• Aucun résultat trouvé

ATOMIC COLLISIONS OF CHANNELED IONS : RESONANT COHERENT EXCITATION

N/A
N/A
Protected

Academic year: 2021

Partager "ATOMIC COLLISIONS OF CHANNELED IONS : RESONANT COHERENT EXCITATION"

Copied!
9
0
0

Texte intégral

(1)

HAL Id: jpa-00218450

https://hal.archives-ouvertes.fr/jpa-00218450

Submitted on 1 Jan 1979

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ATOMIC COLLISIONS OF CHANNELED IONS : RESONANT COHERENT EXCITATION

S. Datz

To cite this version:

S. Datz. ATOMIC COLLISIONS OF CHANNELED IONS : RESONANT COHERENT EXCITA- TION. Journal de Physique Colloques, 1979, 40 (C1), pp.C1-327-C1-334. �10.1051/jphyscol:1979170�.

�jpa-00218450�

(2)

S. Datz

Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, U.S.A.

R d s d . Les i o n s bien c a n a l i s g s n ' e n t r e n t e n c o l l i s i o n qu'avec l e s e l e c t r o n s de conductance ou de valence du c r i s t a l . Aux v i t e s s e s v i >> vo l e s processus de p e r t e ou de capture d ' e l e c t r o n s s o n t e q u i v a l e n t s d ceux s e produisant avec l e bombardement d ' e l e c t r o n s d ve = v i . Pour l e s i o n s de Z suffisamment dl6vds e t fortement ionise's, l e s s e c t i o n s e f f i c a c e s de capture; de p e r t e e t d ' e x c i t a t i o n de l ' e l e c t r o n s o n t diminuegs, s i b i e n que les d u d e s de v i e e n t r e c o l l i s i o n s s o n t s u f f i s a n t e s pour permettre des d t a t s atomiques b i e n d e f i n i s 5 l ' i n t e r i e u r du c r i s t a l . La n a t u r e periodique du r h e a u f o u r n i t une p e r t u r b a t i o n cohdrente q u i permet d ' e x c i t e r des t r a n s i t i o n s dans c e s & t a t s e t q u i donne une forme de spectroscopie, au cours de l a q u e l l e , on peut mesurer l e s d t a t s ioniques d e t a i l l d s e t l e s champs c r i s t a l l i n s s t a t i q u e s e t dynamiques.

Abstract. Well channeled i o n s c o l l i d e only with conduction o r valence e l e c t r o n s i n the c r y s t a l . A t i o n v e l o c i t i e s v i >> vo e l e c t r o n l o s s and capture processes a r e equivalent t o those occurring with e l e c t r o n bombardment a t ve = v i . For h i g h l y s t r i p p e d i o n s of s u f f i c i e n t l y high Z, e l e c t r o n c a p t u r e , l o s s , and e x c i t a t i o n c r o s s s e c t i o n s a r e lowered s o t h a t c o l l i s i o n a l l i f e t i m e s a r e long enough t o allow defined atomic s t a t e s i n s i d e t h e c r y s t a l . The p e r i o d i c n a t u r e of the l a t t i c e s u p p l i e s a coherent p e r t u r b a t i o n which can e x c i t e t r a n s i t i o n s i n t h e s e s t a t e s and a f f o r d s a form of spectroscopy with which t h e d e t a i l e d i o n i c s t a t e s and c r y s t a l f i e l d s , both s t a t i c and dynamic, may be measured.

INTRODUCTION

I n general the frequency and c h a o t i c n a t u r e of c o l l i s i o n s of f a s t i o n s p e n e t r a t i n g s o l i d s precludes an e x a c t d e s c r i p t i o n of t h e t o t a l i o n i c s t a t e . However, the process of channeling r e s t r i c t s t h e range of impact parameters a v a i l a b l e , l i m i t s i t s c o l l i s i o n s t o conduc- t i o n and valence e l e c t r o n s , and, under c e r t a i n condi- t i o n s permits t h e e x i s t e n c e of d i s c r e t e s t a t e s f o r long enough p e r i o d s t o allow a meaningful measurement of t h e i o n i c s t a t e i n i t s milieu. I n any form of spectroscopy energy l e v e l d i f f e r e n c e s a r e measured by absorption o r emission; i n t h e case t o be discussed h e r e the coherent p e r t u r b a t i o n caused by t h e p e r i a d i c - i t y of t h e c r y s t a l l a t t i c e s u p p l i e s the frequency necessary t o perform absorption $pectroscopy between s t a t e s .

p o t e n t i a l of t h e f i r s t atom, again by t h e second, and s o f o r t h . The f i n a l c o l l i s i o n w i l l thereby be con- s i d e r a b l y softened, and, depending upon the angle, $, with r e s p e c t t o the atomic row, i t may nor " c o l l i d e "

a t a l l with the o r i g i n a l t a r g e t atom. This i s the b a s i s of channeling; i . e . , w i t h i n a small c r i t i c a l angle, J,, with r e s p e c t t o an atomic row o r plane, determined by t h e i n t e r a t o m i c p o t e n t i a l and spacing, d , of atoms, t h e p a r t i c l e w i l l be d e f l e c t e d by a continuum p o t e n t i a l made by properly summing the atomic p o t e n t i a l s .

