• Aucun résultat trouvé

Rhizobial characterization in revegetated areas after bauxite mining

N/A
N/A
Protected

Academic year: 2021

Partager "Rhizobial characterization in revegetated areas after bauxite mining"

Copied!
8
0
0

Texte intégral

(1)

h ttp : / / w w w . b j m i c r o b i o l . c o m . b r /

Environmental

Microbiology

Rhizobial

characterization

in

revegetated

areas

after

bauxite

mining

Wardsson

Lustrino

Borges

a,∗

,

Yves

Prin

b

,

Marc

Ducousso

b

,

Christine

Le

Roux

b

,

Sergio

Miana

de

Faria

c

aEmbrapaAmapá,RodoviaJuscelinoKubitschek,Macapá,AP,Brazil

bCIRAD,UMR82,LaboratoiredesSymbiosesTropicalesetMéditerranéennes(LSTM),CampusInternationaldeBaillarguet,Montpellier,

France

cEmbrapaAgrobiologia,Seropédica,RJ,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received26March2014 Accepted23August2015 Availableonline2March2016 AssociateEditor:CynthiaCanêdoda Silva Keywords: Rhizobia Rep-PCR Clusteranalysis Nodules Mining

a

b

s

t

r

a

c

t

Littleisknownregardinghowtheincreaseddiversityofnitrogen-fixingbacteriacontributes totheproductivityanddiversityofplantsincomplexcommunities.However,someauthors haveshownthatthepresenceofadiversegroupofnodulatingbacteriaisrequiredfor dif-ferentplantspeciestocoexist.Abetterunderstandingoftheplantsymbioticorganism diversityroleinnaturalecosystemscanbeextremelyusefultodefinerecoverystrategiesof environmentsthatweredegradedbyhumanactivities.ThisstudyusedARDRA,BOX-PCR fingerprintingandsequencingofthe16SrDNAgenetoassessthediversityofrootnodule nitrogen-fixingbacteriainformerbauxiteminingareasthatwerereplantedin1981,1985, 1993,1998,2004and2006andinanativeforest.Amongthe12isolatesforwhichthe16S rDNAgenewaspartiallysequenced,eight,threeandoneisolate(s)presentedsimilaritywith sequencesofthegeneraBradyrhizobium,RhizobiumandMesorhizobium,respectively.The rich-ness,Shannonandevennessindiceswerethehighestintheareathatwasreplantedthe earliest(1981)andthelowestintheareathatwasreplantedmostrecently(2006).

©2016SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.Thisis anopenaccessarticleundertheCCBY-NC-NDlicense

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Nitrogen-fixing bacteria are an extremely importantgroup ofmicroorganismsforvariousecosystemsbecausethey pro-motetheentryofnitrogeninto thesoil.Thecapacitytofix atmosphericnitrogeniswidelydistributedamong microor-ganismswithdifferentlevels ofphylogeneticrelationships,

Correspondingauthor.

E-mail:wardsson.borges@embrapa.br(W.L.Borges).

including representatives ofArchaea and Eubacteria. How-ever, the capacity to fix atmospheric nitrogen and induce noduleformationinleguminousplantsisrestrictedto mem-bers of the proteobacteria phylum.1–4 Legume nodulating

nitrogen-fixingbacteria,whicharecommonlyknownas rhi-zobia, are abundant in the soil of many ecosystems5 and

have a high diversity and variability regarding symbiotic efficiency.6–8

http://dx.doi.org/10.1016/j.bjm.2016.01.009

1517-8382/©2016SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

Theimportanceofsymbioticbiological nitrogenfixation (BNF) in agricultural systems is well-documented in plant speciessuchassoybeans,commonbeansandpeanuts.6,9,10

However,theroleofthisgroupofmicroorganismsinnatural ecosystemsispoorlyunderstood.11,12 Little isknownabout

thecontributionoftheincreaseddiversityofnitrogen-fixing bacteriatotheproductivity anddiversityofplantslivingin naturalcommunities.Mellonietal.13reportedthatagreater

diversityofbacteriainthe soilresultsingreater resilience ofthesystem andthat ahigher diversityoflegume nodu-latingbacteriacanfavorsymbiosiswithvariousleguminous plantspeciesandmaximize thebiologicalfixationof nitro-genindegradedareas.PreviousresearchbyvanderHeijden etal.11demonstratedthatsymbioticnitrogen-fixingbacteria

promoteevenness,productivityandnitrogencapturein sys-temsthatarerichinleguminousspecies,whichsuggeststhat thepresenceofnodulatingbacteriaisnecessaryfordifferent speciesofleguminousandnon-leguminousplantstocoexist. Althoughminingactivitiesgenerallyalteraproportionally smallerarea than other humanactivities, suchas farming and planting pastures for livestock, the level of environ-mental degradation is very high because of the intense disturbanceofthesoil.Thismakesitnecessarytotake meas-urestorestorethesedegradedareasattheendofthemining operations. In Brazil,to promote the rapid revegetation of highly degraded mined areas, the planting of leguminous speciesinoculatedwithnitrogen-fixingbacteriaand arbuscu-larmycorrhizalfungihasbeensuccessfullyemployed.14The

