• Aucun résultat trouvé

STUDY OF SOME OPTICAL AND ELECTRICAL PROPERTIES OF HEAVILY DOPED SILICON LAYERS

N/A
N/A
Protected

Academic year: 2021

Partager "STUDY OF SOME OPTICAL AND ELECTRICAL PROPERTIES OF HEAVILY DOPED SILICON LAYERS"

Copied!
8
0
0

Texte intégral

(1)

HAL Id: jpa-00223089

https://hal.archives-ouvertes.fr/jpa-00223089

Submitted on 1 Jan 1983

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

STUDY OF SOME OPTICAL AND ELECTRICAL

PROPERTIES OF HEAVILY DOPED SILICON

LAYERS

A. Slaoui, E. Fogarassy, J. Muller, P. Siffert

To cite this version:

A. Slaoui, E. Fogarassy, J. Muller, P. Siffert.

STUDY OF SOME OPTICAL AND

ELEC-TRICAL PROPERTIES OF HEAVILY DOPED SILICON LAYERS. Laser-Solid Interactions

and Transient Thermal Processing of Materials, 1983, Strasbourg, France.

pp.C5-65-C5-71,

(2)

JOURNAL DE PHYSIQUE

Colloque C5, supplkment au nO1O, Tome 44, octobre 1983 page C5-65

STUDY OF SOME OPTICAL AND ELECTRICAL PROPERTIES OF HEAVILY DOPED S I L I C O N LAYERS

A. Slaoui, E. Fogarassy, J.C. Muller and P. Siffert

Centre de Recherches Nucllaires, Laboratoire PHASE, 67037 Strasbourg Cedex,

France

Resume

-

On e t u d i e c e r t a i n e s p r o p r i e t e s optiques de couches de s i l i c i u m dopees au-dela de l a s o l u b i l i t 6 maximale 1 l ' e q u i l i b r e p a r un procede d ' i m - p l a n t a t i o n s u i v i d'une f u s i o n l a s e r .

Des p l a q u e t t e s de s i l i c i u m de type P sont implantees 1 des doses a l l a n t j u s q u t l 1017 cmm3 par des i o n s a r s e n i c (80 KeV), puis l e s dopants s o n t incorpores au reseau p a r une f u s i o n l a s e r i n d u i t e par un l a s e r pulse au

-

YAG 1 des energies a l l a n t j u s q u ' 1 2,5 ~ / c m ~ pour des durees d ' i m p u l s i o n s de 25 e t 100 ns, respectivement.

La r e f l e c t i v i t e des couches e n t r e 250 e t 500 nm a i n s i que des mesures e l l i p s o m 6 t r i q u e s o n t

e t e

e f f e c t u e e s en f o n c t i o n des c o n d i t i o n s experimen- t a l e s . Aux f o r t e s doses l e s d e f a u t s j o u e n t un r61e non n 6 g l i g e a b l e s u r ces p r o p r i e t e s optiques.

A b s t r a c t

-

I t i s w e l l known t h a t t h e s o l u b i l i t y o f most dopants can be n o t i - c e a b l y n c r e a s e d i n s i l i c o n by pulsed l a s e r annealing o f t h e imp1 anted

l a y e r s . Here, we have i n v e s t i g a t e d the e v o l u t i o n o f some o p t i c a l and e l e c - t r i c a l p r o p e r t i e s o f such h e a v i l y doped l a y e r s as a f u n c t i o n o f implanted dose, t r y i n g t o separate e f f e c t s due t o t h e h i g h doping from those r e s u l t i n g from d e f e c t s o r p r e c i p i t a t e s

.

P-type s i l i c o n wafers have been implanted w i t h 80 KeV a r s e n i c ions a t doses

- -

-

o f up t o 10'' cm-' and annealed by a pulsed ruby and YAG l a s e r , g i v i n g pulses o f 20 and 100 ns d u r a t i o n , r e s p e c t i v e l y and d e p o s i t i n g energies up t o

U.V. and v i s i b l e l i g h t (250 and 500 nm) r e f l e c t a n c e , as w e l l as e l l i p s o m e t r y (632.8 nm) measurements have been performed as w e l l as dark I

-

V and C

-

V

c h a r a c t e r i s t i c s .

