• Aucun résultat trouvé

MATERIAL CONSIDERATION FOR VERTICAL BLOCH LINE MEMORY

N/A
N/A
Protected

Academic year: 2022

Partager "MATERIAL CONSIDERATION FOR VERTICAL BLOCH LINE MEMORY"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: jpa-00224869

https://hal.archives-ouvertes.fr/jpa-00224869

Submitted on 1 Jan 1985

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

MATERIAL CONSIDERATION FOR VERTICAL BLOCH LINE MEMORY

G. Ronan, W. Clegg, S. Konishi

To cite this version:

G. Ronan, W. Clegg, S. Konishi. MATERIAL CONSIDERATION FOR VERTICAL BLOCH LINE MEMORY. Journal de Physique Colloques, 1985, 46 (C6), pp.C6-127-C6-130.

�10.1051/jphyscol:1985622�. �jpa-00224869�

(2)

JOURNAL DE PHYSIQUE

Colloque C6, supplCment a u n09, Tome 46, s e p t e m b r e 1985 page C6-127

M A T E R I A L CONSIDERATION FOR V E R T I C A L BLOCH L I N E MEMORY

G. Ronan, W. Clegg and S. oni is hi+

Department of EZectrieaZ Engineering, University of Manchester, Manchester M I 3 9PL, U . K .

+~epartment o f EZeetricaZ Engineering, Kyushyu University, Fukuoka, Japm

Resume - Un modPle simplifi6 de la paroi s6parant deux domaines est employe afin d'envisager les exigences d'un materiau qui conduiraient 2 1'6laboration d'un film de grenat 2 bulles typiquement adapt6 aux besoins sp6cifiques de la memoire VBL. Un materiau

S

large Q, faible epaisseur (h "

3 - 4 ~ )

et grand a

paraitrait pouvoir optimiser la force gyrotropique du champ aqissant et mini- miser l'attraction VBL paire-paire non-desiree. Cependant, pour minimiser l'amplitude du puits de potentiel et celle du champ agissant, il apparaitrait avantageux d'accroitre la separation entre bits jusqu'2 une valeur de l'ordre de

0,8

Sw.

Abstract - A s i m p l i f i e d model o f a domain w a l l is employed t o c o n s i d e r some o f t h e m a t e r i a l r e q u i r e m e n t s t h a t would t a i l o r a t y p i c a l bubble g a r n e t f i l m t o t h e s p e c i f i c needs o f

VBL

memory.

A

large Q, low t h i c k n e s s ( h =

3-41),

h i g h a m a t e r i a l would a p p e a r t o o p t i m i s e d r i v e f i e l d g y r o t r o p i c f o r c e and minimise t h e u n d e s i r a b l e

VBL

p a i r - p a i r a t t r a c t i o n . Even s o , t o minimise t h e r e q u i r e d p o t e n t i a l w e l l and d r i v e f i e l d a m p l i t u d e s , it would a p p e a r e x p e d i e n t t o i n c r e a s e t h e b i t s e p a r a t i o n t o be o f t h e o r d e r o f 0 . 8

Sw.

I n t r o d u c t i o n

I n t h e proposed

VRL

memory ( 1 ) t h e p r e s e n c e o r absence o f a p a i r o f n e g a t i v e

VBL

i n j e c t e d i n a s t r i p e domain w a l l act as a b i n a r y

'1'

o r

' 0 ' .