plantingofleguminousspecieswithselectedisolatesofthese microorganismsenablestheinitialcolonizationofsubstrates thathavebeensubjectedtohighchemical,physicaland bio-logicaldegradation.15Thecolonizationwithlegumesleadsto

thedepositionoflitterandincreasesthe concentrationsof nutrientsinthesoilsurface,enablingthereplantedsitesto entertheinitialstagesofplantsuccession.15

Withinthis context and inthis study, weassessed the diversityofthesebacteriainareasthatwererevegetatedafter bauxiteminingtobetterunderstandtheir roleindegraded ecosystems underthe recoveryprocess. Theareas studied wererevegetatedbetween1981and2006onsoilconsistingof overburdenortailingsandusedmixesofnativespeciesand inoculatedleguminousspecies.

Materials

and

methods

Studyareaandcollectionprocedure

Thecompany Minerac¸ão Rio do Norte (MRN) operates the Saracá,Almeidas and Avisos mines (all withinthe Saracá-TaqüeraNationalForest,whichislocatedinthemunicipality of Oriximiná, Pará state/Brazil, at 1◦21S – 56◦22W, 180m elevation).16Inthesemines,oreisfoundatanaveragedepthof

8mandiscoveredbydensevegetationandalayercalled over-burden,whichiscomposedoforganicsoil,nodularbauxite and ferruginous laterite. Tomine the reserves, it is neces-saryto remove the overburden to reveal the economically exploitablebauxiteore.Thisoperationisconducted sequen-tiallyinwhichtheoverburdenisdepositedinanadjacentpit thatwaspreviouslymined.Intheseareas,thereplantingis

performed on the overburden. The bauxiteore iscrushed, cyclonedandfiltered.Attheendofthisprocess,27%ofthe solidmassistailings,whicharedepositedinponds.16These

tailingspondareasarethenrevegetatedwhentheybecome full.

Thereplantingoftheoverburdenareasinvestigatedinthis studywasconductedbyacompanyusingavailableseedsof variousspecies(Parkiamultijiga,Parkiapendula,Parkia oppositifo-lia,Ormosiaholerythra,Ormosiaexcelsa,Sclerolobiumpaniculatum andAcosmiumnitens)in1981,1985,1993,1998,2004and2006. The revegetationof the twotailings pondswas conducted usingthespeciesAcaciamangiumin1993.Inpartofthisarea, theplantingwasconductedwithoutrhizobiainoculation (Tail-ingsWaste1),andtheotherpartwiththerhizobiainoculation consistedofamixtureofall oftherecommendedrhizobial strainsfromEmbrapaAgrobiologia(TailingsWaste2).

Ineacharea,twentysimplesamples(0–0.20m)were har-vestedtocomposeacompoundsampleinplotsmeasuring 250m2.Ninecompoundsampleswerecollectedin2007:sixin

plotsthathadbeenrevegetatedonoverburden,twointailings plotsandoneinanativeforestplot(Table1).Thechemical analysisofthesoilsampleswasconductedaccordingtothe ManualonSoilAnalysisMethods.17

Obtainingthenodulesandbacterialisolation

TheexperimentwasconductedusingsterilizedLeonardjars containingsandandvermiculiteataproportionof1:1(v/v)and inarandomizedblockdesignwiththreerepetitions.The treat-mentsconsistedoftheinoculationofasuspensionofsoilfrom eachplotonthehosttrapplantsMacroptiliumatropurpureum (siratro)andMimosaacutistipula.

The seeds were treated with concentrated sulfuric acid (H2SO4)for10mintobreakthedormancyandwith30%

hydro-genperoxide(H2O2)for3minforsurfacedisinfection.They

were thengerminatedinPetridishescontainingmoistened filterpaperandcotton.Threeseedlingsofeachspecieswere transplanted toeachjar, and eachseedlingwas inoculated with1mLofthesoilsuspensioninsalinesolution.The sus-pension was prepared using 10g of soil in 90mL of NaCl solution(0.145M)andkeptunderorbitalagitationfor30min. Theexperimentlasted90 days,duringwhichtheplants receivedwaterandanutrientsolution18intercalatedevery15

days.Toisolatethebacteriapresentinthenodules,theywere washedinethanol(70%,v/v–1min),externallydisinfected with30%hydrogenperoxidefor3min,washedfivetimesin steriledistilledwaterandcrushedinPetridishescontaining YMAmedium.19