These i n v e s t i g a t i o n s i n d i c a t e t h a t by i n c r e a s i n g t h e implanted dose, t h e doping l e v e l f i r s t increases u n t i l near s u r f a c e d e f e c t s and p r e c i p i t a t e s modify t h e o p t i c a l as w e l l as t h e e l e c t r i c a l p r o p e r t i e s o f t h e h e a v i l y doped l a y e r s . The generation o f these d e f e c t s has been f o l l o w e d by RBS i n random and c h a n n e l l i n g c o n d i t i o n s .

INTRODUCTION

I n t h e f a b r i c a t i o n o f s o p h i s t i c a t e d devices such as t h e b i p o l a r r a n s i s t o r used i n

$

modern s i l i c o n i n t e g r a t e d c i r c u i t s , i n t e g r a t e d i n j e c t i o n l o g i c ( I L ) and s o l a r c e l l s , t h e use o f h i g h

-

dose i o n

-

implanted l a s e r

-

annealed s i n g l e

-

c r y s t a l s i l i c o n allowed ( 1 ) f o r m a t i o n o f b o t h h i g h l y doped shallow

'

N

and P+ l a y e r s .

(3)

C5-66 JOURNAL DE PHYSIQUE

A h i g h

-

power l a s e r i r r a d i a t i o n can anneal t h e i o n

-

implanted damage r e g i o n i n s i n g l e

-

c r y s t a l semi-conductors. Rapid s u r f a c e m e l t i n g and subsequent l i q u i d phast e p i t a x i a l regrowth i n nanosecond pulse annealing make i t p o s s i b l e t o dope s i l i c o n w i t h e l e c t r i c a l l y a c t i v e i m p u r i t i e s we1 1 above t h e thermal equi 1 ib r i u m s o l i d s o l u - b i l i t y l i m i t (2), and t o completely anneal implanted regions w i t h o u t any macrosco- p i c a l l y extented defects, such as d i s l o c a t i o n s , s t a c k i n g f a c e t s o r p r e c i p i t a t i o n s

( 3 ) . Three techniques are used t o analyze e l e c t r i c a l and s t r u c t u r a l p r o p e r t i e s o f l a s e r

-

annealed damage : e l e c t r o n microscopy, He+ b a c k s c a t t e r i n g ( 3 ) and o p t i c a spectroscopy (4,5) m a i n l y i n t h e UV and v i s i b l e range. Indeed, f o r photon energies s m a l l e r than Eo, t h a t i s f o r edge absorption, t h e semi-conductor i s more o r l e s s t r a n s p a r e n t ( f r e e absorption); f o r energies l a r g e r than Eo, i t i s opaque (band t o band absorption). The former gives i n f o r m a t i o n about various l a t t i c e imperfec- t i o n (e.g. i m p u r i t i e s , defects, phonons, e t c

....

The l a t t e r i s m a i n l y r e l a t e d t o t h e band s t r u c t u r e and c o n t r i b u t e s e s s e n t i a l l y t o a d e t a i l e d understanding o f the e l e c t r o n i c s t r u c t u r e o f t h e semi-conductor (6). Pankove ( 7 ) has s t u d i e d e x t e n s i v e l y t h e o p t i c a l p r o p e r t i e s o f h e a v i l y doped germanium and has shown t h e m o d i f i c a t i o n i n band s t r u c t u r e and i t s consequence on e l e c t r i c a l p r o p e r t i e s o f P

-

N j u n c t i o n s .

I n t h i s paper, we attempt t o c h a r a c t e r i z e h e a v i l y doped s i l i c o n l a y e r s by UV and v i s i b l e r e f l e c t i v i t y experiments and by e l e c t r i c a l measurements f o r v e r y l a r g e doping concentrations.

