• Aucun résultat trouvé

NRG Study of an Inversion-Symmetric Interacting Model: Universal Aspects of its Quantum Conductance

N/A
N/A
Protected

Academic year: 2021

Partager "NRG Study of an Inversion-Symmetric Interacting Model: Universal Aspects of its Quantum Conductance"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: hal-00373518

https://hal.archives-ouvertes.fr/hal-00373518

Preprint submitted on 6 Apr 2009

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

NRG Study of an Inversion-Symmetric Interacting

Model: Universal Aspects of its Quantum Conductance

Axel Freyn, Jean-Louis Pichard

To cite this version:

Axel Freyn, Jean-Louis Pichard. NRG Study of an Inversion-Symmetric Interacting Model: Universal

Aspects of its Quantum Conductance. 2009. �hal-00373518�

(2)

Axel Freyn 

and Jean-Louis Pi hard Servi e de Physique de l'



Etat Condense (CNRS URA 2464), IRAMIS/SPEC, CEA Sa lay, 91191 Gif-sur-Yvette, Fran e

We onsider s attering of spinless fermions by aninversion-symmetri intera ting model har-a terizedbythreeparameters(intera tionU,internal hopping t

d

and ouplingt

). Mapping this spinless modelonto anAnderson modelwithZeeman eld, we use thenumeri alrenormalization groupfor studying theparti le-hole symmetri ase. Weshow thatthe zero temperature limit is hara terizedbyalineoffree-fermion xedpointsandas ale(U;t

)oft

d

forwhi hthereisperfe t transmission. Thequantum ondu tan eandthelowenergyex itationsofthemodelaregivenby universalfun tions oftd= if td < and of td=t

2

if td > , = t 2

being the level widthof the s atterer. Thisuniversalregimebe omesnon-perturbativewhenU ex eeds .

PACSnumbers: 71.10.-w,72.10.-d,73.23.-b

In quantum transport theory, the ondu tan e G of ananosysteminside whi htheele tronsdonotintera t is given by g = G=(e 2 =h) = jt ns j 2

when the tempera-tureT !0, jt

ns j

2

beingthe probability for anele tron at the Fermi energy E

F

to be transmittedthrough the nanosystem. ThisLandauer-Buttikerformula anbe ex-tended to an intera ting nanosystem, ifit behavesasa non-intera ting nanosystem with renormalized parame-ters. Westudy su harenormalizationusing the numer-i al renormalization group(NRG) algorithm [1, 2℄ and an inversion-symmetri intera ting model (ISIM) whi h des ribesthes atteringofspin-polarizedele trons (spin-lessfermions) by anintera ting region hara terized by an internal hopping termt

d

, a ouplingterm t

and an intera tion strength U. This model wasused [3, 4℄ for studyingthee e tofanexternals attereruponthe e e -tive transmissionofan intera ting region,assuming the Hartree-Fo k(HF)approximation.WerevisitISIMwith the NRG algorithm for investigating non-perturbative regimes where other methods (NRG or DMRG algo-rithms)thantheHFapproa hbe omene essary.

Quantum impuritymodels[1℄,astheAndersonmodel whi hdes ribesalevelwithHubbardintera tionU ou-pled to a 3d bath of free ele trons, were introdu ed to study the resistan e minimum observed in metals with magneti impurities. The Kondo problem refersto the failure of perturbative te hniques to des ribe this min-imum. The solution of these models by the NRG al-gorithm, anon-perturbativete hnique [1,2℄ introdu ed by Wilson, is at the origin of the dis overy of univer-salbehaviorswhi h anemergefrommany-bodye e ts. The observation [5℄ of the Kondo e e t in semi ondu -torquantum dotshasopenedase ond eraforquantum impuritymodels,nowusedformodelingmesos opi ob-je ts (single [6℄ ordouble [7℄ quantum dot systems) in-side whi h ele trons intera t, in onta t with baths of freeele trons(large ondu ting nonintera tingleads).