A p e r i o d i c in-plane f i e l d p o t e n t i a l w e l l s t r u c t u r e d e f i n e s t h e b i t p o s i t i o n and a p e r p e n d i c u l a r d r i v e f i e l d p r o v i d e s a g y r o t r o p i c f o r c e s u f f i c i e n t t o p r o p a g a t e a VBL p a i r o u t of one p o t e n t i a l w e l l i n t o t h e n e x t . For t h i s d i s c u s s i o n we assume a V8L is r e p r e s e n t e d as a p o i n t magnetic c h a r g e and c o n s i d e r t h e in-plane f i e l d component p a r a l l e l t o t h e w a l l a r i s i n g from convergence ( o r divergenc,e) o f m a g n e t i s a t i o n i n t h e f l a n k i n g Bloch w a l l r e g i o n s . This s o c a l l e d 'a-charge' g i v e s rise t o a non l o c a l e f f e c t which i n t e r a c t s w i t h s i m i l a r p o l e s at d i f f e r e n t p o s i t i o n s o n t h e w a l l . I f we c o n s i d e r a

VBL

as a l i n e w i t h r e g i o n s o f w a l l magnekisation a n g l e -0 and

n

on e i t h e r f l a n k t h e n t h e magnetic moment o f t h e

VBL

i s simply

2 M .

I n c l u d i n g t h e w a l l width, wA, and t h e m a t e r i a l t h i c k n e s s , h , t h e n t h e t o t a l magnetic c h a r g e , m, is g i v e n b y 2rfMAh.

Our model t h e r e f o r e assumes a p o i n t c h a r g e as opposed t o t h e c h a r g e d i s t r i b u t i o n which would r e q u i r e a v e r y much more d e t a i l e d s t u d y , and i g n o r e s v a r i a t i o n o f c h a r g e through t h e t h i c k n e s s . ( T h i s l a t t e r p o i n t s h a l l be c o n s i d e r e d i n c o n c l u s i o n .

)

The magnetic f i e l d p a r a l l e l t o t h e w a l l r e s u l t a n t from t h i s p o i n t c h a r g e i s m / r 2 , and t h e f o r c e a c t i n g on t h e c h a r g e due t o a magnetic f i e l d is m.H.

A t t r a c t i v e Force Between VBL P u

Let u s c o n s i d e r t h e e f f e c t i v e f i e l d r c s ~ r l t a n t from a p a i r o f n e g a t i v e

VBL

as shown i n F i g u r e 1. The f i e l d at p a d i s t a n c e x from t h e c e n t r e o f t h e

VBL

p a i r is

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1985622

(3)

J O U R N A L D E PHYSIQUE

Fig. 1. VBL p a i r s i n adjacent b i t p o s i t i o n s at a s e p a r a t i o n of r .

fJ t)

RA nn

f o r t h e VBL spacing, nA,

c c x .

With r e f e r e n c e t o Figure 1 t h e a t t r a c t i v e f o r c e on a pair o f VBL a d i s t a n c e r from t h e i n i t i a l p a i r i s given by,

where is t h e f i e l d a t p. Therefore

which f r o m equation ( 2

)

is

S u b s t i t u t i n g A

=

L / ~ Q and A

=

c/2lrQ

we

are l e f t with

p o t e n t i a l W e l l Restoring Force

I f we assume a s i n u s o i d a l p o t e n t i a l -1.1 o f t h e form

a , = K , c o s ~ x ... ( 9 )

then i n a similar manner t o equ. 4 t h e r e s t o r i n g force on a VBL p a i r is FR = -2n2MAAh K, S i n 2

x

r r

which i s a maximum at x = r / 4 and x

=

3r/4. I d e a l l y a s F a t t a l/r4 it would be p r e f e r a b l e t o have t h e maximum r e s t o r i n g f o r c e a t x

= 0

and

x =

r reducing t h e required amplitude o f H , 'and t h u s t h e magnitude o f t h e d r i v e f i e l d .