Molecularcharacterization

The restriction analysis of the 16S rDNA gene was con-ducted according to Laguerre et al.20 and Teixeira et al.8

using HinfI, MspI and DdeI endonucleases. The DNA was extractedaccordingtoDoyleandDoyle21usingthedetergent

CTAB.The16SrDNAgenewasamplifiedusingtheuniversal primers Y1(5-TGGCTCAGAACGAACGCTGGCGGC-3)and Y3 (5-CTGACCCCACTTCAGCATTGTTCCAT-3).22

Weselected isolates representing12 distinct clusters in the ARDRA dendrogram for partial sequencing of the 16S

(3)

Table1–Chemicalcharacteristicsofthesoilsamples. Plot pH Al Ca+Mg Ca Mg P K C O.M. cmolcdm−1 Mg(dm−3) % 1981 5.2 1.3 0.7 0.4 0.3 4.7 60 2.85 4.91 1985 5.1 1 2.3 1.8 0.5 2.8 53 2.76 4.76 1993 4.6 1.7 0.3 0.15 0.15 2.8 39 2.19 3.78 1998 4.5 0.9 0.2 0.1 0.1 3.3 11 0.99 1.71 2004 4.9 0.6 1.8 1.4 0.4 4.2 18 2.1 3.62 2006 4.6 1.2 0.2 0.2 0 8.3 9 1.32 2.28 Waste1 5.2 0.1 0 0 0 3.1 1 0.12 0.21 Waste2 5.7 0 0.3 0.2 0.1 3.9 1 0.09 0.16 Forest 4 1.8 0.4 0.2 0.2 7.1 28 2.22 3.83

rDNAgene.ThePCRproductwaspurifiedusingtheWizard®

SVGelandPCRClean-UpSystemkit(PromegaCorporation, Madison,WI,USA)followingthemanufacturer’s recommen-dations.ThereactionswereconductedwiththeDYEnamicTM

ETDyeTerminatorkit (MegaBACETM)andaMegaBACE1000

automaticsequencer(GEHealthcareLifeSciences).The iden-titiesofthesequences(accessnumbersKT29901–KT429912) wereestimatedwiththedatabaseoftheNationalCenterfor BiotechnologyInformationthroughitsBasicLocalAlignment SearchTool.23

The BOX-PCR reactions were conducted according to Kaschuk et al.24 byemploying 50ng oftemplate DNA and

theBOX-A1Rprimer(5-CTACGGCAAGGCGACGCTGACG-3).25

ThesimilaritydendrogramwasconstructedusingtheJaccard similarityindexandtheUPGMA.Weassignedoperational tax-onomicunits (OTUs)based ondistinct clusters inthetree, whichwethenusedtocalculatetherichness,Shannonand evennessindexvaluesbyemployingthePASTprogramand therarefactionanalysisusingtheEstimatesversion8.0 pro-gram(Colwell,2010)26accordingtoMagurran.27

Results

Isolationofthebacteria

Atotalof139isolateswereobtainedandseparatedbyorigin into24,17,13,11,22,3,8,21and20isolatesobtainedfrom theareasreplantedin1981,1985,1993,1998,2004,and2006, andtheForestArea,TailingsWaste1andTailingsWaste2, respectively.Alloftheseisolateswereobtainedfromsiratro nodules.NonodulationwasobservedinM.acutistipula. ARDRAandsequencing

Ofthe139isolatesobtained,twodidnotgrowintheculture mediumafterthestorageperiodandwereexcludedfromthe molecularanalysis(onefromtheareareplantedin2004and onefromTailingsWaste2),andfortwootherisolates(from TailingsWaste1),noPCRproductwasobtainedfromthe16S rDNAgenetoconducttherestriction.Therefore,theARDRA wasconductedwith135isolates.

Theisolatesweredistributedin25differentclusters (thick-est lines inFig. 1), and the number of isolatesper cluster rangedfrom 1to 17.Fifty-six isolatespositioned in differ-entgeneticclusterswerenotdiscriminatedbecausetheyhad

100%similarity.Amongthe12 isolatesfrom whichthe 16S genewaspartiallysequenced,similaritycouldbedetectedin thesequencesofthreegenera.Ofthese,eightbelongedtothe Bradyrhizobiumgenus,threetoRhizobiumandoneto Mesorhi-zobium.Ofallofthe135isolatesanalyzedfromthe16Sgene restriction,96isolateswereclusteredwiththeBradyrhizobium genus,25withRhizobiumand8withMesorhizobium(Fig.1).

