• Aucun résultat trouvé

Dynamic voltage scaling under EDF revisited

N/A
N/A
Protected

Academic year: 2021

Partager "Dynamic voltage scaling under EDF revisited"

Copied!
29
0
0

Texte intégral

(1)Dynamic voltage scaling under EDF revisited Bruno Gaujal, Nicolas Navet. To cite this version: Bruno Gaujal, Nicolas Navet. Dynamic voltage scaling under EDF revisited. Real-Time Systems, Springer Verlag, 2007, 37 (1), pp.77-97. �10.1007/s11241-007-9029-y�. �inria-00168449�. HAL Id: inria-00168449 https://hal.inria.fr/inria-00168449 Submitted on 28 Aug 2007. HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés..

(2)   

(3)  

(4)          .  

(5) .     

(6)           .

(7)  

(8)  

(9)   

(10)   

(11) !  "#$ % &&'( )* + ,- . /0$    .    

(12)            .      

(13)   

(14) 

(15) 

(16)           . !  "    #$%    

(17)         &.        

(18)   

(19)    '   

(20)           

(21) '  (        #$% . .  .     )     * (  

(22) '   .                  " +         !          (         

(23)    .  ,  

(24)     !                  ! (    

(25)           

(26)             ,  

(27)  (   

(28)           

(29) '

(30)      .

(31)  - 

(32)    

(33)      

(34) '   

(35)    .    .                       !    "  "   #     $    "  % &              "  '    "    $      (   %)  (   %) !**+ )     "  "   , ,-    %) !**.           "%               " -             "%  . .//0 /1  &. * /&$2$3 *& & 2 2/$3. 

(36)  

(37)  

(38) .

(39) #   /     0      "  )  "         " 1 %      "               0         )   ) #22#    % 3)     0       &  0"   %       1      "    % 4    ")             %%)           5) 4 ,  6, )  /7 8

(40) 9           :   "     % ;          )  &     "    58< 0"    -=   . &   )   )   % % %     "     "% 8                 )  "         88  & 8  " 8  )   %  88) ,   , ,   5 ) !***        "   "  % >  3    ?      >  3) #22!           >  3) #22#    &       & "% @ ") (  A   (  A ) #22B              -  88 

(41) 83  "   &         "       %%%            "  % ;        ) (   %  (   %) !**+   1      :              % @ ")                        %) #22B'    %) #22+          4C      ai ≤ aj → di ≤ dj  ai  di             i)   " %   4C )   "    "    $        

(42)  

(43)       . 

(44)  

(45)  

(46) .

(47) B  O(N log(N ))  O(N 3 )    (   =           & "  " )      #%B %     :                 -    -  D   7-) #22B    -  >   %) #22B' ,   D  ) #22E % 4        )     0         $              )    "    D   7-) #22B .    %) #22B'    %) #22+ % C         "    &    ;5   &   % / :      ) -  F   G D  , ) #22!'  ) #22!'  ) #22#' 6   %) #22H    :             $  &   "  % /      0 7I   %) #222' ,    %) #22!' /$    %) #22B    F     G% / -            ;5  -           &           1   ;5        "   &  % C      "  "        &    -             -% /   )  "  F"        G)    . /"    %) #22!' 8   , ) #22! ) J  5) #22#  D   7-) #22B %   ")   0)    /"    %) #22H )      "     -    58< 0"   "%   

(48)  

(49)       .

(50)          -      $       %) #22+       "    $   -   4C      % 3)           )   4C    %    $  0        )    3          0  . 

(51)  

(52)  

(53) .

(54) H %     & "         "   &   % )         "     & "   -  % ; √    & "        "   O(N 2 N )% / ")            -                % 4    8      &   "     )     "   & "  :          O(N 2 log(N ))% 4    )          O(N 2 log(N ))           O(N log(N ))    4C  %   

(55)  

(56)       .      ;       58<     &     :       -  KK       %  58<     "       0  1  &       :&  !       "       "     $    %    -  T = {τ1, . . . , τN }   - τi   $ "     (ai , si , di )   0   ai , si , di      )   $     &  -  &        - τi )   "% /   "   -        )                       - "        " )      0   D 5 7    D57      -  " :    -      "     D57    &  1   :     D  ; ) !*.# %        (   %=     "    $      ,  #% ,  B         :        %              & "        "     "%   ")  ,  H)               %. 