ThoughtheKondo e e t isindu edbymagneti mo-ments, it is also at the origin of spinless models, su h

astheintera tingresonantlevelmodel[8℄(IRLM)whi h des ribesaresonantlevel(V

d d

y

d) oupledtotwobathsof spinlessele tronsviatunnelingjun tionsandan intera -tionU betweenthelevelandthebaths. IRLM,whi his oftenusedforstudyingnonequilibriumtransport[8,9℄,is relatedtothe Kondomodel, the hargestatesn

d =0;1 playing the role of spin states. Both ISIM and IRLM are inversion symmetri and an exhibit orbital Kondo e e ts. However, theZeeman eld a ting onthe impu-rity is played bythe hopping termt

d

forISIM, and by thesite energy V

d

for IRLM. Therefore, ISIM does not transmit the ele trons without eld, while IRLM does. Thetwo-parti lestateshavebeengivenforISIM[10℄.

Fortheparti le-holesymmetri ase[2℄,theAnderson model maps onto theKondo Hamiltonian ifU > , being theimpurity-level width. Inthat ase,there is a non-perturbative regime where the temperature depen-den eof physi al observablessu h as theimpurity sus- eptibility is given by universal fun tions of T=T

K , T

K beingthe Kondotemperature. If U < , theimpurity sus eptibility an be obtained by perturbation theory. MappingISIMontoan Andersonmodel with aZeeman eld t

d

, and assuming that the role of t d

should quali-tativelyresemblethatofa nitetemperature,weexpe t thefollowings enariofortheISIM ondu tan eg ofthe parti le-holesymmetri ase: IfU > /t

2

,weexpe t a non-perturbative regime where g should be given by auniversalfun tion of t

d

= independently ofthe values ofU and t , with as ale(t ;U)of t d

playingthe role ofaKondotemperatureT

K

. If U < , theHFtheory should orre tlygiveg. Thiss enariowillbemoreorless on rmedbyextensiveNRG al ulations.

ISIMHamiltonian: H =H ns +H l +H . The Hamil-tonianoftheintera tingregion(thenanosystem)reads:

H ns = t d  y 0 1 + y 1 0  +V G (n 0 +n 1 )+Un 0 n 1 : (1) y x and x

are spinless fermion operators at site x and n

x =

y

(3)

LM

~

U

~

t

d

PO

FO

SC

~

t

c

FIG.1: Line offreefermion xedpoints( ~

U =0,thi ksolid line) hara terizing ISIM whenT ! 0 as t

d

in reases from t

d

= 0(SC xed point)towards t d

! 1(PO xed point). TheFO,LMandSC xedpointsandtheRGtraje tories[1 ℄ followedbyISIM as T de reases for t

d =0are indi ated in theplane e t d

=0,for >U (dashed)and <U (solid).

H l = t h X 0 1 x= 1 ( y x x+1 +H: :), where X 0 means

that x= 1;0;1areomittedfrom thesummation. The ouplingHamiltonianH = t ( y 1 0 + y 1 2 +H: :).

Mapping onto an Anderson model with Zeeman eld: Be ause ofinversionsymmetry,one anmap ISIMonto a semi-in nite 1d latti e where the fermions have a pseudo-spin and the double sitenanosystem be omes a single site with Hubbard repulsion U at the end point of the semi-in nite latti e. a

y e=o;x = ( y x+1  y x )= p 2

reating a spinless fermion in an even/odd (e=o) om-bination of the orbitals at the sites x and x + 1 of the in nite latti e, (or a fermion with pseudo-spin  = e=o in a semi-in nite latti e), one gets H

ns = (V G t d )n e +(V G +t d )n o +Un e n o ,wheren  =a y ;1 a ;1 and where the pseudo-spin \e" (\o") is parallel (anti-parallel) to the \Zeeman eld" t

d . In terms of the operators d y k ; = p 2= P 1 x=2 sin(k(x 1))a y ;x reat-ing a spinless fermion of pseudo-spin  and momen-tum kin thesemi-in nitelatti e,H

l = P k ;  k n k ; and H = P k ; V(k)(a y ;1 d k ;

+H: :),wherethek-dependent

hybridizationV(k) = t

p

2=sink yieldsan impurity

levelwidth =t 2 , n k ; =d y k ; d k ; and  k = 2t h osk. ISIMisalmosttheAndersonmodel,ex eptthatthe im-purity has a Zeeman eld t

d

and is oupled to a semi-in nite 1d bath of free ele trons. When t

d

! 0, ISIM exhibitsanorbitalKondoe e tiftheequivalent Ander-sonmodel anberedu edto aKondomodel.