BOX-PCRanddiversityanalysis

TheBOXanalysiswasconductedwith137isolates.These iso-latesweredistributedin40clusters(Fig.2),andthenumberof isolatesperclustervariedbetween1and12.Twelveisolates positionedindifferentgeneticclusterswerenotdiscriminated becausetheyhad100%similarity.Basedonthegenerated den-drogram,wecalculatedthediversityoftheisolatesforeach plot.TherichnessoftheOTUsvariedbetween2forthe for-estareaand17fortheareathatwasrevegetatedin1981and TailingsWaste2;theShannonindexrangedfrom0.37forthe forestareato2.78forTailingsWaste2;andtheevennessindex varied between0.54 forthe forest area to0.98 forTailings Waste2(Figs.3and4).

Discussion

Severalstudieshavedemonstratedthatspeciesbelongingto theMimosagenushaveahighspecificityforrhizobiaisolates belongingtothebetaproteobacteriasubdivision,notably, iso-latesoftheBurkholderiagenus.28,29Inaddition,somespecies

ofMimosoideae mustassociate witharbuscular mycorrhizal fungifornodulationtooccur.30Theabsenceorlowdensityof

beta-rhizobiainthesampledareasandtheabsenceof arbus-cularmycorrhizalfungiintheLeonardjarsusedinthisstudy canbepossibleexplanationsforthelackofnodulationinM. acutistipula. However,the majorityofsiratro plantsshowed nodulation,whichdemonstratesthatthedensityofrhizobia presentintheinoculumwassufficienttoinducenodulation. Thisspecies,becauseofitswidehostrange,hasbeen previ-ouslyusedtoassessthediversityofisolatesfromnodules.31,32

ARDRAwasinitiallyproposedasausefultoolfortherapid identification ofthetaxonomicpositionofrhizobiaisolates becauseitisbasedontherestrictionofagenethatcodesfor ribosomalRNA,whichpermitsseparationatthegenuslevel andatthespecieslevelinsomecases.Itismainlyemployed forthispurposeinsituationswherethe16Sgenecannotbe

(4)

20 36 52 68 84 100 1981 Mesorhizobium sp. Forest 1981 1981 1981 1981 1981 1981 1981 1993 1993 1993 1993 1993 1993 1993 1993 1981 1993 1998 Waste 2 Waste 2 Waste 2 Waste 1 Waste 1 Waste 1 Waste 1 1981 Waste 2 1981 1981 Rhizobium sp. 1993 Rhizobium sp. 2004 Rhizobium sp. Forest Bradyrhizobium sp. Waste 2 Waste 2 Waste 1 Waste 1 Waste 1 Forest Forest Forest 2006 1981 1981 1981 1981 1981 1985 1985 1985 1985 1985 1985 1985 1985 1985 1985 1985 1981 1981 1981 1981 1998 1998 1998 1998 1998 1998 1998 1998 1998 Bradyrhizobium sp. Waste 1 Waste 1 Waste 2 Waste 1 Waste 1 Waste 1 Waste 1 Waste 2 Waste 2 Waste 2 Waste 2 Waste 2 Waste 2 Waste 2 Waste 2 Waste 2 Waste 2 2004 2004 2004 2004 2004 2004 2004 2004 2004 2004 2004 2004 2004 2004 2004 1985 2004 2004 2004 2004 2004 1985 1985 1985 1985 1993 Waste 2 Waste 1 Waste 1 Waste 2 1999 2004 Bradyrhizobium sp. 1981 1993 1981 1993 Bradyrhizobium sp. Waste 2 Bradyrhizobium sp. 1985 Bradyrhizobium sp. 1981 Bradyrhizobium sp. 2006 Bradyrhizobium sp. Waste 1 Waste 1 Waste 1 2006 Forest Forest Forest * * * * * * * * * * * * * * * * * * * * * * *

Fig.1–Thegeneticsimilaritydendrogramfortherhizobiaisolatesanalyzedbytherestrictiongenethatcodesforribosomal RNA16S(ARDRA).

(5)

0 20 40 60

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

80 100 1981 1981 1985 1985 1985 1985 1985 1985 2006 1981 Mesorhizobium sp. 1985 2004 2004 2004 2004 2004 2004 2004 2004 2004 2004 2004 2004 2004 2004 2004 2004 2004 Waste 1 Waste 2 Waste 2 Waste 2 Waste 2 Forest Forest Forest Forest Forest Forest Waste 1 Waste 1 Waste 2 Waste 2 Waste 1 Waste 2 Waste 1 Waste 1 Waste 1 Waste 1 Waste 1 Waste 2 Waste 2 Waste 2 Waste 1 Waste 1 Waste 1 Waste 1 Waste 1 Waste 1 Waste 1 Waste 1 Waste 2 Waste 2 Waste 2 Waste 2 Waste 1 Waste 1 Waste 2 Bradyrhizobium sp. Waste 2 Waste 2 1981 1993 1993 1993 1993 1993 1993 1993 1981 1981 1981 1981 1981 1998 1998 1981 1981 1981 1981 1981 1981 1993 1993 1985 1993 Forest 1981 Rhizobium sp. 1993 Bradyrhizobium sp. Waste 2 Waste 1 1981 1981 1981 2006 Bradyrhizobium sp. Forest Bradyrhizobium sp. 1993 2004 1981 Bradyrhizobium sp. Waste 1 2004 Bradyrhizobium sp. 1981 2004 Waste 2 Waste 1 2006 1981 1985 1981 1981 1998 1998 1998 1985 1981 1981 1998 1985 1985 1985 1985 1985 1985 1998 1985 Bradyrhizobium sp. 1998 Bradyrhizobium sp. 2004 Rhizobium sp. 1993 Rhizobium sp.