(57)  

(58)  

(59) .

(60)   

(61)  

(62)       . +.

(63)      . 4    )    (   %=     "    $  %                         1        "                   0  % 4 ,-    %) !**. )           "           '       , =                  " ,  B%+  BB  ,-    %) !**. %  , =        #   (   %=         #%#%     58<    t   v(t)  u(t))       )  -              %          )  " v  (t))    " (   %  (   %) !**+ %             $ "              %   ")     - "  "      )      )           0 %              )  -        %%                                            -% #%!%.   . 3)  &        [a, d]          "    -   "%        " a  d  )     ) a  d    "           "%    τi ⊆ [a, d]   - τi    [a, d] ai ≥ a, di ≤ d % ;   [a, d])  -    :       −. 4 τi ⊆ [a, d]  τi  %. −.      -) si   . 

(64)  

(65)  

(66) .

(67) E.   

(68)  

(69)        ai di ai+1. a. di+1 ai+2 di+2 ai+3. d. di+3. ai+4 di+4 t. ai di ai+1 di+1 di+3 ai+3 &4 3. • •. ai+4 di+4. #'

(70)   

(71)  

(72)   . t [a, d]. (! τi+2  

(73)  .  ai ∈ [a, d]  ai := a)    ai ≥ d  ai := ai − (d − a))  di ∈ [a, d]  di := a)    di ≥ d  di := di − (d − a)%.               [a, d]       !% #%#%

(74)  

(75) 

(76)    (   %=                   "     L  G   % D f  g             [a, d]   [a,d]    )     g ∨ f  :    [a,d]. −.  t < a)  (g. ∨ f )(t) = g(t)). −.  t ∈ [a, d])  (g. −.  t > d)  (g. [a,d]. ∨ f )(t) = f (t)). [a,d]. ∨ f )(t) = g(t − (d − a))%.

(77)           % / )             &     :  % 4  : h := [a,d] g ∨ f         f  [a, d]) g  :       a) " [b, c]   h  :  [b, c + d − a]% (   % :  L  "L      -   "  -          "      % 4   ")        -   . 

(78)  

(79)  

(80) .

(81) M              %     " W[a,d]  [a, d]  W[a,d] = {τ ⊆[a,d]} sk /(d − a)%       (   %) !**+     v  (t)            $    "              "%                   n = 1   

(82)  

(83)       . k. !%

(84)       In := [ai , dj ]   ai  dj     W[a ,d ] := max0≤a≤d W[a,d]      a  d          .      i. j. #%  In    fn       ! fn (t) := W[a ,d ] , In . /   In   &    % i. j. ∀t ∈. B% "      In #       n := n + 1     $      % H% &  v. .    '  ! v. In−1.  := fn ∨ (· · · ∨ f1 ) I1. #%B%            & "        O(N 3)  N          N                   #    , =        O(N 2 )            N     % 4 (   %) !**+ )    )     )    F          G)          O(N log2(N ))% 3)      "       () #22B % ;  "   -                  O(N 3)       "               & "   O(N 3 )% 4          "     "                    ai   di    % ,          O(N log(N ))  )  )         . 

(85)  

(86)  

(87) .

(88) . % 3   "       &       "      %           "              :        &         "  (   %) !**+ . ,-    %) !**. %   

(89)  

(90)       .          .                3     8  " C , 8                     %) #22+ %         :% ;            58<    u∗(t)     u∗ (t) = v  (t)       % )          & "                   "       (   =   % B%!%.  