A

simple s o l u t i o n would be a t r i a n g u l a r p o t e n t i a l w e l l as s h a l l be discussed a t a later d a t e . For t h e p r e s e n t , however, we s h a l l consider t h e c a s e o f maximum r e s t o r i n g f o r c e a t x

-

0 ,

r and w i t h t h e s u b s t i t u t i o n s o f equ. 6 and 7,

Drive F i e l d Gyrotropic Force

The g y r o t r o p i c f o r c e a s s o c i a t e d with a perpendicular d r i v e f i e l d is more ambiguous

as it is d i r e c t l y r e l a t e d t o t h e density of VBL i n t h e domain wall. The g y r o t r o p i c

(4)

JOURNAL DE PHYSIQUE

f o r c e on a VBL is ( 2 )

vy is t h e domain w a l l v e l o c i t y which from t h e m o b i l i t y of a 'hard' w a l l ( i - e . , r

4

2 n A )

is

where Hz is t h e sum of perpendicular components of e f f e c t i v e f i e l d s , i . e . , demagnetising, w a l l c u r v a t u r e and applied f i e l d s . Our i n i t i a l assumption f o r fat*

however was t h a t r > > n A which would suppose t h a t t h e wall would move a t a h i g h e r v e l o c i t y although not t h a t o f a ' s o f t ' w a l l given by

As a < < ! t h e r e would appear t o be a considerable u n c e r t a i n t y as t o t h e magnitude of t h e g y r o t r o p i c f o r c e (although t h i s may be estimated by numerical s o l u t i o n s o f domain w a l l motj-on ( 3 ) ) . Combining equ. 13 and 14 one can however s a y t h a t t h i s f o r c e is i n excess of

which is s u f f i c e f o r t h e present d i s c u s s i o n . Materi a 1 Considerations

Comparing t h e t h r e e f o r c e s equations 8,

12

and

17

t h e requirements t o be met a r e minimise f a t t so t h a t t h e p o t e n t i a l w e l l magnitude H , is minimised reducing t h e required g y r o t r o p i c f o r c e while maintaining t h e b i t period r low. Of t h e v a r i a b l e s i n question

L

can b e t a k e n as

Sw/8

and t h e exchange c o n s t a n t

A

can be assumed constant at

-2

x erg/cm. Immediately obvious is t h a t a low h

( =

3 - 4 ~ ) high Q ( = 4 ) m a t e r i a l reduces t h e r e l a t i v e e f f e c t of Fat- and t h a t a h i g h a

( = 0.1

-

0.2)

i n c r e a s e s F m n . T h i s latter one would i n t u i t i v e l y expect a s l a r g e damping decreases domain d i s t o r t i o n and l a r g e VBL osci.3latory e f f e c t s during propagation ( 3 ) . The upper l i m i t on a can be seen from t h e r a t i o of VBL v e l o c i t y t o w a l l v e l o c i t y

( 4 ) ,

i. e. , a l a r g e damping i n c r e a s e s t h e r a t i o *=11/wL increaqing t h e required w a l l displacement and t h u s H~ (remembering t h a t Hz is an e f f e c t i v e f i e l d r e s u l t a n t from d r i v e , demagnetising and w a l l bending e f f e c t s ) . The c r i t e r i o n high Q is s t r a i g h t forward as one would r e q u i r e l a r g e Q t o maintain VBL s t a b i l i t y .

A

p o s s i b l e disadvantage of a t h i n m a t e r i a l ( h = 3 - 4 ~ ) might be i n d e t e c t i o n (magnetoresistive d e t e c t i o n of bubble domains) although as it is only t h e d e t e c t o r t h a t is t o be of permalloy a t h i n f i l m d e t e c t o r with high signa1:noise c o ~ l l d b e employed.

I n conclusion t o e s t i m a t e d e n s i t y ( r ) we consider a m a t e r i a l with a

= 0.1,

Q

=

4, h

=

4 ~ ,

r =

sW/e and

A =

2 x 10-7 erg/cm.

Density

I t would c l e a r l y be d e s i r a b l e t o have F w

> >

F a t t not only t o ensure s t a b i l i t y of

t h e b i t p o s i t i o n s , b u t a l s o f o r s u c c e s s f u l propagation of a random b i t p a t t e r n .