(6)

1981 1985 1993 1998 2004 200 6 Forest Waste 2 Waste 1 0 5 10 15 20 0 1 2 3 Richness Shannon Equitability

Ri c hn es s Sha nn on , Eq u it ab ilit y

Fig.3–Richness,Shannonandevennessfromsiratrorhizobiaisolatesfromplotsthatwererevegetatedonoverburdenin 1981,1985,1993,1998,2004and2006,andinTailingsWaste1,TailingsWaste2in1993andtheForestarea,basedon BOX-PCRoperationaltaxonomicunit.

sequenced.8,20,33,34 Inthepresentstudy,themajorityofthe

isolatespresentedsequencesclosetothoseofthe Bradyrhi-zobiumgenus(groups10–22,Fig.1).Agreaterabundanceof Bradyrhizobiumisolateshavebeenobservedbyotherauthors underavarietyofconditions,5,32,35whichsuggeststhatthere

ishighvariabilitywithinthisgenusintheareasstudied.In additiontotheisolatesproximatelyrelatedtothe Bradyrhi-zobiumgenus,wealsoobservedisolatesproximatelyrelated totheRhizobiumandMesorhizobiumgenera.Previousresults showed the capacity of isolatesbelonging to these genera towithstandadverseconditionsofpH,temperatureandthe presenceoftoxicelements.36–38 Thepresenceofthese

gen-era inthe areas studiedconfirms their capacityto survive andestablishsymbiosisfixing-nitrogenunderadverse envi-ronmentalconditions.

TheBOX-PCRanalysisallowsthesimultaneousevaluation ofdistinctgenomicregionstoidentifyintraspecificvariability. Thisfeaturewasdemonstratedinthisstudybecausethe iso-latesweredistributedinto25clustersbytheARDRAand40 clustersbytheBOX-PCRanalysis.UsingARDRA,evenbased ondatafromthreerestrictionenzymes,56isolatespositioned indifferentgeneticclustersshowed100%similarity,whereas thisnumberwasonly12fortheBOX-PCRtechnique.Thisis becausethe16SrDNAgeneisrelativelysmallandpresents highly conserved regions. Additionally, this gene is poorly discriminated within the genus Bradyrhizobium.39 These

findingsshowthattheBOX-PCRtechniquewasmore discrim-inatingbetweenisolates,demonstratingtheapplicabilityof thistooltoseparateisolatesthataretaxonomicallyproximate

40–43anditsutilityinstudiesaimingtocomparethelevelof

diversitybetweendifferentsites.

Amongtheareasthatwererevegetatedonoverburden,the OTUrichness,Shannonandevennessindiceswerehigherin the area thatwas revegetated the earliest (1981). Thearea revegetated morerecently (2006) showed a low number of isolates, which impaired the diversity estimate because it was not possible to perceive stabilization of the Shannon index(Fig.4)whenpresentedwiththelowestOTUrichness,

0 5 10 15 20 25 0 1 2 3 Number of isolates Sh a n n o n 1981 1985 1993 1998 2004 2006 Forest Waste 1 Waste 2

Fig.4–ThevariationoftheShannondiversityindexvalues asafunctionofthenumberofisolatesfromsiratroand fromplotsthatwererevegetatedonoverburdenin1981, 1985,1993,1998,2004and2006,andinTailingsWaste1, TailingsWaste2in1993andtheForestarea.

Shannon andevenness indicesvalue.Theother areas pre-sented intermediatevalues(Fig.3).Theforestarea showed OTUrichness,Shannonandevennessindiceslowerthanall of the overburden areas, and the two tailings waste areas thatwererevegetatedusingAcaciaspeciespresentedsimilar indicestotheoverburdenarearevegetatedin1981andhigher indicesthanintheoverburdenareathatwasrevegetatedin thesameyear(1993)usingamixtureofplantspecies.

