• Aucun résultat trouvé

Critical exponent and minimization problem in <span class="mathjax-formula">$\mathbb {R}^N$</span>

N/A
N/A
Protected

Academic year: 2022

Partager "Critical exponent and minimization problem in <span class="mathjax-formula">$\mathbb {R}^N$</span>"

Copied!
14
0
0

Texte intégral

(1)

A NNALES DE LA FACULTÉ DES SCIENCES DE T OULOUSE

S AMIRA B ENMOULOUD -S BAI

M OHAMED G UEDDA

Critical exponent and minimization problem in R

N

Annales de la faculté des sciences de Toulouse 6

e

série, tome 12, n

o

3 (2003), p. 303-315

<http://www.numdam.org/item?id=AFST_2003_6_12_3_303_0>

© Université Paul Sabatier, 2003, tous droits réservés.

L’accès aux archives de la revue « Annales de la faculté des sciences de Toulouse » (http://picard.ups-tlse.fr/~annales/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions).

Toute utilisation commerciale ou impression systématique est constitu- tive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques

(2)

303

Critical exponent and minimization problem in RN

SAMIRA

BENMOULOUD-SBAI(1)

AND MOHAMED

GUEDDA(2)

RÉSUMÉ. - L’objet de cet article est d’obtenir une solution au problème suivant :

où ~ E C

(RN)~{u :

RN ~

R; u exp (|x|2 4)

E L~

(RN)}, qc

=

2N N-2,

N 3, est l’exposant critique de Sobolev et À E R. On montre lorsque

~ ~ 0 et sous certaines conditions sur À, que le problème admet au moins

une solution.

ABSTRACT

for x E

RN,

Lq

(K) = {u : RN ~ R; RN |u|q K ~}

and H1

(K) = {u ~

L2

(K); |~u|

E L2

(K)}.

We are concerned with the following min- imization problem

where qc =

2N N-2, N

3, À E M and ~ E

C(RN)

is such that

K~ E L°°

(RN).

We show that for ~ ~ 0, the infimum is achieved under

some condition on À.

Annales de la Faculté des Sciences de Toulouse Vol. XII, 3, 2003

PI

(*) Reçu le

10/01/2000,

accepté le

02/07/2003

(1) E.G.A.L, Université Ibn Tofail. Faculté des Sciences, B.P. 133 - Kenitra - Maroc.

E-mail: ben.sam@netcourrier.com

(2) LAMFA, CNRS UPRES-A 6119, Université de Picardie Jules Verne, Faculté de

(3)

1. Introduction and main result

Let K (x)

= exp

(|x|2 4), for x ~ RN, N

3 and

Let us consider the minimization

problem

where qc =

Nl"2

and A is a real

parameter.

It is well known

[5]

that the infimum

S’a (K)

is never achieved for

03BB N 4, N

3. Moreover it is shown that the

problem

has no solution

if 03BB ~ (N 4, N 2), N

4.

In this paper we are interested in the

perturbed

minimization of

(1.1) :

where

À E R and where the function cp E C

(RN) satisfying

We prove that if

’P =f

0 the infimum

(1.2)

is achieved. Note that

if ~~~qc

=

1,

and 03BB Ai,

where

03BB1

=

2

is the least

eigenvalue

of Lv := -0394v-

x ’;v

in

Hl (K),

we

get S~,03BB (K) =

0 and the infimum is achieved

by

0. Our main

result is the

following.

(4)

THEOREM 1.1. 2013 Let

qc = 2N N-2 N

3. ~ E C

(RN)

is not

identically

zero and

satisfies (1.3).

1.

If N 6, S~,03BB

is achieved

f or

any 03BB.

2.

If N 7, S~,03BB

is achieved

for

any À E

(N 4, +~).

This result is similar to those

proved by Brezis-Nirenberg [1]

and

by [9]

for

the minimization

problem

where S2 is a bounded domain of

RN,

N &#x3E;

4, Hé (ç2) = Hô (n)nH2 (03A9).

2.

Preliminary

results

Before

going

to the

proof

of the Theorem 1.1 we

denote,

for

N 3, by

and

It is known that the best Sobolev constant S is

approached by

the test

functions (03B5+|x- a12) - 2 -2 , and S

S

(K) [4, 5].

In fact we can see,

by

an easy

argument,

that S = S

(K).

LEMMA 2.1. - We have

(5)

By

the definition of S

(K)

we obtain

Thus

Letting t

~ oo one has

Then

thanks to

[5].

This

implies

that S = S

(K).

In the

sequel

we shall use the

following

estimates from

[5].