(91)  

(92) 

(93) . D     8 P     -            : "           P = {[ai , di ], ≺ })      ≺           % 7   ") [a, d] ≺ [a , d ]  [a , d ] ⊂ [a, d])  a > a  d < d% / :  8    "  3    ;   ) !***     )       8      %  :                       "  )                "         %%             %          L1, · · · , LK  K      % C  " L(i)      [ai , di ]  P )         - τi %    -               . 

(94)  

(95)  

(96) .

(97) *.   

(98)  

(99)        τ1 τ2 τ3 τ4. a). τ5 τ6 τ7. τ3 τ4. τ2. b). τ1. τ6. Level 3. τ5. Level 2. τ7. Level 1. &4 53 1                       ,  

(100) . τ1 a d s. τ2. τ3. 2 # H ## !2 E B ! !. τ4. τ5. τ6. [ai , di ].  . τ7. + . !! !+ !B !* !+ #H H ! # !.  3           -       #      #       [ai , di ]  % ;  &            -   3    O(N log(N ))  "  %      " L            - L[i]     τi % / ")   T )              T [k] = max{di s.t.   τi = k}%  " L  T     " "      % !% (                  .   ai )        * #% T [0] := ∞. T [1] := d1 L[1] := 1.    k = 2..N  T [k] := 0. 

(101)  

(102)  

(103) .

(104) !2.   

(105)  

(106)       . B% & i   +  N   ,  -   di   .  T  k      T [k] > di ≥ T [k + 1]  T [k + 1] := di . L[i] := k + 1

(107)            T      %            )          a < a ) -   [a, d]  [a , d ]   "  " -   d > d )  & )  ) !*.+      %    & "       O(N log(N ))        O(N log(N ))    "  O(log(N ))       N  % B%#%.    

(108)    .   K = 1 4C -       %) #22+ %               0  T        %             -) )    )             3  %   )    a1 = 0        = maxi {di }%   -   k          def  3  )         Ak (t)  Dk (t)    [0, ]       :   Ak (t) =.  i, L(i)≥k. si ·. [ai <t] ,. Dk (t) =. . si ·. [di ≤t] .. i, L(i)≥k.    Ak (t)  Dk (t)          )    :      % /    A       D    % "      -        -  )   "% D g    "      " &  % 4    )         "     "     %       t. 

(109)  

(110)  

(111) .

(112) !!      u(t) )  )    57C,  ") "  ") g(u(t)) ≈ αCu(t)1+2/(γ−1) )  1 ≤ γ ≤ 3, α ≥ 0, C ≥ 0)   ) #22#    % D    8  !    k      -     k      3  %   

(113)  

(114)       .   &       u∗k : [0, Ì] → R  . Ì 0. g(u∗k (s))ds.         t 0.  t 0. ∀t ∈ [0, Ì],. u∗k (s)ds ≤ Ak (t). ∀t ∈ [0, Ì],. !. #. u∗k (s)ds ≥ Dk (t). ∀t ∈ [0, Ì].. B. u∗k (t) ≥ 0. 5  !        "   % 5  #   "     &           B "      -  "   t          -   -        0  t% 4        %) #22+    &     uk (t)   : ! ) #  B               -  4C ai ≤ aj → di ≤ dj %         " -      " 0      " &     #  B %     )       -          A  D  & k  -  %  :      τ1 = (0, 4, 10)   τ2 = (4, 1, 5)%     τ1 = (0, 1, 5), τ2 = (0, 3, 10)  τ3 = (4, 1, 10)%

(115)       4C    :   %     -    A(t)  A (t)      %       D(t)  D (t)    0 % )       8  !       -) u∗(t)  u∗ (t)  0 %   B   " A(t) = A (t)    D(t) = D (t)        U ∗ (t) = 0t u∗ (s)ds  u∗ (t) = 1/2, ∀0 ≤ t ≤ 10%

(116)    58<  u∗(t)  ?   :   -                : . 

(117)  

(118)  

(119) .