I n Fig. 1 we show some cases of low index axes and planes i n the face-centered cubic c r y s t a l . For p a r t i c l e s e n t e r i n g i n a c l o s e t o a x i a l d i r e c t i o n a t high v e l o c i t y , Lindhard [ I ] showed t h a t t h e c l o s e c o l l i s i o n s with t h e r e s u l t a n t rows o r " s t r i n g s " of

CHANNELING AND IONIC CHARGE STATES atoms a r e avoided f o r incidence angle $c i f

Consider a p r o j e c t i l e i o n aimed f o r a hard c o l l i s i o n with a n atom contained in a c l o s e l y packed

( i . e . , -low index) atomic row i n a c r y s t a l . Because For p l a n a r channeling, i . e . , confinement of of t h e pre-set arrangement of t h e atoms with r e s p e c t t h e i o n ' s motion between s h e e t s of p l a n a r d e n s i t y n- t o i t s path the p r o j e c t i l e w i l l undergo a set of

c o r r e l a t e d c o l l i s i o n s with t h e e q u a l l y spaced row

(atoms t h e c r i t i c a l angle J, i s P

*

- -

atoms. I t w i l l be s l i g h t l y d e f l e c t e d by t h e r e p u l s i v e 2 J, = ( 2 r n Z Z e a

P P 1 2

!Research sponsored bv t h e Division of Chemical where a, is t h e Thomas Fermi screening l e n g t h . Sciences, b f f i c e of Basic Energy Sciences, U. S.

Department of Energy under c o n t r a c t W-7405-eng-26

I C

The primary r e s u l t of channeling is t o pre- w i t h Union Carbide Corporation. v e n t small impact parameter c o l l i s i o n s from occurring.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1979170

(3)

JOURNAL DE PHYSIQUE

I

Face Centered Cubic Crystal '\

I Viewed Along the [OM] Axls )

I

I

[lw] Axis, Rotation [ t l 0 ] Axis lRotatian

( 9 0 0 ) Planar Channel ( t 4 0 ) Planar Channel

[01i] Channel till] Channel

FIG. 1.

-

I l l u s t r a t i o n of some a x i a l and p l a n a r chan- n e l s i n a f a c e c e n t e r e d cubic c r y s t a l .

Hence, such e f f e c t s a s t h e e l i m i n a t i o n of Rutherford s c a t t e r i n g and n u c l e a r s t o p p i n g and t h e r e d u c t i o n of xiray and n u c l e a r s t o p p i n g and t h e r e d u c t i o n of x-ray and n u c l e a r r e a c t i o n y i e l d s a r e observed [2].

Of g r e a t e s t importance t o t h e s u b j e c t i n q u e s t i o n h e r e i s t h a t f o r channeled i o n s of vi >> vo c l o s e e l e c t r o n i c i n t e r a c t i o n s a r e l i m i t e d t o valence and/or conduction e l e c t r o n s , a l l of which have v e l o c i - ties lower t h a n t h e p e n e t r a t i n g i o n . Thus, f o r e l e c - t r o n c a p t u r e and l o s s from t h e i o n , we can view t h e p e n e t r a t i n g i o n a s s t a t i o n a r y and being bombarded by e l e c t r o n s of energy 112 mevi. 2 For example, a n i o n moving i n a channel w i t h a n energy of 2 MeVIamu maX be viewed a s being bombarded with e l e c t r o n s w i t h 1 keV of engrgy.

The r e s u l t of t h i s can be s e e n i n Fig. 2 where we show t h e eFergent charge s t a t e f r a c t i o n s , $i, f o r 40 MeV oxygen i o n s which have been i n j e c t e d i n t o a t h i n Au c r y s t a l [3]. When t h e beam i s d i r e c t e d i n a

"random" (non-channeled) d i r e c t i o n t h e observed

110 MeV 0 IONS

INTO A Au CRYSTAL I

0.8

i, EMERGING ION CHARGE

I

8+

in

[llO] AXIS PATHLENGTH 033um

FIG. 2.

-

F r a c t i o n a l p o p u l a t i o n s of charge s t a t e s of 40 MeV oxygen i o n s emerging from a n Au c r y s t a l when a l i g n e d i n a random and [I101 channeled d i r e c t i o n a s a f u n c t i o n of i n c i d e n t i o n charge s t a t e .

emergent d i s t r i b u t i o n i s independent of t h e i n i t i a l charge on t h e oxygen i o n (6+, 7+, o r 8

+

) and a l s o independent of t h e c r y s t a l t h i c k n e s s over t h e range 0.143 t o 0.663 pm. This i s t o be a n t i c i p a t e d s i n c e

"normal" e l e c t r o n c a p t u r e and l o s s c r o s s s e c t i o n s f o r i o n s of t h i s v e l o c i t y i n g a s e s (2

5

8) a r e i n t h e o r d e r 10'17 cm 2

.