EXPERIMENTS

Several P-type (100) S i wafers, o f 1

-

5 R.cm r e s i s t i v i t i e s , were implanted w i t h

AS' (80 KeV) i o n s . The doses ranged between 1015 and 1017 cm-'. This

o p e r a t i o n was f o l l o w e d by Q

-

switched p u l s e YAG o r r u b y l a s e r treatment. The parameters o f t h e l a s e r s a r e r e s p e c t i v e l y : X = 0.532 and 0.690 nm, d u r a t i o n time = 100 and 20 ns, pulse energy = 2.5 and 1.4 ~ / c m 2 . A f t e r l a s e r annealing, almost a l l implanted i m p u r i t i e s were l o c a t e d i n s u b s t i t u t i o n a l p o s i t i o n s , as confirmed by RBS. The maximum c a r r i e r concentrations i n t h e c r y s t a l s were between 8 x 2 0 ' ~ and 4.3 x 10" ( F i g . 1, Table 1) f o r an implanted dose o f 1016 t o 5 x 1 0 l 6 cm-2.

F i g . 1

-

RBS spectra f o r both S i and As Table 1

-

The samples a r e annealed by a f t e r l a s e r annealing. The ma- l a s e r YAG ( A = 0.53 um) a t

(4)

The o p t i c a l r e f l e c t i v i t y spectra were performed o by u s i n g a Beckmann double beam spectrophotometer over t h e range 2500

-

5000

A.

An evaporated aluminium m i r r o r , whose r e f l e c t a n c e was assumed t o be 108%. provided t h e reference spectrum. The e l l i p s o m e t r y measurements a t X = 6328 A (He

-

Ne) were performed on YAG annealed m-

p l e s a t doses 1016 t o 5 x 1016 ~ m - ~ . J u s t p r i o r t o b o t h types o f measurements above the samples were cleaned by f l u o r i d r i c s o l u t i o n t o remove any oxide l a y e r . For e l e c t r i c a l measurements, t h e f r o n t c o n t a c t was r e a l i z e d w i t h Ag evaporation on small nesas and back c o n t a c t was performed w i t h evaporated gold. The s h e e t - r e s i s - tance data was measured w i t h a f o u r

-

p o i n t probe.

RESULTS AND DISCUSSION

1 ) OPTICAL CHARACTERISTICS

The r e f l e c t i v i t y sjjectra o f s;bstrate c r y s t a l Two peaks a t 3650 A and 2750 A are observed, and denoted El, E2 r e s p e c t i v e l y . The El

(3.4 ev) peak, i n i t i a l l y a t t r i b u t e d t o an i n t e r b a n d t r a n s i t i o n

ri5

-

r15,

has been revealed (8) t o be a m i x t u r e o f

T'

27

:

y12;

L i

-

L1 and

-

t r a n s i t i o n s F'ig

.

As t o the E3 peak (4.5 ev), i t i s due t o t h e a c c i d e n t a l degeneracy o f an M1 edge due t o the X4

-

X1 t r a n s i t i o n and an M2 edge due t o t h e C 4

-

x1 t r a n s i t i o n (8) ( F i g . 3). Both peaks were p r a t i c a l l y unaf- f e c t e d when t h e doping dose was l e s s than 1016 cm-2 ( F i g . 3 ) . However, t h e peaks were appreciably degraded as t h e doping

c o n c e n t r a t i o n increased. A t 1017 ~s+/cm' t h e E2 peak n e a r l y desappears. We i n t r o - duce t h e r e f l e c t i v i t y change AR, d e f i n e d as t h e d e v i a t i o n from the c r y s t a l l i n e s u b s t r a t e r e f l e c t i v i t y a t 2750