(120)   

(121)  

(122)       . !#. A(t) = A (t) U ∗ (t). &4 3. D(t) = D (t). %&%2  %&%2 !. - τ2   58<            [4, 5]     % 8  !         %) #22+ % ,     !   k = 1          u∗      "  4C -%            8  !   $      %   ) .  %) #22+*  &  k      u∗k    $  /  g      )       0* &    u∗k       g     g                u∗k '     /½ ! sup0≤t≤Ì u∗k (t) ≤ sup0≤t≤Ì uk (t),     uk      ! #  B       Uk∗ def = 0t u∗k (s)ds        0  Ì    Ak  Dk ) &  %     *  #    Ak  Dk                      u∗k (t)              u∗k )      %) #22+ )      F G              &                       )  )    ( ) !**. % .               

(123) 

(124)          

(125)      . 

(126)  

(127)  

(128) .

(129) !B.   

(130)  

(131)       . B%B%       

(132)   

(133) 

(134)   D    K        3  )   " Tk )   1 ≤ k ≤ K )      -   k   %      :           % !% &  k ∈ {1 · · · , K} 

(135)   u∗k (t)       1  $     k  ,' rk := sup0≤t≤Ì u∗k (t)  Ik     ∀t ∈ Ik , u∗k (t) = rk  #% 2 kc :=  1≤k≤K rk   Ik       c. / &             H      def  t ∗ ∗  -     #%    Ui (t) = 0 ui (x)dx    "   u∗i (t)     "        % ;  r3 = 1/2) r2 = 7/11  r1 = 12/22%

(136)    &  r2 = 7/11)   " u∗2    [4, 15]   - τ3, τ4  τ6%         % /         -       r2 = 7/11 < 1% B%H%    

(137)                   % 4    ) Ic        WI )   "       )   Wc% ;   :    vk )   (=       - Tk ) v1 = v  % c. 

(138)            !.  supt v  (t) = Wc  &  k vk       1  $   .   *  &  1 < k ≤ K supt vk (t) ≤ supt vk−1  (t). k. ) . 1            0      v   (   %) !**+ % 8          . 

(139)  

(140)  

(141) .

(142) !H.   

(143)  

(144)       . a). A3 (t). 3. U3∗ (t). D3 (t). 1. 9 7. A2 (t). 6. b) U2∗ (t). D2 (t). 2 1. A1 (t). D1 (t). c). U1∗ (t). u∗2 (t) > u∗1 (t). . t %     U3∗ (t) = 0 u∗3 (x)dx %     U2∗ (t) =  t  %     U1∗ (t) = 0 u∗1 (x)dx. &4 ,3. t 0. u∗2 (x)dx.                u   "   !)#  B% /   )      "  Tk ⊆ Tk−1    &   "    -  %   &  t ∈ [0, T ],. supt u∗k (t) ≤ supt v k (t). 1  " D #  ) vk       8  !     k   "   % <   !    t ∈ [0, T ], supt u∗k (t) ≤ supt v k (t)%   supk rk ≥ Wc . 

(145)  

(146)  

(147) .

(148)   

(149)  

(150)       . !+. 1  ;     -         Ic = [ac , dc ]   - τc   $ sc       $   -    Ic       ac      dc %

(151)     Lc     -       -  Ic% " :    τc )     -  TLc      τc    -    τc   τc      -    ac :   dc %     DLc (dc ) − ALc (ac ) = 0   A     D   %     u∗Lc    supt∈Ic u∗Lc (t) ≥ (DLc (dc ) − ALc (ac ))/(dc − ac ) = Wc %   ") supk rk ≥ rLc ≥ Wc%   2 kc =  k rk   rkc = Wc     Ikc.      . 1  " D #  ) supt v  (t) = Wc % 7) D #  "  supt vk (t) ≤ supt vk−1  (t)% 5       D B)   supt v  (t) ≥ supt u∗k (t)   k% 4   ) supt v  (t) ≥ supt u∗kc (t))  kc = &k rk %   ") D H "  rkc ≥ Wc        0    rkc = Wc %   Ikc        %.