S o l i d d e n s i t i e s a r e i n t h e o r d e r $5 x 10 22 atomslcm 3

.

A mean f r e e p a t h f o r charge exchange i s only a . 0 2 pm s o t h a t a s t e a d y s t a t e ("equilibrium") w i l l be reached independent of t h e i n i t i a l charge s t a t e .

The same s i t u a t i o n does n o t o b t a i n i f we i n s t e a d i n j e c t t h e beam i n a channeled d i r e c t i o n , i n t h i s c a s e t h e 4 1 0 7 a x i a l d i r e c t i o n . The emergent charge f r a c t i o n s a r e a s t r o n g f u n c t i o n of t h e i n p u t charge. Equilibrium i s n o t a t t a i n e d and t h e r e l e v a n t charge changing c r o s s s e c t i o n s must be much reduced.

From t h e m a t r i x of v a l u e s of emergent charge d i s t r i b u - t i o n s f o r d i f f e r e n t i n p u t charges ( o r from t h e v a r i a - t i o n of charge f r a c t i o n w i t h t h i c k n e s s [3] we can d e r i v e t h e r e l e v a n t e l e c t r o n c a p t u r e and l o s s c r o s s s e c t i o n s f o r channeled i o n s .

Taking a c a s e i n p o i n t we have found an e l e c - t r o n c r o s s s e c t i o n f o r 0 7+ ,a7,) = 3 x 10-l9 a t 28 MeV

(4)

p e r e l e c t r o n of 3 x

loe2'

o r a b o u t 2 times a s h i g h a s one would c a l c u l a t e from Sampson and Golden's [5]

method f o r %900 eV e l e c t r o n s on 07+(1s). An i m p o r t a n t p o i n t h e r e , however, i s t h a t i n t h e c r y s t a l channel any c o l l i s i o n l e a d i n g t o e x c i t a t i o n soon l e a d s t o ion- i z a t i o n , e . g . , t h e i o n i z a t i o n c r o s s s e c t i o n f o r 0 (2p) 7+ i s $10 times t h a t f o r 1s [5]. I n s o f a r a s t h e e x c i t a t i o n c r o s s s e c t i o n f o r t h e 1s e l e c t r o n i s e q u a l t o i t s d i r e c t i o n i z a t i o n c r o s s s e c t i o n , t h e e f f e c t i v e i o n i z a t i o n c r o s s s e c t i o n i n a channel c a n be a s much a s twice t h a t f o r a s i n g l e e l e c t r o n c o l l i s i o n .

The e l e c t r o n c a p t u r e (recombination) c r o s s s e c t i o n s i n t h e channel f o r 07+ and 08+ were even lower [ I ] ( o = 9 x 07,6 = 6 x s o t h a t

897

f o r c r y s t a l t h i c k n e s s e s of t h e o r d e r 0 . 1 t o 1 um an a p p r e c i a b l e f r a c t i o n of 07+ i o n s can p a s s through w i t h no charge changing c o l l i s i o n s and t h e s e which a r e i o n i z e d have o n l y a v e r y s m a l l chance of r e c a p t u r i n g a n e l e c t r o n .

F u r t h e r evidence f o r tie. absence of charge changing c o l l i s i o n s was shown i n measurement of energy l o s s s p e c t r a of i o n s emerging i n a given charge s t a t e a s a f u n c t i o n o f t h e i n p u t charge. F i g u r e 3 shows such s p e c t r a f o r 0 i o n s i n c i d e n t a t 27.5 MeV p a s s i n g

( 54178, THICK )

FIG. 3.

-

Emergent energy s p e c t r a of 27.5 MeV 07+ and 08+. i o n s i n c i d e n t on (111) p l a n a r channel of

4 .

The s p e c t r a shown are f d r t h e i o n s having t h e same"charge a s t h e i n c i d e n t beam.

-

through a 5400

%

Ag c r y s t a l [6]. The energy l o s s f o r f i x e d charge i o n s is c l o s e l y p r o p o r t i o n a l t o q2 [71.

I n f a c t , d e t a i l e d s t u d i e s

[a]

of t h i s type have enabled u s t o measure t h e e f f e c t of s c r e e n i n g by bound 1s e l e c t r o n s upon e l e c t r o n i c energy l o s s . For i o n s of lower Z ( e .g.

,

and C 5+ ) t h e r e l e v a n t

e n a b l e s u s t o p i c k o u t t h o s e i o n s which have n o t under- gone charge exchange [8].