2\

t o b e t t e r d i s t i n g u i s h t h e change w i t h doping. As p r e v i o u s l y i m p l i e d , R s t a r t s t o increase when dose exceeds 1016 cmu2 ( F i g . 4). T h i s k i n d o f behaviour has been a l r e a d y r e p o r t e d f o r P and As implanted and r u b y l a s e r annealed s i l i c o n ( 9 ) . As has been shown ( 9 ) , t h e cause o f t h e degradation o f t h e E2 peak i s n e i t h e r due t o f r e e c a r r i e r s n o r t o s t r e s s caused by i m p u r i t y atoms, b u t r a t h e r t o supersaturated s o l i d s o l u t i o n s o f a r s e n i c i n t h e s i l i c o n l a t t i c e . It i s c l e a r t h a t t h i s r e f l e c t i v i t y reduc- t i o n i s r e l a t e d t o t h e change i n band s t r u c t u r e due t o the h i g h doping.

and doped s i l i c o n a r e shown i n F i g . 2.

r

Ee Y A G . LASER

1

(5)

JOURNAL DE PHYSIQUE 5 El6 cm2 L : Y a g L a s e r T : Therrn.Annea1 (600 a . 30rnn)

-.,

... ,,

~.

.. \ , ,

.

....

.. - . L+T

...

..

'.. ..

>..;..

....,, '- ..._ ...I

---.

25 &e

-

90 20

-

80 iR

-

>

+

15 I-., > 70 C-( a c a 10 0 W 60 5

2

W 50 0

5

LO *

2

w w 40 d -74 * 0 0 0 0 0 0 DOSE (crn-2) I~ ~ mO Um J o O v~ Om O A (nrnl

Fig. 4

-

The r e f l e c t i v i t y change AR (devia- Fin. 5

-

Optical r e f l e c t i v i t y tion from the,crystal Si r e f l e c t i - spectra f o r c r y s t a l l i n e vity a t 2750 A ) versus implanted ( - ) and doped

dose. ( 4 . 5 2 lo2' cmU3) ~ i . L designates l a s e r annea- 2 ling (2.5 J/cm ) and T thermal annealing (600° C, 20

mn)

16 2

In Fig. 5 shows r e f l e c t i v i t y spectra f o r 5

x

10 /cm doping dose before and a f t e r thermal annealing (600" C , 20 mn). After l a s e r annealing, the highly substitutional arsenic concentration i n s i l i c o n i s metastable. Thermal annealing increases the fraction of i n t e r s t i t i a l atoms and consequently the number of active atoms decreases, as seen by sheet r e s i s t i v i t y measurements. There r e s u l t s , as observed in Fig. 5, the increase of the

E2

peak. We can conclude t h a t the r e f l e c t i v i t y reduction i s mainly due to high doping level. Similar behaviour i s observed f o r ruby l a s e r an-

,

11 ? 3 6

r:

8 M

8

3 5

,

3 4 nealed samples. 3 15 Several reports in the l i t e r a t u r e (10, 11) inves- P

tigated the e f f e c t s of l a s e r annealing on ion im-

3

planted s i l i c o n layers by using ellipsometry *

-

which i s a f a s t and non-destructive method t o

characterize c r y s t a l damage. From e l 1 ipsometri c

"

,,

measurements, i s i s possible t o calculate refrac- 5

t i v e and extinction indices and absorption coef- f i c i e n t s . Changes i n optical constants can be

k

a t t r i b u t e d t o transformation of the Si band s t r u c - E t u r e a f t e r implantation and annealing.

E

=

Fig. 6 shows the r e f r a c t i v e index and absorption

k

c o e f f i c i e n t as a function of implanted dose. The former decreases with increasing dose and satura- tion a t 4

x

1016 cmm2, but the second r i s e s t o

0

value nearly on order of magnitude higher than

the one f o r pure s i l i c o n . Ostaja e t a7. ( 5 ) fmiP

suggest t h a t the very highly doped layers are F i g . 6

-

Absorption

coefficient

responsible f o r t h i s increase of the absorption

-

and refraction index AS+ c o e f f i c i e n t , giving low diffusion lenghts.