(152)   u∗k = vk   % 3)   )  0  "           kc % B%+%    

(153)

(154)       /  -   "   "         "    % /       3       %     & "    u∗k       -   k          %) #22+ % 5  rk         -      k% )   & "        v1           N  i=1. L(τi ) =. K . Ni · k. k=1. 

(155)  

(156)  

(157) .

(158) !E  Ni     -   i%     & "         -      K  NK = N − (K − 1) -   K %   & "   O(KN − K 2 /2)%

(159)        & "     -    !.  4C   K = 1         %       K = N   1 -    )    & "  O(N 2 /2)   "                 "  "   r1 ≤ 1 % ,  K ≤ N )   & "           0 % ;   -          & "  O(N K)      O(N 2)  & "   , =      K         N         -      "    $ %                K  "    -%   

(160)  

(161)       . B%E% 

(162)  

(163)

(164)       /  )       "            N "   K    & "% / )      K   "     0  N )          -    1 "   "  % B%E%!% 3                 4   )       K        -    "% @  K         3     N -% 4  ) K         0   8 P    B%! % 3)  8 P     R2 "      (ai , −di )        % /              + %               0        "      &  "  /     ) !**+ % 4       . 

(165)  

(166)  

(167) .

(168) !M.   

(169)  

(170)        ai. ai. −di. −di a) Points are randomly chosen in the whole quadrant. The longest increasing sequence. b) points are randomly chosen below the diagonal. The longest increasing sequence is shorter (3).. is of length 4. &4 3. (          "     . di ≥ a i .  (ai , di )    "  R2+ )    -   " )         %  ! )/ .  '.    ) !**+*    . √ √ E(K) = 2 N + o( N ).. K.      0                     R2+% 4  )      &    K                "    ∀i, di ≥ ai      (ai , −di )          + % ;         )   K              "  R2     +%  -        )            8         di − ai  &     % B%E%#% 4     1   .       " #  .     1               E(K) = O(log(N )). 

(171)  

(172)  

(173) .

(174) !. 1    "   8     " μ      &    " λ% /   )               "    ai   x&   −di   y & % ;     E  N      % 4   -) K    0        (ai , −di ) < · · · < (ai , −di )%

(175) )     "     h = (ah , −dh ))     0 Sh           "       Th         (ah , −dh )% D H   "    %   

(176)  

(177)       . 1. 1. P(SH ≥ b) ≤ P(TH ≥ b), ≤.  ∞. λe−λx. x=0. = λ. ∞  ∞ . K. ∞ . H P(k. E. e−(λ+μ)x μk xk /k! dx,. λ μ = λ + μ k=b λ + μ .         x) dx,. +. k=b. k=b x=0 ∞  . =. K. ∞ λ μ μ k=b λ + μ. k  ∞. k+1. . =. M. e−y y k /k! dy,. y=0. μ λ+μ. b. .. ,.  +            dH = x          H         aH  aH + x% 0 "  +  E   "  "       y = (λ + μ)x  M %

(178) &)      SH        / & /    % "   5 " B%B     8) !*.! ) ⎛. P (K > b) = P (max SH > b) ≤ 1 − ⎝ h. ⎞. (1 − P (SH > b))⎠ .. h∈E. "   . ) ⎛. 1−⎝. h∈E. ⎞.  ⎠ (1 − P (SH > b)) ≤ 1 − (1 − (. μ λ+μ. b. )N .. 

(179)  

(180)  

(181) .

(182) !*.   

(183)  

(184)       .