RESONANT COHERENT EXCITATION

What we have demonstrated t h u s f a r is t h a t t h e s t a t e s of c e r t a i n c o n d i t i o n s i s a meaningful con- c e p t , i . e . , t h e y a r e n o t c o l l i s i o n broadened s o t h a t d i s c r e t e e i g e n s t a t e s a r e n o t u s e f u l concepts i n t h e i r d e s c r i p t i o n . I n t h i s c a s e i t i s a l s o meaningful t o d i s c u s s t r a n s i t i o n s between t h e s e e i g e n s t a t e s ( i . e . , t o perform a type of spectroscopy t o b e t t e r d e s c r i b e t h e s e s t a t e s ) . I n t h i s t h e l a t t i c e p e r i o d i c i t y sup- p l i e s r e q u i s i t e e x c i t i n g f r e q u e n c i e s and t h e presence of an e x c i t e d s t a t e i s s i g n a l e d by an i n c r e a s e d i o n i z a t i o n p r o b a b i l i t y [9

1.

Although t h e p o t e n t i a l c o n t r o l l i n g t h e d e t a i l e d t r a j e c t o r y of a channeled i o n can b e w e l l r e p r e s e n t e d a s a continuum, t h e i o n p a s s i n g between o r d e r e d rows of atoms w i t h v e l o c i t y vi e x p e r i e n c e s a c o h e r e n t p e r i o d i c p e r t u r b a t i o n of f r e q u e n c i e s

v = K(vi/d), K = 1, 2, 3

...,

where d i s t h e d i s t a n c e between atoms i n t h e row (Fig. 4 ) . When one of t h e s e f r e q u e n c i e s c o i n c i d e s w i t h v = AE / h where AE i s

r i j i j

t h e e n e r g y d i f f e r e n c e between s t a t e s i and j of t h e i o n a r e e o n a n t c o h e r e n t e x c i t a t i o n might o c c u r . I f t h e e x c i t a t i o n does occur an enhanced i o n i z a t i o n prob- a b i l i t y i n t h e t r a n s m i t t e d f i x e d charge f r a c t i o n should be observed.

FIG. 4.

-

Schematic showing t h e i n f l u e n c e of t h e symmetry of t h e p e r t u r b a t i o n s on an i o n p e n e t r a t i n g i n a

<loo>

d i r e c t i o n of a f a c e c e n t e r e d c u b i c l a t t i c e .

I n Fig. 5 f o r i n c i d e n t N ~ + we d i s p l a y t h e t o t a l p o p u l a t i o n f r a c t i o n of N ~ + emerging from an 850-&thick Au c r y s t a l a s a f u n c t i o n of t h e i n c i d e n t . energy [9]. The s p a c i n g a l o n g a <Ill> raw i s 7.064

i.

Resonances a r e s e e n f o r n = 1 t o n = 2 t r a n s i t i o n s w i t h K = 4 , 5 , and 6 , and f o r n = 1 t o n = 3, K = 5 . The a d d i t i o n a l s c a l e s shown a r e g i v e n i n terms of v / v where vr i s t h e r e s o n a n t v e l o c i t y c a l c u l a t e d f o r t h e n = 1 t o n = 2 vacuum s t a t e s of t h e i o n .

Although t h e t o t a l (2-1) i f r a c t i o n is

(5)

JOURNAL DE PHYSIQUE

I I I I I

NITROGEN ( 6 9 <Ill> AXIS AIJ

6th WWJNK: (n-I1 D

i:h

3 (74) - -

-

51h WRMONC (n-1) TO:

''''

0 9 5 1.00 1.05 (n121

-

(n-31 (11-41

a 6 5 I I I -

qrn HARMONIC E,=33.03 MeV 5' HARMONIC Er-21.19 MeV 6M HARMONIC E,- 1472 MeV

ION ENERGY (MeV1

FIG. 5.

-

Ratio, R, of N ~ + Counts t o the sum of N 6+

and ~ 7 + counts a s a f u n c t i o n of i n i t i a l energy f o r

<Ill> a x i a l channeling. The i n c i d e n t beam i s

N6+.

The a d d i t i o n a l s c a l e s a r e i n terms of the resonant v e l o c i t y c a l c u l a t e d f o r t h e vacuum s t a t e of ~ 6 + .

p l o t t e d , the energy l o s s s p e c t r a f o r one-electron ions c o n s i s t of two p a r t s : (1) f ixed-charge-state i o n s which appear a s a low-energy l o s s peak, and (2) p a r t i a l l y charge e q u i l i b r a t e d ions which have passed c l o s e r t o atom rows and appear a s a separable peak towards higher energy l o s s e s . By deconvolution we can show t h a t the resonance a f f e c t s only t h e fixed- charge peak. Hence, the a c t u a l dips a r e deeper than shown.