Alowerdiversityofnoduleisolatesinforestareas com-paredcultivatedareasorfallowshasbeenpreviouslyreported inseveralstudies.13,30,32Jesusetal.31evaluatedtheeffectof

thetypeoflanduseonthediversityofnoduleisolates cap-turedbysiratroand observedthat thearea cultivatedwith cassava presented a higher diversitythan the forest areas

(7)

and those cultivated with peach palm, which did not dif-ferbetweenoneanother.Limaetal.32 alsoinvestigatedthe

communityofnoduleisolatesfromsiratroinareaswith differ-entusesintheAmazonregionandobservedthattherichness indexofthenoduleisolatesintheprimaryforestareawas 12,whichwasthe lowestvalueamongthe areasanalyzed. Thevaluesintheotherareaswere46forthecultivatedarea, 48inthe agroforestryarea,24forthearea identifiedasold secondaryforest,28 innewsecondary forestand 29inthe pasture.

Theseresultsshowthattherevegetationstrategiesusedin theseareasenabledtheestablishmentofaplantcommunity thatwasabletosustainanincreasingdiversityofrootnodule isolates.AccordingtoMellonietal.,13 studiesofthe

diver-sityofkeygroupsofmicroorganismsinreclaimedareasare importantbecausetheysupply anindicationoftheeffects ofdifferentrehabilitationmethodsonthediversityofthese microorganisms.

The tailings pond areas were replanted with Acacia mangium in 1993. Since then, the changes caused by the coverages withleguminousspecieshaveled tothe deposi-tionofplantmaterialonthesoil,whichprovidedconditions fortheestablishmentofadiverse communityofroot nod-ule isolates. A higher diversity of legume-nodulating and nitrogen-fixingbacteria was also foundin areas that were replantedwiththeleguminousspeciesMimosascabrellaand Cajanuscajanafterminingactivities.13Thecapacityof

legu-minousspeciestocolonizedegradedenvironmentshasbeen reportedby other authors 14,15 and has been linkedtothe

ability of these species form symbiotic associations with nitrogen-fixingbacteriainthesoil,aswellaswith arbuscu-larmycorrhizalfungi.Thisthree-wayinteraction favorsthe nutritionofplantsbyenhancing their uptakeofnutrients. Asaresult oftheincrease ofnitrogeninthe biomassand theabsorptionofimportantnutrients,suchasphosphorous, leguminousplantsfavorplantsuccessionandthediversityof microorganisms.

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

WewouldliketothankMinerac¸ãoRiodoNorteforallowing access to the study area; the National Council for Scien-tific and Technological Development (CNPq) for individual support (Borges, W.L.received a doctoral scholarship, pro-cess no. 142315/2007–9; de Faria, S.M. received a research grant)and projectfunding (no. 492683/2004-2), and IBAMA (029/2007 02001.006557/2005) and the GraduateProgram in Agronomy–SoilScienceofUFRRJandEmbrapaforthe infras-tructurethatwasmadeavailable.Wewouldalsoliketothank TelmoFelixdaSilva,CarlosFernandodaCunha,Cândido Bar-retodeNovaisandAdrianaSantosdoNascimentoforhelp inthegreenhouseexperimentandwiththebacterial isola-tion.

r

e

f

e

r

e

n

c

e

s

1.MoulinL,MuniveA,DreyfusB,Boivin-MassonC.Nodulation

oflegumesbymembersoftheB-subclassofProteobacteria.

Nature.2001;411:948–950.

2.WillemsA.Thetaxonomyofrhizobia:anoverview.PlantSoil.

2006;287:3–14.

3.ShiraishiA,MatsushitaN,HougetsuT.Nodulationinblack

locustbytheGammaproteobacteriaPseudomonassp.andthe

BetaproteobacteriaBurkholderiasp.SystApplMicrobiol.

2010;33:269–274.

4.PeixA,Ramirez-BahenaMH,VelazquezE,BedmarEJ.

Bacterialassociationswithlegumes.CritRevPlantSci.

2015;34:17–42.

5.MoreiraFMS,HaukkaK,YoungJPW.Biodiversityofrhizobia

isolatedfromawiderangeofforestlegumesinBrazil.Mol

Ecol.1998;7:889–895.

6.SoaresALL,PereiraJPAR,FerreiraPAA,etal.Agronomic

efficiencyofselectedrhizobiastrainsanddiversityofnative

nodulatingpopulationsinPerdões(MG-Brazil).I–cowpea.

RevBrasCiêncSolo.2006;30:795–802.

7.SoaresALL,FerreiraPAA,PereiraJPAR,etal.Agronomic

efficiencyofselectedrhizobiastrainsanddiversityofnative

nodulatingpopulationsinPerdões(MG-Brazil).II–beans.

RevBrasCiêncSolo.2006;30:803–811.

8.TeixeiraFCP,BorgesWL,XavierGR,RumjanekNG.

CharacterizationofindigenousrhizobiafromCaatinga.BrazJ

Microbiol.2010;41:201–208.

9.BorgesWL,SantosCERS,XavierGR,RumjenkNG.Nodulation

andbiologicalfixationofnitrogenofpeanutgenotypeswith

nativestripsofrhizobium.BrazJAgricSci.2007;2:32–37.