NRG pro edure: ISIM an be studied using Wilson's pro edure[1, 2℄developedfortheAndersonmodelafter minor hanges. First,weassume V(k) V(k

F

==2) and, taking =2,wedivide the ondu tion band (log-arithmi dis retization) of the ele tron bath into sub-bands hara terizedbyanindexn andanenergywidth d n = n (1  1

). Withinea hsub-band,weintrodu e a ompleteset oforthonormalfun tions

np

(),and ex-pandtheleadoperatorsinthisbasis. Droppingtheterms

with p 6= 0 and using a Gram-S hmidt pro edure, the original1d leadsgiveriseto anothersemi-in nite hain withnearestneighborhopping terms,ea hsitebeing la-belledbythesameindexnastheenergysub-bandfrom whi h it omes, and representing a ondu tion ele tron ex itationatalengths ale

n=2 k

1 F

enteredonthe im-purity. Inthistransformed1dmodel,thesu essivesites are oupledbyhoppingtermst

n;n+1 /

n=2

whi h van-ishasn!1. TheimpurityandtheN 1 rstsitesform aNRG hainoflengthN andofHamiltonianH

N . This length an be interpreted [2℄ as a logarithmi temper-atures ale. The NRG hain oupledto the impurityis iterativelydiagonalizedandres aled,thespe trumbeing trun atedtotheN

s

rststatesatea hiteration. The be-haviorof ISIMasT de reases anbeobtainedfromthe spe trum of H

N

as N in reases, the bandwidth of H N being suitably res aled at ea h step. A xed point of theRG ow orrespondstoanintervalofsu essiveeven (orodd) valuesof N wherethe res aledmany-body ex- itationsE

I

(N)donotvary. Ifitisafree-fermion xed point, E I = P  , the

being one-body ex itations, andtheintera tingsystembehavesasanon-intera ting system(

~

U =0) withrenormalized parameters e t d and e t nearthe xedpoint. Moreover,ifonehas freefermions whenT !0,g anbeextra tedfromtheNRGspe trum.

Symmetri ase: UsingthisNRGpro edure,ISIM an be studied asafun tion of T for arbitraryvaluesof its bare parameters. Hereafter, we take t

h = 1, E F = 0 and V G

= U=2. This hoi e makes ISIM invariant under parti le-hole symmetry, with a uniform density (hn

x

i=1=2) and3e e tiveparameters( ~ U; e t ; e t d ).

Suppression of the LM xed point as t d

in reases: When t

d

= 0, ISIM is an Anderson model whi h has theRG owsket hedinFig.1fortheparti le-hole sym-metri ase. AtlowvaluesofN (highvaluesofT),ISIM islo atedinthevi inityoftheunstablefreeorbital(FO) xed point. As N in reases (T de reases), ISIM ows towardsthe stable strong oupling (SC) xed point. If t

2

<U,the ow anvisitanintermediateunstable xed point: the lo al moment(LM) xed pointbefore rea h-ingtheSC xedpoint. Inthat ase,ISIMisidenti alto aKondomodel hara terized by atemperatureT

K and by universal fun tions of the ratio T=T

K . If t

2

> U, the ow goes dire tly from the FO xed point towards theSC xed point, andthere isnoorbital Kondo e e t fort

d

!0. InFig.2(a),the rstmany-bodyex itations E

I

of ISIMaregivenforin reasingevenvaluesof N for t

d

=0. Sin e t 2

<U, onegets3plateaus orrespond-ingto the 3expe ted xedpoints. Insidethe plateaus, thespe traarefree-fermionsspe trawhi haredes ribed inRef. [2℄. However,betweentheplateaus, thereareno free-fermion spe tra and E

I 6= P  . As t d in reases (Fig.2(a)),theLMplateaude reasesandvanisheswhen t

d U.