The Oak Ridge group has observed almost 50 n = 1 t o n = 2 resonances ( a x i a l and planar) with hydrogen-like ions of Z = 5-9 i n t h e energy range 1 5 E 5 3.5 MeV/amu. For a l l t h e simpler f e a t u r e s of the resozances, some g e n e r a l i z a t i o n s can be made: (1) narrower channels give s t r o n g e r resonances, (2) higher harmonic resonances a r e weaker, (3) t h e r e a r e s l i g h t s h i f t s i n the resonance peaks t o lower (v/vr), and (4) the peaks a r e asymmetric towards lower (v/vr).

To understand these and o t h e r f e a t u r e s l e t us concentrate on a s i n g l e channel, the

<loo>

a x i a l chan- n e l . The configuration of t h i s channel, i . e . , a l t e r - nating p a i r s of atoms a c t i n g on t h e ion, i s i l l u s -

t r a t e d i n Fig. 4. The e l e c t r i c p o t e n t i a l i n t h i s a x i s can be shown t o have t h e following form [ 9 ] :

even

V =

1

VkRm cos(2nkzIa) cos(2n&x/a) cos(2my/a) kRm

odd

+ 1

VkRm sin(2nkzIa) sin(2n!Lx/a) sin(2mny/a) kRm

where t h e z a x i s is centered on the d i r e c t i o n of motion

<loo>

and x and y a r e centered on t h e orthogonal <010>

and <011> channels. The term a denotes the u n i t c e l l l e n g t h ; f o r t h e

<loo>

a x i s , a = d.

Using a Moliere p o t e n t i a l t o describe the Au atom, t h e Fourier components of t h e e l e c t r i c f i e l d can be c a l c u l a t e d [ l o ] and a r e shown f o r K = 2, 3, and 4

i n Fig. 6. The value a t t h e c e n t e r l i n e i s f o r those i o n s which pass e x a c t l y down t h e center of t h e channel.

The A and B d i r e c t i o n s denote the f i e l d experienced along paths which take t h e ion toward atomic rows and i n a d i r e c t i o n between atomic rows r e s p e c t i v e l y . The explanation of two of the f e a t u r e s mentioned above a r e

" 1.8 t.4 1.0 0.6 0 . 2 6 0 . 2 0.6 1.0 1.4 1.8.

DISTANCE FROM AXIS (A)

ALONG A DIRECTION+ALONG 8 DIRECTION

FIG. 6.

-

Fourier c o e f f i c i e n t s of t h e l o n g i t u d i n a l and t r a n s v e r s e components of t h e e l e c t r i c f i e l d f o r t r a j e c - t o r i e s p a r a l l e l t o t h e

<loo>

a x i s v s displacement from t h e channel c e n t e r l i n e ; toward an atomic row (A) and between atomic rows (B).

(6)

t o atomic rows have stronger Fourier components.

More s i g n i f i c a n t l y t h e q u a l i t a t i v e d i f f e r e n c e between even and odd harmonics i s demonstrated. For c e n t e r l i n e t r a j e c t o r i e s even harmonics only t h e

I I

component i s present where i n odd harmonics only the

1

component i s present. Thus, f o r example, i n the Is t o 2p t r a n s i t i o n only 1s -c 2pZ e x c i t a t i o n i s possible i n even harmonics, and only 1s t o 2p is possible

X,Y

i n odd harmonics.

Other f e a t u r e s appear i f one considers i n j e c t - ing an i o n a t a s l i g h t angle t o t h e c e n t e r l i n e ( i . e . , the ion has transverse v e l o c i t y i n t h e B d i r e c t i o n of Fig. 6. Then i n addition t o t h e high frequency (vi/d) a lower frequency component corresponding t o t h e r a t e a t which atomic rows a r e crossed i s introduced and here again d i f f e r e n c e s between odd and even harmonics e n t e r .

For odd harmonics the f i e l d contains the frequencies (v/a)(kcose _+ RsinB); R = 1, 3, 5

.. . .

The 2p and 2p (degenerate) s t a t e s a r e t h e s t r o n g e s t

X Y

and only the sideband frequencies vo

+

v,,/KtanB appear.

The c e n t r a l frequency vo i s missing because f o r odd K the f i e l d changes phase one cycle a s t h e t r a j e c t o r y moves along d i r e c t i o n B a distance a. For even har- monics t h e f i e l d contains frequencies (tr/a)(kcosi3 f

a s i n e ) ;

a

= 0, 2 , 4

... .

The c e n t r a l component is mainly i n the z d i r e c t i o n s o t h a t the c e n t r a l frequen- cy vO i s maintained.

The p r e d i c t i o n s of t h i s model a r e amply borne o u t i n Figs. 7 and 8. Figure 8 shows an odd (K = 3) harmonic resonance f o r 07+ ions. For t i l t s i n the B d i r e c t i o n t h e c e n t r a l frequency disappears and only sidebands a r e seen. For example, a t i l t of 0 . 7 ' causes an ion t o s t e p over a distance a once every 80 atoms of i t s passage i n the Z d i r e c t i o n (thus once per 240 cycles of t h e t h i r d harmonic) giving sidebands 0.4 above and below t h e frequency vo K(v/a) (lt0.4%

i n v/vr). Figure 8 shows an equivalent t i l t i n g exper- iment but this time f o r an even (K = 2) harmonic f o r

ions. The c e n t r a l f e a t u r e i s seen t o be main- tained but note t h a t t h e c e n t r a l f e a t u r e here is a doubtet.