Let

(6)

PROPOSITION 2.2. - Let

Set

hence

and

where

and wN-1 denotes the measure

of

the N - 1 dimensional unit

sphere.

To prove Theorem

1.1,

we follow an idea intoduced

by Brezis-Nirenberg [1]

wich involves a careful

analysis

of a

minimizing

sequence

{uj}

C

Hl (K)

for

S~,03BB;

that is

and

It is clear that

if 03BB 0, {uj}

is bounded. Now assume that B &#x3E; 0.

(2.5) implies

that

{uj}

is Lqc

(K)-bounded,

in

particular {uj}

E

Hl (K) n LqcLoc (RN).

Thanks to

corollary

1.11 in

[5]

~03B5 &#x3E; 0 there exists constants

c = c

(A, q)

&#x3E;

0,

R &#x3E; 0 such that

we deduce from

(2.6)

that

{~uj}and {uj}

are

L 2(K)-bounded.

Hence there

exists a

subsequence,

still denoted

by {uj},

and a function u E

Hl (K)

such

that

(7)

and

We shall establish

that ~u + ~~qc

= 1 to deduce that

S~,03BB (K)

is achieved

by

u.

Actually,

we shall prove that the

assumption

leads to a contradiction. This will be a consequence of the

following

lemmas.

LEMMA 2.3. - We have

Proof. -

Let wj = uj - u , then

By

the definition of S = S

(K)

and

(2.6)

we deduce

and, by (2.5) ,

thanks to Brezis-Lieb Lemma

[3]. Combining (2.9) - (2.11)

leads to

(2.8) .

LEMMA 2.4. - For any v E

H1 (K)

such that

Ilv

+

~~qc

1 we have

and

therefore

(8)

Using again

Brezis-Lieb Lemma one sees

thus

On the other hand we have

and

As

then

Inequality (2.12)

follows

directly by substituing (2.14)

and estimates

(2.3)

in

(2.15),

and the

proof

of Lemma 2.4 is

completed.

As consequence of Lemmas 2.3 and 2.4 we have

LEMMA 2.5. 2013

Suppose

that

assumption (2.7) holds,

then the limit

func-

tion u ~

Hl (K) satisfies

the

following

where

Proof.

- Let v E

H1 (K). Since Ilu

+

~~qc 1,

there exists

to

&#x3E; 0 such that

for

all |t| to.

We deduce from Lemma 2.3

(9)

Thus

Using (2.13),

we

get

Letting

t ~

we deduce Lemma 2.5.

LEMMA 2.6. 2013

Suppose

that

(2.7) holds,

then the limit

function

u sat-

isfies

Proof.

2013 On the

contrary,

suppose that u + ~ ~ 0. Then u =

-~ ~

0

and satisfies

Next

since Ilu

+

~~qc =0 ,

there exists

to

&#x3E; 0 such that

Using

Lemma 2.4 and

(2.17)

we deduce that

S~,03BB

0.

By

the fact that u + ~ = 0

equality (2.11)

shows that S =

S~,03BB 0,

which is

impossible.

Now assume that u =- 0.

Using again equation (2.16)

we

infer that v =

0,

since

u+~ ~

0.

Therefore

1

= ~u

+

~~qc, a

contradiction.

(10)

Remark 2.7. -

Arguing

as in

[5, p. 1121]

one sees that the limit function

u

satisfying (2.16)

is in LOO

(RN).

Now w = u exp

(|x|2 8)

satisfies

The last

equation

can be written as

where V-

(x)

= max

(-V (x) 0)

E LCXJ

(RN)~LN 2 (RN)

and

f

E LCXJ

(RN)~

L2 (RN).

We conclude as in

[5, p. 1119]

that w E

C2 (RN)

and then u E

C2(RN).

3. Existence of a minimizer for

S~,03BB

As consequence of Lemma 2.6 we shall prove that

assumption (2.7)

leads

to a contradiction.

Suppose

A and N as in Theorem

1.1,

then we have

LEMMA 3.1.-

Assumption (2.7) implies

This lemma contradicts

(2.13),

that means that

hypothesis (2.7)

is not

true,

hence

and then

S~,03BB

is achieved.This ends the

proof

of Theorem 1.1. Now we return to the

proof

of Lemma 3.1.

Proof of

Lemma 3.1. - Since u

+ ~ ~ 0,

we may assume that

(u

+

cp) (0)

&#x3E; 0. Then there exists a ball B

(0, r),

r &#x3E; 0 such that u

+ cp

&#x3E; 0 on B

(0, r).