(185) )   α = log λ+μ μ )    E(K) = 1 + ≤ 1+.  ∞. P (K > x)dx 0.  ∞ 0.  ∞. = 1+ 0. = 1+ = 1− = 1− = 1+ = 1+. 1 − (1 − e−αx )N dx (1 −. N . (−1)k Cnk e−αkx )dx = 1 +. k=0. N . (−1)k+1 Cnk. k=1 N . 1 (−1)k Cnk α k=1  1 11. α. 0. u.  ∞. e−αkx dx = 1 +. 0.  1 0. 0. uk−1 du = 1 −. ((1 − u) − 1)du = 1 − N. (1 − u)i du = 1 +. i=0. N 1 1. α. i=1. i. N . 0. 1 α. 1 α. (−1)k+1 Cnk.  1 N 1  0. x.  1 11. α. N −1 . [. i=0. 0. (−1)k+1 Cnk e−αkx dx. k=1. k=1.  −1 1 1 N. α.  ∞ N. u. (. 1 αk. (−1)k Cnk uk − 1)du. k=0. (1 − u − 1). N −1 . (1 − u)i du. i=0. 1 (1 − u)i+1 ]1u=0 i+1. = O(log(N )).. /       "    8 &  . %% -     8            &   "    )      log(N )     K        "  %    )                "        "    % B%E%B%          O(log(N )                )      K                   " % ,  "         "        &               %     :    . 

(186)  

(187)  

(188) .

(189) #2   "       N   "        )   

(190)  

(191)       . − −.   "       N &  "         ). −. 8     N &  "        ). −. 8     N            P [X > x] = Cx−n % 3) n = 2  C              %.   E  $   %       F  "        N &  "        G)         F8     N &  "        G)       E%          !222 & % C  )   & )  log(N )   K         % /         K             )  8 )    % 3)        K       N       : )      %      log(N )       "      " D M%

(192) )        & "                 )  E  D M  "  √  & "           0  O(N N )    O(N log N )       D M% C   )     & "          ,    k((N 2 + N )/2)    k)               )              0   :     .       -  4C   % B%M% 

(193) 

(194)    (           , =    )     "       ?  "% 3           . 

(195)  

(196)  

(197)  .

(198) #!.   

(199)  

(200)        8. Time (sec). 7. Poisson arrivals / expo. deadlines uniform arrivals / uniform deadlines Poisson arrivals / power-law deadlines 6.15*10E-2*log(x) 5.5*10E-2*log(x) 5.1*10E-2*log(x). 6. 5. 4. 3 1000. 3000. 5000. 7000. 9000. Number of jobs. 3     K   

(201)       ,  

(202)   4 .              

(203)  '       . &4 -3. !% #     k ∈ {1 · · · , K} 

(204)   u∗k (t)       1  $     k  ,' rk := sup0≤t≤Ì u∗k (t)  Ik     ∀t ∈ Ik , u∗k (t) = rk  #%

(205) . kc :=  1≤k≤K rk k ∈ {1 · · · , K}      .       . rk. <   8@/7  )   P ≤ K )   & "   :   O(N K/P )     & "      O(K/P + log(P ))%   "        %   )  "     u∗k (t)       . ! )                   O(log2 (n))     "    %                 N C      % C   )    - " ?  "    $ , =          "           %. 

(206)  

(207)  

(208)  .

(209)   

(210)  

(211)       . ##.  #    $ . 4    )         )     t)   u(t)  &  -               $    "  % H%!%     

(212)      v   "               $    "  "       "          u)     g(u))  g  &   %        " (   %  (   %) !**+ % D         0    0       & "   (   %=   %    & "     (   %) !**+       , =         ,  B  :      %     :&       %     "                    -%           % !% & k = 1..K    u∗k (t) 2 ri = sup0≤t≤T u∗k (t).      Ic = [ai , bj ]    W[a ,b ] = supk rk  i. j. #% -    [ai , bj ] /  W[a ,b ]  "     .     [ai , bj ] (    $       i. j.  &           & )            B%!)    "    M% 4      K )        3   )               % 4)  -) " τ1)     "    -) " τ2)     )  τ1     "    - τ2)    )  % C   ) K "  "    % 4   - τ1    "    - τ2                    -  . 

(213)  

(214)  

(215)  .

(216) #B.   

(217)  

(218)        A1 (t). D1 (t). u∗2 (t) > u∗1 (t). +

(219)    

(220)             .  