Evolution of the SC xed point as t d

in reases: In the limit N ! 1 (T ! 0), let us study the E as a

(4)

FO

(a3)

SC

t

d

= 5 ∗ 10

3

0

0

.5

1

E

I

0

20

40

60

N

FO

(a2)

LM

SC

t

d

= 10

6

0

0

.5

1

E

I

FO

(a1)

LM

SC

t

d

= 0

0

0

.5

1

E

I

(d)

(e)

U = 0

U = 0.04

10

4

10

2

t

10

0

d

τ

SC

PO

(c)

τ

SC

PO

(b)

0

2

4

ǫ

α

10

6

10

4

10

2

t

10

0

d

0

0

.5

1

g

∆ǫ

0

.01

1

100 t

d

/t

2

c

0

2

4

ǫ

α

10

6

10

4

10

2

t

10

0

d

0

0

.5

1

g

FIG.2: (Color online) Fig. 2(a): Many body ex itationsEI as a fun tionofN (evenvalues)for U =0:005 and t =0:01. Fortd=0(Fig.2(a1)),one anseethe3su essiveplateaus(FO,LMandSC xedpoints)oftheAndersonmodel[2 ℄. Astd in reases(Fig. 2(a2)and Fig.2(a3)),the LMplateau shrinksanddisappearswhent

d

U. Fig. 2(b): Onebodyex itations 

(t

d

) (extra tedfromtheE I

(N!1;t d

))for U=0:1 andt

=0:1 (lefts ale). Thesolid(dashed)line orrespondstoNRG hainsofeven(odd)lengthN. Condu tan eg(td)extra tedfrom(td)usingEq.(2)(thi kred urve,rights ale). Fortd=, the

are independentofthe parity ofN andg=1. Fig.2( ): ForU =0, (t d =t 2 ) andg(t d =t 2

) extra tedfrom theNRG spe tra(). g= osh

2

(X)(redline)withX=ln(t d

=t 2

) is orre tlyreprodu ed. Figs.2(d),(e): g(t d

)fort =0:1andmany valuesofU, al ulated byNRGalgorithm(d)andbyHFtheory(e). InFig. 2(d),thelarger isU,thesmalleris td= where g=1. The urves orrespondrespe tivelytoU =0:25;0:2;0:15(3 leftpeaks)and U =0:1;0:09;:::;0:01;0(11rightpeaks). InFig. 2(e),theHF valuesarea urateforU =0:02;0:01;0(3rightpeaks),butbe omeina uratewhenU 0:04 . For U > ,theHF urves(dashedlines)areverydi erentofthe orrespondingNRG urves(Fig.2(d)).

fun tion of t d

. For t d

= 0, one has the SC limit [2℄ wheretheimpurityisstrongly oupledtothese ondsite (the ondu tion-ele tron state at the impurity site) of theNRG hain. Theimpurityand this siteform a sys-tem whi h an be redu ed to its ground state (a sin-glet), the N 2other sites arrying freefermions ex i-tations

whi h areindependentof thatsystem. Inthe presen eof aZeeman eld t

d

6=0, thefree-fermion rule E I (t d ) = P  (t d

) remains valid (see Fig. 2(b)) and the T ! 0 limit of ISIM is given by a ontinuum line offree-fermion xedpoints where

~

U =0,assket hedin Fig.1. Whenthepseudo-spindegenera yisbroken,the rst (se ond) one-body ex itation 

1 (

2

) arry respe -tivelyaneven(odd)pseudo-spinifNiseven. Thisisthe inverseifN is odd,

1 (

2

) arryingrespe tivelyanodd (even) pseudo-spin. Fort

d

!1, the impurity o upa-tion numbersn

e

=1and n o

= 0,and the N 1 other sites oftheNRG hainareindependentoftheimpurity. We allthis xedpoint\PolarizedOrbital"(PO),sin eit oin ideswiththeFO xedpointoftheAndersonmodel, ex eptthat thespinofthefreeorbital isfullypolarized in our ase. Sin e for N ! 1 and t

d

! 0 (SC xed point), thefreepart ofthe NRG hain hasN 2sites, while it has N 1 sites for t

d

! 1 (PO xed point), there is apermutation of the 

(t d ) ast d in reases: as

shown in Figs.2(b) and ( ), the  (t d !0) for N even be omethe (t d

!1)forN oddandvi e-versa.