A t t h i s p o i n t we have demonatrated the mechanics of t h e ' e x c i t a t i o n process w e l l enough. The c e n t r a l now i s what can be learned about the c r y s t a l f i e l d and the d e t a i l e d s t a t e of the i o n i t i t s e l e c t r o n i c milieu.

Two p r i n c i p a l e f f e c t s occur which p e r t u r b the energy l e v e l s of an i o n moving i n a c r y s t a l channel

formed by bounding atomic rows o r planes. Simply put, t h e p o t e n t i a l becomes more p o s i t i v e moving away from t h e center of t h e channel so t h a t l a r g e r o r b i t s on the

O X W N (~*)<Iw>u(Is Au

a64 tn-tl m 111-21

E,

-

38.22 MeV

RERUN Ui AXIS

FIG. 7.

-

E f f e c t of a small t i l t i n the (B) d i r e c t i o n upon an (odd) t h i r d harmonic resonance.

TILT 0.7' TILT 1.4.

0.30 -

I

0.95 1.00 I.05

'!.

'"r

FIG. 8.

-

E f f e c t of a small tilt i n the (B) d i r e c t i o n upon an (even) second harmonic resonance.

(7)

c1-332 JOURNAL DE PHYSIQUE

channeled i o n a r e more weakly bound than i n n e r ones compared t o t h e vacuum s t a t e . The r e s u l t is, e.g., a r e d u c t i o n i n t h e n = 1 t o n = 2 s p a c i n g , and a c c o u n t s f o r t h e g e n e r a l o b s e r v a t i o n of lowered r e s o n a n t v e l o c i - t i e s . I o n s moving on p a t h s which a r e o f f t h e c e n t e r of t h e channel e x p e r i e n c e s h a r p e r f i e l d g r a d i e n t s and t h i s probably accounts f o r t h e asymmetric broadening t o lower v e l o c i t i e s .

The second e f f e c t i s caused by t h e presence of a n e l e c t r o n "wake"; e l e c t r o n s s c a t t e r e d from t h e i o n ( v i > > v o ) c r e a t e an enhanced e l e c t r o n d e n s i t y wave which f o l l o w s t h e i o n ; t h e d i s t a n c e t o t h e f i r s t node i n t h e wave being %2&v /w i s t h e plasmon frequency

1. P

and t h e i n t e g r a t e d enhanced charge d e n s i t y i n t h i s p a r t of t h e wake i s e q u a l t o -q, t h e charge on t h e moving i o n . Thus t h e i o n e x p e r i e n c e s a v e l o c i t y dependent DC f i e l d which can a c t t o S t a r k mix t h e i o n i c s t a t e s . Since t h e f i e l d a c t s always i n t h e z d i r e c t i o n t h e mix- i n g o c c u r s between t h e 2p and 2s s t a t e s and t h e d o u b l e t s observed i n even harmonics a r e due t o t h e s e s p l i t t i n g s .

It f o l l o w s t h a t t h e s e p a r a t i o n between t h e minima i n F i g . 8 'is a measure of t h e wake f i e l d i n t h e v i c i n i t y of t h e moving i o n . I f we assume a uniform f i e l d 5, t h e f i r s t - o r d e r S t a r k s p l i t t i n g i s 6ecao/Z.

The d a t a of Fig. 9 g i v e a v a l u e of 0.10e a. 2 f o r t h i s s p l i t t i n g , from which we deduce = 0.12e/ao2 which i s of t h e expected o r d e r of magnitude [ I l l .

Crawford and R i t c h i e [ I 2 1 have c a l c u l a t e d t h e d e t a i l s of t h e a n t i c i p a t e d e f f e c t s of t h e s e p e r t u r b a - t i o n s u s i n g Hartree-Fock r e l a t i v i s t i c wave f u n c t i o n s f o r t h e Au atoms w i t h Wigner-Seitz boundary c o n d i t i o n s . The r e s u l t f o r 44.1 MeV N ~ + i o n s i n t h e < l o o > a x i a l c h a n n e l of Au is shown i n F i g . 9. S i n c e t h e 2p

X Y Y

ENERGY LEVELS N'+ CHANNELING IN GOLD (001) axas, VELOCITY

-

1q.3 v0

I S

I

1,s

I

i 1

-18.4

VACUUM STATIC STATIC

+

POLARIZATION

FIG. 9.