(6)

F i g . 7

-

Sheet r e s i s t i v i t y versus implanted F i g . 8 - Dark forward and reverse I - V dose. The p u l s e energy f o r YAG

and ruby l a y e r s are 2.5 and 1.4 c h a r a c t e r i s t i c s 1=1 (*-1) s nkT J/crn2 r e s p e c t i v e l y . The values

c a l c u l a t e d

t

. - ) gives good agree- where Is i s t h e s a t u r a t i o n ment w i t h experiment (... and--- ) . c u r r e n t , n the qua1 i t y f a c t o r

If is t h e reverse leakage c u r r e n t .

2) ELECTRICAL CHARACTERISTICS

The e l e c t r i c a l a c t i v i t y o f t h e implanted a r s e n i c atoms was proved by sheet r e s i s t a n - ce measurements as shown i n F i g . 7. We observe, f o r YAG and ruby l a s e r treatments, a decrease of R as the dose increases from 1015 t o 5 x 1016 cm-2, f o l l o w e d by an increase f o r doses between 5 x 1016 and 1017 cm-'. The p o s s i b i l i t y was considered t h a t the l a s e r energy d e n s i t y was n o t s u f f i c i e n t t o anneal and a c t i v a t e a l l dopants

2

a t 1017 ~ s + / c m and t h a t p r e c i p i t a t i o n has taken p l a c e due t o the As s o l u b i l i t y 1 i-

m i t ( 6 x

loz1

~ m - ~ ) (12) a f t e r annealing. On t h e same f i g u r e , two o t h e r curves are p l o t t e d : t h e f i r s t ( s o l i d l i n e ) i s t h e Smith e t a l . curve (13) f o r d e v i a t i o n

IS S = 250 which has been e x t r a p o l a t e d t o a dose h i g h e r than 1016 ~ r n - ~ . The second curve was d e r i v e d from t h e equation R = (qNs u ) - I where Ns corresponds t o t h e t o t a l number of implanted i o n s per u n i t surface are, and i s the e l e c t r o n m o b i l i t y given by H i l l (14) f o r c a r r i e r c o n c e n t r a t i o n C between

lo2'

and cmb3.

P = 7.5 x 10"

c - l l 2 ;

Ns and C were determined by RBS f o r each dose. C a l c u l a t e d va- l u e s were found t o be i n good agreement. For doses i n excess o f 5 x 1015 ~ m - ~ , R (YAG) i s lower than R ( r u b y ) because t h e j u n c t i o n i s deeper f o r t h e YAG l a s e r i r - r a d i a t i o n . This i s due t o t h e d i f f e r e n c e i n t h e p u l s e d u r a t i o n o f YAG ( T = 100 ns) and ruby ( T = 20 ns) l a s e r s i n which t h e l o n g e r p u l s e i n d i c e s a t h i c k e r m e l t i n g zone. The values found are much low ( 2 10/SQ), i m p l y i n g a very good e l e c t r i c a l a c t i v a t i o n

We r e p o r t i n Fig. 8, t h e dark forward and reverse c u r r e n t - v o l t a g e c h a r a c t e r i s t i c s o f t h e l a s e r annealed j u n c t i o n s and o f the thermal d i f f u s e d diode. The forward c u r r e n t recombination f a c t o r nr as d e f i n e d by J = Jor lexp (qV/nrkT)

-

11 was c a l c u l a t e d over the range 0 t o 0.35 v o l t s . Contrary t o d i f f u s e d j u n c t i o n s , t h e devices annea- l e d by YAG o r ruby l a s e r s e x h i b i t e d recombination f a c t o r i n t h e range 1.6 t o 4.2 i m p l y i n g t h e existence of a l a r g e r space charge r e g i o n and surface c o n c e n t r a t i o n of d e f e c t s t h a t a c t as generation

-

recombination centers (Table 11). These h i g h va- lues of nr ( > 2) are n o t p r e d i c t e d by t h e Sah

-

Noyce and Shockley ( S

-

N

-

S) theo-

(7)

C5-70 JOURNAL DE PHYSIQUE

r y ( 1 5 ) , b u t c o u l d be due i n p a r t t o shunt r e s i s t a n c e e f f e c t s and i n p a r t t o m o d i f i - c a t i o n s i n t h e S - N - S theory which account f o r n o n - u n i f o r m i t i e s i n t h e d i s t r i b u - t i o n o f recombination centers ( 1 6 ) . The h i g h l e v e l o f doping makes f o r d i f f u s i o n