Chara teristi energy s ale : We de ne the hara -teristi energy s ale (t

;U) of ISIM as the value of t d forwhi h the 

(t

d

) areindependentof theparityofN when N ! 1. Be ause of parti le-holesymmetry, the nanosystem (the impurity of the NRG hain) is always o upied by one ele tron. Binding one ele tron of the leadswiththisele tronredu estheenergywhent

d <, whileitin reasestheenergywhent

d

>. Fort d

=,it isindi erenttobind ornotanele tronoftheleadwith theoneofthenanosystem,makingISIMperfe tly trans-parent. This givestheproof that, for everyvaluesofU andt

, there is always avalue  of t d

forwhi h g = 1. Theargumentisreminis enttothatgivingthe ondition for having a perfe tly transparent quantum dot in the Coulombblo kaderegime: t

d

in our ase,thegate volt-agein the other ase,have to be adjusted to valuesfor whi h it osts thesameenergyto put anextra ele tron outsideorinside thedot.

Extra tionofthe ondu tan egfromtheNRGspe tra: IfÆ

e (Æ

o

)aretheeven(odd)s atteringphaseshiftsatE F , g(t d )=sin 2 (Æ e Æ o )=sin 2   (t d ) (t !1)  ; (2)

(5)

10−

12

10

6

10

0

10

6

τ /U

0

.001

1

U/t

2

c

10

4

10

3

10

2

10

1

10

0

g

10

2

10

0

10

2

10

4

10

6

10

8

t

d

t

c

= 1

t

c

= 0

.1

t

c

= 0

.01

FIG.3:(Coloronline)Condu tan egasafun tionoft d

=for 3valuesoft andmanyvalues0U 35. Inset: (U;t )=U asafun tionofU=t 2 (+)and t=t 2 exp (U=(t 2 ))(solid redline). where= 2  1

istheenergygapbetweenthetwo rst ex itations ofaNRG hainof evenlengthN !1 (see Fig.2(b)). WhenU =0,thisrelationisa onsequen eof Friedel sumrule,whi h anbewrittenfor ea h pseudo-spin hannel separately. In that ase, g = osh

2 (X) whereX =ln(t d =t 2 )and =t 2 . The (t d )givenbythe NRGalgorithmforU =0areshowninFig.2( )withthe orrespondingvaluesofgobtainedfromEq.(2),showing thatthispro eduregives orre tlygwhenU =0. Ithas beenshown[7,11,12℄thatEq.(2) analsobeusedwhen U 6=0,iftherearefreefermionswhenT !0.

Non-perturbativeregime (U > =A): InHFtheory,t d takes [3℄ a value v = t d +Uh y 0 1 (v;t )i and g = 1 if v = t 2

. This gives for the s ale  a HF value  HF = t 2 AU where A = h y 0 1 (v = t 2 ;t )i depends weakly on t , A =1= (1=4) for t =1 (0). When U ! t 2 =A,  HF

!0,showingthatHFtheory annotbeusedabove an intera tion threshold whi h is almost the threshold  giving the onset of the non-perturbative regime for theAnderson model. Thisbreakdown ofHF theory for U  =A an be seen if one ompares Fig. 2(d) (NRG results)andFig.2(e)(HFresults).

Universality: The ondu tan e g extra ted from the NRG spe tra for t

= 0:01;0:1 and 1 and 0  U  35 is given as afun tion of t

d

= in Fig. 3. One an see 3 su essiveregimes. Whent

d

<,there isasingle urve whi hisindependentofU andt

andwhi h orresponds to g = osh 2 (X)with X =ln(t d =), and notln(t d =t 2 ) as for U = 0. When t d

> , another universal urve independentoft

andU des ribesthedataasafun tion oft

d

= asfarast d

doesnotex eed . Indeed,thesame data plotted as a fun tion of t

d

show that g be omes independent of U when t

d

> . In this third regime (parallellineswhi h anbeseeninFig.3forlargevalues oft d =)g= osh 2 (X)withX =ln(t d =t 2 )asifU=0. RolesofT andt d

: Wehaveassumedanalogiesbetween

man eldatT =0intheAndersonmodel,andeventually thee e t oft

d

at T =0in ISIM.Thiswasbasedonthe ideathatthesingletstateoftheSClimit ouldbebroken eitherifthetemperatureT ortheZeemanenergyt

d ex- eedsT

K

. Letussummarizetheinterestandthelimitof theseanalogies.In reasingT intheAndersonmodel(or in ISIMwith t

d

=0), onegets3regimes, ea h of them being hara terized by a single xed point (Fig. 2(a)). There are no free fermions for temperatures T  T

