept [1,21 a s i m p l e and i n e x p e n s i v e de- t e r m i n a t i o n o f impact f r a c t u r e toughness values KId i s p o s s i b l e [41.

(7)

C5-218 JOURNAL DE PHYSIQUE

l

100 ZOO 300

TIME t, ps

Fig. 9

-

C a l c u l a t e d and measured dynamic F i g . 10

-

C a l c u l a t e d and measured dyna- c r a c k t i p l o a d i n g f o r l a r g e m i c c r a c k t i p l o a d i n g f o r

s t e e l specimens Charpy-specimens

SUMMARY

v - -

F o r impacted t h r e e - p o i n t - b e n d specimens a s i m p l e mass-spring-model. and q u a s i s t a t i c c o n s i d e r a t i o n s were used t o o b t a i n an overview on t h e g l o b a l i n f l u e n c e o f t h e system parameters on t h e c r a c k t i p l o a d i n g h i s t o r y . The a d d i t i n a l dynamic e f f e c t s a r e quan-

8

t i f i e d by t i m e depend n t dynamic c o r r e c t i o n f u n c t i o n s k Yn

or

d y n a m i c a l l y d i f f e - r e n t specimen t y p e s kgyn-curves have e x p e r i m e n t a l l y been determined and discussed w i t h r e s p e c t t o wave p r o p a g a t i o n phenomena. On t h e b a s i s o f t h e c a l c u l a t e d q u a s i s t a - t i c c r a c k t i p l o a d i n g i n c o m b i n a t i o n w i t h t h e determined s e t o f dynamic c o r r e c t i o n f u n c t i o n s a procedure i s developed t o q u a n t i t a t i v e l y p r e d i c t t h e dynamic l o a d i n g h i s t o r y f o r t e s t c o n d i t i o n s o f p r a c t i c a l relevance. R e s u l t s o b t a t n e d f o r impacted s t e e l specimens demonstrate, t h a t t h e procedure i s s u f f i c i e n t l y a c c u r a t e and t h a t i t g e n e r a l l y a p p l i e s f o r a r b i t r a r y t e s t c o n d i t i o n s .

REFERENCES

[ l ] K a l t h o f f , J.F., W i n k l e r , S., Bohme, W., Klemm, W., Proc. ICF 5, Cannes, 1981, i n Advances i n F r a c t u r e Research, ed. by D. F r a n c o i s e t al., Pergamon Press (1980) 363

[21 K a l t h o f f , J.F., W i n k l e r , S., Bohme, W., t h i s Proceedings [31 Bohme, W., IWM-Report Z 2/84, F r e i b u r g (1984)

[41 Bohme, W., Ph.D. D i s s e r t a t i o n i n p r e p a r a t i o n , TH Darmstadt (1985) C51 ASTM E 399-74, Annual book o f ASTM-Standards, P h i l a d e l p h i a (1974) C61 Srawley, J.E., I n t . J. o f F r a c t u r e , 12 (1976) 475

C71 B u c c i , R.J., P a r i s , P.C., Landes, J.D., Rice, J.R., Proc. 1971 Nat. Symp. on F r a c t u r e Mech., P a r t 11, ASTM STP 514 (1972) 40

C81 Manogg, P., Ph.D. D i s s e r t a t i o n , F r e i b u r g , Germany (1964)

[g] K a l t h o f f , J.F., i n Handbook o f Exp. Mech., ed. by A.S. Kobayashi, P r e n t i c e H a l l (1985)

[ l 0 1 Bohme, W., K a l t h o f f , J.F., I n t . J. o f F r a c t u r e , 20 (1982) R139

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to