Id and recombination Ir s a t u r a t i o n c u r r e n t s t h a t are more than one o r d e r o f magnitu- de h i g h e r than those o f d i f f u s e d diodes, suggesting a change i n d i f f u s i o n constant D, d i f f u s i o n l e n g h t L and i n t r i n s i c c o n c e n t r a t i o n ni composing t h e s a t u r a t i o n c u r r e n t . For h e a v i l y doped l a y e r s , ni i s remplaced by an e f f e c t i v e i n t r i n s i c c o n c e n t r a t i o n

n such t h a t

A

Eg

i e n i e = n exp

i

(-n)

where A Eg i s t h e shrinkage band gap ( 1 7 ) . Another e l e c t r i c a l c h a r a c t e r i s t i c i s t h e leakage, o r reverse, c u r r e n t ,

which we take as Va =

-

1 v o l t . The reverse leakage c u r r e n t ,

If,

i s due t o t h r e e mechanisms : c a r r i e r d i f f u s i o n , generation o f c a r r i e r s w i t h i n the d e p l e t i o n regions, and generation o f c a r r i e r s due t o the i n t r o d u c t i o n o f recombination centers a t t h e surface o f t h e p-n j u n c t i o n s . This t h i r d mechanism i s p r e v a l e n t and l a r g e l y exceeds t h e importance o f the o t h e r two (18). As f o r t h e recombination q u a l i t y f a c t o r nr, the increase o f t h e reverse c u r r e n t i n implanted and l a s e r annealed j u n c t i o n s can be due t o surface, and space charge induced defects. Since we have observed s i m i l a r behaviour f o r l a s e r annealed d i f f u s e d j u n c t i o n s (19), we suggest t h a t t h e p r o p e r t i e s o f t h e surface a f t e r l a s e r treatment ( h i g h doping l e v e l , dan- gling-bands, h i g h absorption c o e f f i c i e n t , recombination v e l o c i t y , e t c ...) are m a i n l y r e s p o n s i b l e o f t h e h i g h measured reverse c u r r e n t .

Table I 1

-

We assumes

,,

I = IoD(exp

A-

-

n,kT 1)

Table I11

-

$ ( Y ) and $ designate d i f f u - s i o n ~ o t e n t i a l f o r YAG and DOSE lel6cn? O ( Y ) (V) O ( R ) (V)

ruby annealed 1 ayers respec- 9 "

+ loR(ex~

-

'1)

(8)

where K i s a constant depending upon t h e doping c o n c e n t r a t i o n on the p and n sides o f t h e j u n c t i o n , and n i s a constant normally l y i n g between 2 and 3, and i s a measure of the doping p r o f i l e . Here, we found n = 3 i m p l y i n g a l i n e a r l y graded j u n c t i o n . From these measurements, we deduce t h e d i f f u s i o n p o t e n t i a l e

+

presented i n Table 11. The values o f implanted l a s e r annealed j u n c t i o n s are v e r y much lower than those o f d i f f u s e d diodes (0.9 v o l t ) . This d i f f e r e n c e suggest the possi- b i l i t y o f compensating d e f e c t s i n t h e j u n c t i o n r e g i o n (20). As t h e d i f f u s i o n po- t e n t i a l i s d i r e c t l y r e l a t e d t o t h e energy band gap o f t h e semi-conductor, and the @ a r e low, these r e s u l t s c o u l d i n d i c a t e a shrinkage of the energy gap (7) due t o t h e h i g h doping 1 eve1

.