K (SC{LM rossover) and T  (LM{FO rossover). In ontrast, in reasing t

d

in ISIM at T = 0, one has al-ways free fermions (Fig. 2(b)), and not only around 3 xed points. However, there are 3 regimes in ISIM as t

d

in reases, as in the Anderson model as T in reases, delimited by 2 energys ales  and . The behaviorof   t 2 exp (U=(t 2

)) (inset of Fig. 3) resembles that ofT

K t

p

U=2exp (U=(t 2

))(inISIMunits),while these onds ale isgiven by inthe 2models. Eventu-ally,wepointoutthesimilaritybetweentheuniversality dis ussed in this letter for g and that whi h hara ter-izes[13℄alsoat T =0thebehaviorofthesinglet-triplet gap fora magneti impurity on ned in a boxof mean levelspa ing,asafun tion T

K =.

WethankDenisUllmo forveryusefuldis ussionsand the\TriangledelaPhysique"for nan ialsupport.



Present address: Institut Neel, 25avenue des Martyrs, BP166,38042Grenoble,Fran e.

[1℄ A.C.Hewson, TheKondo ProblemTo HeavyFermions (CambridgeUniversityPress, 1993).

[2℄ H.R.Krishna-murthy,J.W.Wilkins,andK.G.Wilson, Phys.Rev.B21,1003(1980).

[3℄ Y.Asada, A.Freyn,and J.-L.Pi hard,Eur.Phys.J.B 53,109(2006).

[4℄ A.FreynandJ.-L.Pi hard,Phys.Rev.Lett.98,186401 (2007);A.Freynand J.-L.Pi hard,Eur.Phys.J.B58, 279(2007);A.Freyn,I.Kleftogiannis,andJ.-L.Pi hard, Phys.Rev.Lett.100,226802(2008).

[5℄ D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D.Abus h-Magder,U. Meirav,and M.A. Kastner, Na-ture(London)391,156(1998).

[6℄ P. G.Silvestrov andY. Imry,Phys.Rev.B75, 115335 (2007).

[7℄ L.Borda,G.Zarand,W.Hofstetter,B.I.Halperin,and J.vonDelft,Phys.Rev.Lett.90,026602(2003). [8℄ P. Mehta and N. Andrei, Phys. Rev. Lett. 96, 216802

(2006).

[9℄ E. Boulat, H. Saleur, and P.S hmitte kert,Phys.Rev. Lett.101,140601(2008).

[10℄ A. Dhar, D. Sen, and D. Roy, Phys. Rev. Lett. 101, 066805(2008).

[11℄ W.HofstetterandG.Zarand,Phys.Rev.B69,235301 (2004).

[12℄ A.OguriandA.C.Hewson,J.Phys.So .Jpn. 74,988 (2005).

[13℄ R.K.Kaul,G.Zarand, S.Chandrasekharan,D. Ullmo, andH.U.Baranger,Phys.Rev.Lett.96,176802(2006).

Figure

FIG. 1: Line of free fermion xed points (
FIG. 2: (Color online) Fig. 2(a): Many body exitations EI as a funtion of N (even values) for U = 0:005 and t = 0:01.
FIG. 3: (Color online) Condutane g as a funtion of t

Références

Documents relatifs

Quantum simulation of the Hubbard model: From ideal to strongly interacting fermions The quantum simulation of the Hubbard model using ultracold Fermi gases in optical lattices

2.3.3 DMFT treatment of the Dimer Hubbard Model 27 3 DMFT Solution of the Dimer Hubbard Model 31 3.1 Metal Insulator transition at T = 0 in the DHM 31 3.1.1 Metal to

for each pair of pictures and each one of the 11 sessions. Because the present work is devoted to evaluate the influence of the group unconscious on the measured

We also descibe the exact properties of the Quantum Fidelity (also called Loschmidt Echo) for the case of explicit quadratic plus inverse quadratic time-periodic Hamiltonians

These stochastic differential equations are obtained as continuous time limits of discrete models of quantum repeated measurements1. Physically, they describe the evolution of a

Several challenges remain to be overcome on the way to a full understanding of nonequilibrium quantum thermo- dynamics in the resonant-level model: Beyond the wide- band

We propose a theoretical model of random binary assemblies of discs which is the extension at any packing fraction of a model previously described by Dodds for dense

2014 The local density of states and the magnetic moment of an Anderson impurity in a linear chain are.. studied by means of a recurrence technique, applied to