10.SantosCER,StamfordNP,NevesMCP,etal.Diversityof

rhizobiumscapableofformingnodulestropicallegumes.

BrazJAgricSci.2007;2:249–256.

11.vanderHeijdenMGA,BakkerR,VerwaalJ,etal.Symbiotic

bacteriaasadeterminantofplantcommunitystructureand

plantproductivityumdunegrassland.FEMSMicrobiolEcol.

2006;56:78–187.

12.LiuL,HeXY,WangKL,etal.TheBradyrhizobium-legume

symbiosisisdominantintheshrubbyecosystemoftheKarst

region,SouthwestChina.EurJSoilBiol.2015;68:1–8.

13.MelloniR,MoreiraFMS,NobregaRSA,SiqueiraJO.Efficiency

andphenotypicdiversityamongnitrogen-fixingbacteria

thatnodulatecowpea[Vignaunguiculata(L.)Walp]and

commonbean(PhaseolusvulgarisL.)inbauxite-minedsoils

underrehabilitation.RevBrasCiêncSolo.2006;30:235–246.

14.FrancoAA,deFariaSM.ThecontributionofN2-fixingtree

legumestolandreclamationandsustainabilityinthe

tropics.SoilBiolBiochem.1997;29:897–903.

15.ChaerGM,ResendeAS,CampelloEFC,deFariaSM,Boddey

RM,SchimidtS.Nitrogen-fixinglegumetreespeciesforthe

reclamationofseverelydegradedlandsinBrazil.TreePhysiol.

2011;31:39–149.

16.MRN-Minerac¸ãoRiodoNorte.Operac¸ão:PerfilLitológicoda JazidaeSeqüênciaOperacional.Availableat:

http://www.mrn.com.br/index1024.htm(accessed

10.11.2010).

17.EMBRAPA-EmpresaBrasileiradePesquisaAgropecuária.

CentroNacionaldePesquisadoSolo.Embrapa,RiodeJaneiro,

R.J.:ManualdeMétodosdeAnálisedeSolos;1997.

18.NorrisDO,T’mannetjeL.Thesymbioticspecializationof

AfricanTrifoliumspp.inrelationtotheirtaxonomyandtheir

agronomicuse.EAfrAgricForJ.1964;29:214–235.

19.VincentJM.AManualforthePracticalStudyofRootNodulate

Bacteria.Oxford:BlackwellScientificPublications;1970.

20.LaguerreG,AllardMR,RevoyF,AmargerN.Rapid

(8)

polymorphismanalysisofPCR-amplified16SrRNAgenes.

ApplEnvironMicrobiol.1994;60:56–63.

21.DoyleJJ,DoyleJL.IsolationofplantDNAfromfreshtissue.

Focus.1990;12:13–15.

22.YoungJPW,DownerHL,EardlyBD.Phylogenyofthe

phototrophicRhizobiumstrainBTAi1bypolymerasechain

reactionsequencingofa16SrRNAgenesegment.JBacteriol.

1991;173:2271–2277.

23.AltschulSF,MaddenTL,SchäfferAA,etal.GappedBLAST

andPSI-BLAST:anewgenerationofproteindatabasesearch

programs.NucleicAcidsRes.1997;25:3389–3402.

24.KaschukG,HungriaM,AndradeDS,CampoRJ.Genetic

diversityofrhizobiaassociatedwithcommonbean

(PhaseolusvulgarisL.)grownunderno-tillageand

conventionalsystemsinSouthernBrazil.ApplSoilEcol.

2006;32:210–220.

25.VersalovicJ,SchneiderM,deBruijnFJ,LupskiJR.Genomic

fingerprintingofbacteriausingrepetitivesequence-based

polymerasechainreaction.MethodMolCellBiol.1994;5:

25–40.

26.ColwellRK.Estimates:statisticalestimationofspecies richnessandsharedspeciesfromsamples.EstimateS8.2 User’sGuide.Availableat:

http://viceroy.eeb.uconn.edu/estimates(accessed

19.06.2010).

27.MagurranAE.EcologicalDiversityandItsMeasurement.

Princeton:CroomHelm;1987.

28.ChenWM,deFariaSM,StraliottoR,etal.Proofthat

Burkholderiastrainsformeffectivesymbioseswithlegumes:a

studyofnovelMimosa-nodulatingstrainsfromSouth

America.ApplEnvironMicrobiol.2005;71:7461–7471.

29.ReisJúniorFB,SimonMF,GrossE,etal.Nodulationand

nitrogenfixationbyMimosaspp.intheCerradoandCaatinga

biomesofBrazil.NewPhytol.2010;186:934–946.

30.JesusEC,SchiavoJA,deFariaSM.Dependenceonarbuscular

mycorrhizalfungifornodulationandgrowthoftropical

woodylegumespecies.RevÁrvore.2005;29:545–552.