CONCLUSION

We have s t u d i e d t h e e l e c t r i c a l and o p t i c a l c h a r a c t e r i s t i c s o f i o n implanted l a s e r annealed s i l i c o n . I n p a r t i c u l a r , t h e decrease o f t h e r e f l e c t i v i t y and t h e i n c r e a - se o f the a b s o r p t i o n c o e f f i c i e n t can be r e l a t e d t o t h e degree o f s u p e r s a t u r a t i o n o f t h e s o l i d s o l u t i o n which r e s u l t s from t h e very h i g h doping l e v e l . There r e s u l t s degraded e l e c t r i c a l c h a r a c t e r i s t i c s ( h i g h recombination q u a l i t y f a c t o r , h i g h satu- r a t i o n and reverse c u r r e n t s ) which c o u l d l i m i t t h e performance o f t h e devices.

REFERENCES

1. SHTYRKOV G . I . , KHIBULLIN I.B., GALYATUDINOV M.F. and BAYAZITOV R.M. Sov. Phys. Semicond.

2

(1975) 1309.

2 . LEITOLA A. and GIBBONS J.F.. Appl. Phys. L e t t e r s

35

(1979) 532.

3. NATSUAKI N., TAMURA M. and TOKUYAMAT T.. J. Appl. Phys. 5 1 (1980) 3373. 4. McGILL T.C., KURTIN S.L. and SHIFRIN G.A.. J . Appl. Phys.74 (1970) 246. 5. OSTOJA P., SOLMI

s.,

ZANI A.. J. ~ p p i . P ~ Y S . 52 (1981) 62m.

6. TAUC J.C.. "Progress i n Semiconductors" Vol. 9 7 ~ i b s o n and Burgess eds, T e m ~ l e books. L t d London. 1965) , D .

.

88.

PANKOVE J.I.: I b i d , p. 48.

GREENAWAY D.L. and HARBEKE G.. " O p t i c a l p r o p e r t i e s and band s t r u c t u r e o f semi- conductors" (ed. by PAMPLIN B.R., Pergamon Press, 1968).

MOTOOKA T., MIYAO M. and TOKUYAMA T.. J. Electrochem. Soc. Montreal (1982) WATANABE K., MOTOOKA T., HSHIMOTO N. and TOKUYANA T.. Appl. Phys. L e t t e r s 36 (1980) 451.

-

NAKAMURA K., KAMOSHIDA M., VEHARA A. and TATSUMI R.. "AIP Proceedings No 50 on l a s e r i n t e r a c t i o n and l a s e r processing m a t e r i a l s research S o c i e t y Meeting"

(Ed. by FERRIS F.D., LEAMY M.J. and POATE J.M., Boston, 1979) p. 434.

FOGARASSY E

.

,

STUCK E

.

,

GROB A. and SIFFERT P

. .

"Laser and e l e c t r o n beam pro- cessing o f m a t e r i a l s ' ' (WHITE C.W. and PEERCY P.S. eds, Academic Press, New York, 1980) p. 117.

SMITH B.J. and STEPHEN J.. Rad. E f f . 14 (1974) 181.

HILL C.. "Laser Annealing o f SemicondiFtor". (Ed. by POATE J.M. and MAYER J.W., Academic Press, New York, 1982) p. 511.

SAH C.T., NOYCE R.N. and SHOCKLEY W.. Proc. IRE 45 (1957) 1228.

HOVEL H .J

..

"Semiconductors and Semimetal s "

,

Vol.11, Sdar C e l l s (Ed. by WILLARDSON R.K. and BEER A.C., Academic Press, New York, 1975).

MERTENS R.P., VAN MEERBERGEN J.L., NIJS J.F. and VAN OVERSTRAETEN R.J., IEEE Trans. E l e c t r o n . Devices, Vol. Ed

27

(1980) 949.

BORDFFKA H., KRIMMEL E.F., LINDER M. and RUNGE H.. "Laser and E l e c t r o n beam processing o f e l e c t r o n i c m a t e r i a l s " , Ref. 12, p. 178.

SLAOUI A.. Rapport de DEA "Etude du processus de recombinaison dans l e s c e l l u - l e s s o l a i r e s m o n o c r i s t a l l i n e s par l e s c a r a c t e r i s t i q u e s I - V d ' o b s c u r i t & " , (Centre de Recherches Nucleaires de STRASBOURG, 1982).

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to