Choose the

function (

in Ug such

that (

E

Cô (B (0, r)) .

As in the

proof

of Lemma

2.4,

there exists Cg &#x3E; 0 such that

where

(11)

Put

Arguing

as in

[1], [9]

one sees that

for 03B5 small

enough.

We have from

[4]

and

[5],

on the other hand

where

Therefore,

Hölder’s

inequality implies

that

(u

+

cp) 03B6qc-1KN-6 2(N-2) ~ L1 (RN) .

Setting

we derive

(see [6],

Theorem.

8.15,

p.

235)

Thus

(12)

and a

simple computation yields

that

Let

and co

given by

In view of

(3.2) , (3.3)

one sees

therefor

Now, using u

+ c03B5u03B5 as a test function in

problem (1.2)

we

get

and then

by

Lemma 2.3.

First assume that

N

7.

Using (3.7)

and

(2.3) ,

we deduce

It follows from this that

(13)

Now if

N 6,

we have

qc

3 and then we use the

elementary inequality [9]

Thus

Hence

Using

this we obtain for N =

6,

(14)

and then

Therefore

for any À. A similar

argument

can be used to extend

(3.11)

to the case

N

5 . The

proof

is left to the reader. This

completes

the

proof

of Lemma

3.1.

Acknowledgments

This work was

partially supported

in

part by

the SRI

(UPJV, F.Amiens)

and

by

the French-Morocco scientific

cooperation projet "Action-Intégrée"

No

182/MA/99.

The first author thanks S.M. Sbai and L. Veron for inter-

esting

discussions.

Bibliography

[1]

BREZIS

(H.),

On some variational problem with limiting Sobolev exponent, Progress in variational methods, Pitman Res. Notes Math. Ser. 243, Longman,

p. 42-51

(1992).

[2]

BREZIS

(H.)

and KATO

(T.),

Remarks on the Schrodinger operator with singular complex potentials, J. Math. Pure Appl. 58, p. 137-151

(1979).

[3]

BREZIS

(H.) &#x26;

LIEB

(E.),

A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88, p. 486-490

(1983).

[4]

BREZIS

(H.) &#x26;

NIRENBERG

(L.),

Positive solutions of nonlinear elliptic equations in- volving critical Sobolev exponents, Comm. Pure Ap. Math. 36, p. 437-477

(1983).

[5]

ESCOBEDO

(M.)

and KAVIAN

(O.),

Variational problems related to self-similar solutions of the heat equation, Nonlinear Analysis TMA 11, No 10, p. 1103-1133

(1987).

[6]

FOLLAND

(G.B.),

Real analysis, Willey-intrescience,

(1984).

[7]

GUEDDA

(M.), A

note on nonhomogeneous biharmonic equations involving critical

Sobolev exponent, Port. Math. 56, Fas. 3, p. 299-308

(1999).

[8]

GUEDDA

(M.)

and VERON

(L.),

Quasilinear elliptic equations involving critical Sobolev exponents, Non-linear Analysis, The., Meth. and Appl., 13, No 8, p. 879- 902

(1989).

[9]

GUEDDA

(M.),

HADIJI

(R.)

and PICARD

(C.),

A biharmonic problems with con-

staint involving critical Sobolev exponent, Proc. R. Soc. Edinb., p. 1113-1132

Références

Documents relatifs

Séminaire de Probabilités XIII, 1977-1978, Lecture Notes in Mathematics, Springer-Verlag, Berlin-Heidelberg-New York, t.. dants, une

It follows from the previous theorem that the cluster variables either ap- pear as elements of the SL 2 -tiling, or as continuant polynomials of the linearization coefficients of

The heat operator is obtained by taking the sum of the square of twisted derivatives with respect to an orthonormal basis of the Cameron-Martin space.. We give the

De plus, en utilisant ce qui précède et l'hypothèse de position générale, la relation vectorielle ci-dessus permet de montrer, comme dans [C-G2] pour n = 2 et comme dans [L] pour n

Si on s'intéresse maintenant à l'image d'une application holomorphe de C^ dans C 72 , pour n ^ 2, on se rend compte d'un phénomène différent.. On sait depuis longtemps que le

Nous conjecturons que la résolvante de l'opérateur D^ défini en (1.5) (sans champ électrique) n'est jamais compacte.. Il est alors naturel de caractériser le spectre essentiel de

space and use local and global bifurcations methods to construct solutions periodic.. in one variable and decaying in the

L’accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » ( http://www.sns.it/it/edizioni/riviste/annaliscienze/ ) implique l’accord