(221)  &4 63.    )  "     "   "     % ,      N     )    "   .  !  -   N       & "   & ") "  E)      O(KN 2 )% /    √ 2    "    0  O(N N )% )  -  8          &   )    & "  O(N 2 log N ) " D M%            "       "      +      (   %=   % H%#% 

(222)             &         .  , 8        (   %=   ) &        %              . 

(223)  

(224)  

(225)  .

(226) #H.   

(227)  

(228)        12000. Time (sec). 10000 8000. Yao et al’s algorithm Shortest Path algorithm 1.5*10E-9*n3 3.3*10E-8*n2*sqrt(n) 2. 3.3*10E-8*n *log(n) 6000 4000 2000 0 1000. 3000. 5000. 7000. 9000. 11000. 13000. 15000. Number of jobs. 5

(229)    

(230)     

(231)        1   6.      

(232)    

(233)  

(234)    ! %   

(235) 7.         / ' 

(236)   5

(237)          .   ' 

(238) . !

(239)   .    568 

(240)  &4 3. −.        8     S/N  S    "    S = 230   &   N     ). −.          &        S/N     $    "          "        0.5%.                .      "   !222  !+222%           & % 5        &  -      58<     #$ 58<            (   %=        *222  %    .)  )  &)        (   %=     O(N 3)          √ 2 2  O(N log(N ))     O(N N )       "       -=   %  O(N 2 log(N ))    &    &          D M%. 

(241)  

(242)  

(243)  .

(244) #+ ;        *222)              58<     (   %=                               , 8   %  *222 )    0  H#     (   %=   % ;    "  -      -)         )     "                      -    "                 "     D57   -      &  1   :    -)  D  ; ) !*.# %   

(245)  

(246)       .     . 4   ")  :        :                %        &           & "% 4  -)  "        & "           $     - &    :     )  -      %      )         "    "  :        %        & "          (   %        &         :    )  &     :           $          %) #22+ % 4       -  - O 7       /     ) !**+  O7 P          8) !*.!          & "%. 

(247)  

(248)  

(249)  .

(250)   

(251)  

(252)       . #E. % . 39 7  : $ +  5   - + 

(253)   + 5  ; .//< =5    2   1  

(254)  5

(255)  6 +

(256)   - (

(257)  3 > &; +2 777 / 8&  7  8 2/4  ##/& &$ %#$&  <<?@< 3 $  6 $;  =,

(258)

(259)   >             A> *  &/& 82  / &/$ . ?.< 3  , - + 

(260)  $ +B  6 +"3  7; .//@ =6 3  1    6  -(

(261)  (!> 777 8$ &$  "#$  C@?D// 3  , + - $ +E  +3 6; .// =$ 

(262)   3   1  ( A  6 3  -(

(263)  1  

(264) > &; 552 / 8& %$$ %#$&  ?/   - #  % 6  ; C %&$& / 82 9 /& &/& 

(265) &9 8$&4: *  &/& /$ (  F       G  +  ; C /4&2&  5

(266)   8  . 6  %   6; C / !$  / #2$:  % 9 *&// ! %$ &   1   $   + 

(267)   F  9"  : :    5 F ; .//< =-(

(268)  1   2 

(269)  #  8> &; ;$ <; & / 8$& & / "$& =8"<>  ?DD 9"  : :    5 F ; .// =1     

(270)    

(271)     %&%2 ! 

(272) 

(273)    > " 8$ &$  7  "#&4 %$$ @ /0?<< 6 

(274)       &:-&3 -  - --@CCD    ! "# 9  %; .// =2         

(275)    

(276)    !      '  

(277) > &; 777 ?@$2#  *1 4 9 / 8&  7  %$$  ?D 9  %; .//. =#  5  1   -(

(278)  1  

(279) > 6 $  H &     (   H G(  G F   ; C. =2  

(280) '  %'6  . 1   6  -(

(281)  (!> *9  7/&  .<0?./ H   3 +!; .//< =3 &    3   3  $ 

(282)  I  1  ,  -(

(283)  1  

(284) > &; +2 777 / 8&  7  8 2/4  ##/& &$ %#$&  D?.< H   G  3 1

(285)  ; .// =&

(286)     

(287)      

(288)  . 635#> &; " % 78 "% 5 "9   /?D. 