31.JesusEC,MoreiraFMS,FlorentinoLA,RodriguesMID,Oliveira

MS.Leguminosaenodulatingbacteriadiversityfromthree

differentlandusesystemsinBrazilianWesternAmazon.

PesqAgropecBras.2005;40:769–776.

32.LimaAS,NóbregaRSA,BarberiA,daSilvaK,FerreiraDF,

MoreiraFMS.Nitrogen-fixingbacteriacommunities

occurringinsoilsunderdifferentusesintheWestern

AmazonRegionasindicatedbynodulationofsiratro

(Macroptiliumatropurpureum).PlantSoil.2009;20:1–19.

33.ZilliJÉ,ValisheskiRR,FreireFilhoFR,NevesMCP,Rumjanek

NG.AssessmentofcowpearhizobiumdiversityinCerrado

areasofnortheasternBrazil.BrazJMicrobiol.2004;35:

281–287.

34.GermanoMG,MennaP,MostassoFL,HungriaM.RFLP

analysisoftherRNAoperonofaBraziliancollectionof

bradyrhizobialstrainsfrom33legumespecies.IntJSystEvol

Microbiol.2006;56:217–229.

35.PerrineauMM,LeRouxC,deFariaSM,BalieiroFC,GalianaA,

PrinY.GeneticdiversityofsymbioticBradyrhizobiumelkanii

populationsrecoveredfrominoculatedandnon-inoculated

AcaciamangiumfieldtrialsinBrazil.SystApplMicrobiol.

2011;34:376–384.

36.HungriaM,VargasMAT.EnvironmentalfactorsaffectingN2

fixationingrainlegumesinthetropics,withanemphasison

Brazil.FieldCropRes.2000;65:151–164.

37.TranninICB,MoreiraFMS,SiqueiraJO,LimaA.Toleranceof

BradyrhizobiumandAzorhizobiumstrainsandisolatesto

copper,cadmiumandzinc“invitro”.RevBrasCiêncSolo.

2001;25:305–316.

38.MatsudaA,MoreiraFMS,SiqueiraJO.Toleranceofrhizobia

generafromdifferentoriginstozinc,copperandcadmium.

PesqAgropecBras.2002;37:343–355.

39.WillemsA,CoopmanR,GillisM.Comparisonofsequence

analysisof16S-23Sspacerregions,AFLPanalysisand

DNA-DNAhybridizationsinBradyrhizobium.IntJSystEvol

Microbiol.2001;5:623–632.

40.GrangeL,HungriaM.Geneticdiversityofindigenous

commonbean(Phaseolusvulgaris)rhizobiaintwoBrazilian

ecosystems.SoilBiolBiochem.2004;36:1389–1398.

41.AlbertonO,KaschukG,HungriaM.Samplingeffectsonthe

assessmentofgeneticdiversityofrhizobiaassociatedwith

soybeanandcommonbean.SoilBiolBiochem.

2006;38:1298–1307.

42.VargasLK,LisboaBB,SchollesD,etal.Geneticdiversityand

symbioticefficiencyofblackwattle-nodulatingrhizobiain

soilsofRioGrandedoSulState,Brazil.RevBrasCiêncSolo.

2007;31:647–654.

43.StoccoP,SantosJCP,VargasVP,HungriaM.Assessmentof

biodiversityinrhizobiasymbiontsofcommonbean

(PhaseolusvulgarisL.)inSantaCatarina,Brazil.RevBrasCiênc

Références

Documents relatifs

Nachmias, 1992, pp. In essence, the research design acts as a road map, directing the researcher through data collection, analysis, and interpretation. In this research, I used the

In agreement with the observation that VIP is involved in propionate-mediated activation of IGN, propionate feeding effectively increased the ratio of VIP-positive neurons

Deprotonation as a function of the content of water in DMSO: dry DMSO (black solid like), increasing water content (from dashes to red solid line).. Antonov, The possible

All the five extraction procedures showed significant correlations (P< 0.05) with accumulated Pb in dwarf bean leaves for both MDN and LPF soils but not for foliar

J. Laurent, Lionel Lebreton, et al.. Optimized and standardized 192-plex solution for 16S rDNA gene sequencing on Illumina Miseq platform to assess soil biodiversity.. THE FIRST

Abstract.- Gssbauer spectroscopicand electron paramagnetic resonance measurements were made on ferrugenous bauxite from Jamaica, and on the corresponding red mud residue

Edited on behalf of the International Union of Soil Sciences, this book is the result of a joint effort of the international SUITMA (Soils of the Urban, Traffic, Mining and

Notably, information included: Smart Card ID, Date of birth, Age, Age Range, Gender, Company ID, Company Name, Company ID, Seat number, Bus license plate, Bus Line ID, Stop ID,