Taking t h e r e f o r e F -

= 10

F a t t and combining equations 8 and 12, a rel.ationship

between p o t e n t i a l w e l l depth (%) and b i t p e r i o d : s t r i p e width r a t i o ( r / + ) can b e

(5)

JOURNAL

Bit period/Stripe width (r/Sw)

Pig. 3. Density as a function of Fig. 2 . P o t e n t i a l w e l l depth as a function of 1/+2 f o r ( a ) t h e simple b i t p e r i o d : s t r i p e width r a t i o f o r s t r i p charge model, ( b ) t h e width of ( a ) 5 ~ ( b ) 2.5f.m. ( c ) 1 . 0 ~ 1 , ,

revised charge model ( d ) 0 . 5 ~ .

accounting f o r charge variati.on through

t h i c k n e s s and ( c ) r

=

0.8%.

obtained as shown f o r v a r i o u s s t r i p e widths i n Pig. 2 . The expected p o t e n t i a l w e l l depth f o r decreasing s t r i p e width is shown approximately as an arrow from which an e s t i m a t i o n of t h e b i t period can be made. (The p o s i t i o n i n g of t h e arrow is derived from previous numerical c a l c u l a t i o n s of

VBL

propagation ( 3 ) and tlnpublished r e s u l t s , b u t it can be seen t o correspond approximately t o t h e 'knee' of t h e curves.

) As

is expected p o t e n t i a l w e l l depth i n c r e a s e s s h a r p l y with decreasing b i t period and t h e corresponding d e n s i t i e s

( =

l/r x

S,

bits/cm2) vari.es approximately as a function o f l/Sw2. (See Fig. 3.

)

A

more d e t a i l e d e s t i m a t i o n of

VBL

magnetic charge accol1nt.ing f o r v a r i a t i o n of w a l l magnetisation angle through t h e m a t e r i a l t h i c k n e s s , g i v e s a smaller VBL charge and (following t h e same argtment as above) as shown on Pig. 3 a d e n s i t y which approaches 500Ubits/cm2 f o r 0 . 5 ~ s t r i p e width. We must t h e r e f o r e concltde t h a t t h e above model is conservative and t h a t i n p r a c t i c e some gain i n d e n s i t y would be achieved.

However as a r u l e of thumb, h i t spacing of t h e order 0.8% ( f o u r t i m e s t h e VBL p a i r width) could

be

used. This

may be

considered somewhat analogous t o t h e required bit spacing o f four times t h e bubble diameter i n a conventional bubble device although i n t h a t c a s e t h e r e l e v a n t force i s r e p u l s i v e .

Conclusion

Design r u l e s have been proposed f o r VBL memory using a simple p o i n t charge model.

Although t h e model is considered conservative two important conclusions can be drawn from it. F i r s t l y a low t h i c k n e s s ( h = 4 ~ ) m a t e r i a l reduces t h e r e l a t i v e e f f e c t of t h e mutual a t t r a c t i o n between VBL p a i r s and secondly t h e b i t period should be of t h e o r d e r 0.8 &. I n comparison t o a conventional bubble m e m o r y c e l l a r e a (16 h 2 ) an i n c r e a s e i n d e n s i t y o f twenty f o l d is expected. Considerations o f f a b r i c a t i o n requirements f o r such a device while beyond t h e scope o f t h i s p r e s e n t work a r e t o be covered a t a l a t e r d a t e .

References

1. Konishi, S., I.E.E.E. Trans. Magn., Mag-19, p. 1838, L983.

2. Malozemof f and Slonczewski, "Magnetic Domain Walls i n Bubble Mat.erialS", Applied S o l i d S t a t e Science, p. 162, Academic Prt?Ss InC., 1979.

3. ~ a t s u y a m a , K. and Konishi,

S . , T . E . E . E .

Trans. Magn., Mag-20, p. 1141, 1984.

4. Konishi, S . , Matsuyama, K . , Chida, I . , Kubota, S . , Kawahara, H., and Ohbo, M.,

I.E.E.E. Trans. Magn., Mag-20, p. 1129, 1984.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to