(289)  

(290)  

(291)  .

(292)   

(293)  

(294)       . #M. +E $ , 3   5    - + 

(295) ; ./// =5

(296)     

(297)         

(298)   > &; ?@$2#  "#&/  !#&4 %$$ 9

(299) 1 *1 6 6  J 1 ; .// =-(

(300)  $ 

(301)  I  1  H6 #

(302)  1  

(303)  > !#&4 %$$ &1  C?/. K 3 1 9   1 %   ; .//< =3 $ 

(304)  I  1 3 

(305)  1  (!> &; 5,2 777 &/ / 8& %$$ %#$&  .?D. K 9  L ,; .// =#  #M %'6   1   -(

(306)  1  

(307)   I  I  6  > &; $&4 & "9   C.C?C<< K 9  L ,; .//. =+

(308) 

(309) #  %'6   1   I  I  6  > &; $&4 &  8$ & 7# "9   7A2& && =87<5> 1  5  9 H ; .//D =3 -  -   3 

(310)  6  3  1   6   3  -(

(311)  (!> 777 8$ &$  "#$ . /?.. 1  $ G J

(312)   1 H; .// =&  !           

(313)   > 777 $&4 B 8$ 9 "#$ . 1    J 5 ;  =6 5 %' 6   1   ,  -(

(314)  1  

(315) > &; $&4 & "9   <@?< 1 !  G + 1  J -

(316) 

(317)  

(318)   9 . 7; C /& % 2/ &4 9 / 8& %$$: 7  / /4&2$ J 3

(319)  6   F  #;  82 "" " &$ 7  /#& 9 2& $ 5-5 6  &1 : /C@<D@/ L - 5 L - + 

(320)   $ +; .//@ =6   635#  

(321)    

(322) > &; * &4$ 9 2 ,2 " &&/ 9   7  $91 =7 %!8<,> :  ! : 813  @?D< 35+ 6   %; .//< =5

(323) '    $

(324)   1 ! 3 

(325) > 6    

(326)

(327)    % 3 $

(328)    1 1 ! ;  =3  

(329)    568   > &; * &4$ 9 /777 / &$ 9 "# % &   <0@?<C.  ,1  G J

(330) ; .//< =2    

(331)       '  .    

(332)    

(333) > " 8$ &$  7  "#&4 %$$ < <<?@</ N  %  1 5 ; .//. =6  I  1   -(

(334)  (!  :6 

(335)   1 > &; 52 / 8& %$$ %#$&  .<?.@. 

(336)  

(337)  

(338)  .

(339)   

(340)  

(341)       . #.. &  & & ' &         (  .    &            Si   %   "       D M%  :           )       8) !*.! % / ")         4 (x1 , y1), . . . , (xn , yn )      R2+ )        0 S1 . . . , Sn   %     " :   $    R2+ % D      EK = {0, . . . , K} ×{0, . . . , K}% /    (i, j) ∈ EK )    "     Xi,j % 4    )        Xi,j  %     Xi,j              (i, j)% K         0   )

(342) ) Si,j       (i, j)           (i, j)   % K        4          Si,j K) (Xi,j )(i,j)∈E % ,  (Xi,j )(i,j)∈E  )  (Si,j (i,j)∈E    "  #%#  8" P3 )  B2)     8) !*.! % K   "  

(343) )    "    Si,j     )        " 8" P1 )  B2)     8) !*.! % ;      K   %    n)  n    Si,j

(344) )   -        )   K   : "    EK  ")       (i, j)      {0, maxi xi }×{0, maxi yi }% K. K. K. 

(345)  

(346)  

(347)  .

(348)

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to