-

E f f e c t of s t a t i c c r y s t a l f i e l d and p o l a r i z a - t i o n (wake) f i e l d upon t h e n=2 energy l e v e l of I&+

( s e e r e f . 1 2 ) .

o r b i t a l s extend toward t h e bounding atomic rows t h e y a r e more s t r o n g l y s h i f t e d by t h e s t a t i c p o t e n t i a l t h a n 2pZ o r 2s. The mixing of t h e 2 s and 2pZ by t h e p o l a r - i z a t i o n from t h e wake f i e l d i s i n d i c a t e d on t h e r i g h t s i d e of t h e f i g u r e . T r a n s i t i o n s e x c i t i n g 2p (even) e x c i t e t h e t o p and bottom s t a t e s w h i l e odd harmonics e x c i t e t h e c e n t r a l l i n e . D e t a i l s of t h e s e c a l c u l a - t i o n s w i l l b e g i v e n i n a forthcoming paper 1121. An example of t h e i r r e s u l t s is shown i n F i g . 1 0 where t h e energy l e v e l s h i f t s f o r 2px e x c i t a t i o n o b t a i n e d

9 Y

SHIFT IN AE (2p,+Is)

I

I

I

F I G . 10.

-

Comparison of c a l c u l a t e d c r y s t a l f i e l d w i t h v a l u e s o b t a i n e d from e x p e r i m e n t a l s h i f t s i n r e s o n a n t v e l o c i t y .

from

c5+,

N ~ + , and 07+ s p e c t r a i n a x i a l

<loo>

and <Ill>

channels and s l i g h t p l a n a r t i l t s i n t o (100) a r e com- pared w i t h t h e i r t h e o r e t i c a l e x p e c t a t i o n s . I n p a s s i n g i t i s i n t e r e s t i n g t o n o t e t h a t a f u l l Hartree-Fock d e s c r i p t i o n of t h e p o t e n t i a l was r e q u i r e d t o b r i n g t h e

<Ill> a x i a l r e s u l t s i n t o agreement w i t h experiment.

To t h i s p o i n t we have been d i s c u s s i n g only a x i a l channeling and s l i g h t tilts i n t o t h e (100) plane

( i . e . , c o s 8 " l ) ; i n f a c t RCE should o c c u r everywhere i n t h e p l a n e and should be o b s e r v a b l e a s l o n g a s c o l l i - s i o n a l p r o c e s s e s do n o t d e s t r o y t h e i n t e g r i t y of t h e i n i t i a l and f i n a l s t a t e s . Here, however, we need two i n d i c e s t o d e s c r i b e t h e harmonic K(k,R) i n q u e s t i o n , i . e . , i n Eqn. 3 even (Stark s p l i t ) harmonics should appear a t any v a l u e of 8 f o r k and It b o t h even. Odd harmonics should appear a t k and It b o t h odd. (The f i e l d s t r e n g t h s should v a r y % ( k * + ~ ~ ) - ' . ) These expec- t a t i o n s a r e demonstrated i n Fig. 11 f o r N ~ + i o n s i n t h e (100) p l a n e of Au. The

<loo>

a x i a l channel i s a t 8=O0, t h e <110> a t 8=45O, and o t h e r h i g h e r o r d e r a x i a l

(8)

0 I0 20 30 40 ('00) ANGLE IN (I001 PLANE (Pep) ("O)

FIG. 12.

-

Demonstration of resonances i n t h e (100) plane. Note S t a r k s p l i t (2,2) resonances.

FIG. 11.

-

C a l c u l a t e d e n e r y i n MeV/amu f o r c o h e r e n t n=1 t o n=2 e x c i t a t i o n i n HE+ i n t h e (100) p l a n e of Au a s a f u n c t i o n of a n g l e between t h e <loo> and <110> axes.

c h a ~ e l s appear i n between. The a b s c i s s a g i v e s t h e e n e r g i e s i n MeV/amu where resonances shoc.ld appear.

A x i a l < l o o > resonances f o r K=2 and 3 and have a l r e a d y been shown ( F i g s . 7 and 81, and t h e s l i g h t 0 t i l t s f o r K=2 (Fig. 8) can now be i d e n t i f i e d a s a (2,O) resonance and f o r K=3 (Fig. 7 ) the "side bands" r e f e r r e d t o above a r e r e a l l y t h e ( 3 , l ) and (3,-1) p l a n a r resonances.

I n F i g . 1 2 we show energy s c a n s taken a t 0=6O and 0 ~ 3 8 ' i n t h e (100) p l a n e f o r N ~ + . The 6' tilt demonstrates t h e continued s p l i t t i n g of t h e ( 3 , l ) and

(3,-1) resonances i n d i c a t e d i n F i g . 7. The 3a0 t i l t , however, i n t r o d u c e s a S t a r k s p l i t '(2,2) resonance i n t o t h e p i c t u r e ( c f . , F i g . 1 1 ) . Aside from a f u r t h e r demonstration of t h e g e n e r a l i t y of RCE, p l a n a r measure- ments p r o v i d e o t h e r parameters. The S t a r k s p l i t t i n g of t h e l i n e depends t o a l a r g e e x t e n t upon t h e s t r e n g t h of t h e wake f i e l d a t t h e i o n i c c o r e which should be veloc- i t y dependent. Thus measuring t h e s p l i t t i n g of a (2,2) resonance from, e.g., 3 MeVlamu a t 0'3' t o 1 . 6 WV/amu a t 0 ~ 3 8 ' p r o v i d e s .a means f o r d e t e r m i n i n g t h e v e l o c i t y dependence i n t h e same harmonic. T i l t i n g i n t o a p l a n e a l s o i n v o l v e s a change i n t h e p r o j e c t e d p a t h l e n g t h through t h e c r y s t a l s o t h a t changes i n resonance d e p t h s

f o r t h e same harmonic a t d i f f e r e n t t i l t a n g l e s can y i e l d i n f o r m a t i o n on coherence l e n g t h s ; e.g., i n F i g . 1 2 t h e ( 3 , l ) harmonic a p p e a r s a t 1.35 MeV/amu a t 3O and a g a i n a t 38". The resonance depth should a l s o depend on i n t e r p l a n a r spacing ( i . e . , s t r o n g e r f i e l d components accompany narrower s p a c i n g s ) s o t h a t t h e s t r e n g t h s of t r a n s v e r s e g r a d i e n t s can be t e s t e d .

Numerous s p e c t r a of ,type shown h e r e have been recorded by t h e Oak Ridge group and a r e i n t h e p r o c e s s of a n a l y s i s and i t i s hoped t h a t a h i g h l y d e t a i l e d d e s c r i p t i o n of t h e s t a t e of t h e channeled i o n and i t s i n t e r a c t i o n w i t h t h e c r y s t a l f i e l d s w i l l emerge.

Although no unambiguous r e s u l t s on t h e obser- v a t i o n of r a d i a t i o n from r e s o n a n t l y e x c i t e d s t a t e s ernerging from c r y s t a l s have y e t been r e p o r t e d , a n a l y s i s of t h e r e s u l t s of o u r enhanced i o n i z a t i o n experiments should l e a d t o t h e p r o p e r d e s i g n of experiments on t h e o b s e r v a t i o n of p o s t - f o i l r a d i a t i o n ,

The work r e p o r t e d h e r e i s based mostly upon t h e e f f o r t s of t h e Oak Ridge A c c e l e r a t o r Based Atomic P h y s i c s group over t h e l a s t a 8 y e a r s . T h i s p r o d u c t i v e group of co-workers i s l i s t e d i n t h e r e f e r e n c e s and t h i s a u t h o r i s a c t i n g t o r e p r e s e n t them on t h i s occasion.

(9)

JOURNAL DE PHYSIQUE

REFERENCES

[ I ] J. Lindhard, Phys. L e t t . , l2, p. 126 (1964). 181 S. Datz, G. Gomez d e l Campo, P.F. D i t t n e r , P.D.

[2] D.S. G e m e l l , Rev. Mod. Phys.,

46,

p. 129 (1974). M i l l e r , and J.A. B i g g e r s t a f f , Phys. Rev. L e t t . , 38, p. 1145 (1977).

[3] S. Datz, F.W. Martin, C.D. Moak, B.R. Appleton,

-

and L. B r i d w e l l , Radiat. E f f . ,

12,

p. 1 6 3 (1972). [9] S. Datz, C.D. Moak, O.H. Crawford, H.F. Krause, P.F. D i t t n e r , J. Gomez d e l Campo, J.A. B i g g e r s t a f f , [ 4 ] S. Datz, C.D. Moak, and J.R. B a r r e t t , unpublished P.D. Miller, P. Hvelplund, and H. Knudsen, Phys.

r e s u l t s

.

Rev. L e t t . ,

40,

p. 843 (1978)

[5] L.B. Golden and D.H. Sampson, Astrophys. J . ,

170,

[ l o ] C.D. Moak, S. Datz, O.H. Crawford, H.F. Krause, p. 181 (1971) and J. Phys. B,

10,

p . 2229 (1977). P.F. D i t t n e r , J. Gomez d e l Campo, J.A. B i g g e r s t a f f , , [ 6 ] S. Datz, Nucl. I n s t . and Meth.,

132,

p. 7 (1976). P.D. M i l l e r , P. Hvelplund, and H. Knudsen, Phys.

Rev. A, ( i n press).

[71 M.D. C'D' Moaky Brown, H.F. Krause, and S' Datz' B'R' Appletons T.S. Noggle, Phys. J.A' [ l l ] R.H. R i t c h i e , W. Brandt, and P.M. Echenique, Phys.

Rev. B,

10,

p. 2681 (1974). Rev. B,

14,

p. 4808 (19 76).

1121 O.H. Crawford and R.H. R i r c h i e ( i n p r e s s ) .

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to