• Aucun résultat trouvé

TP 2: P ARITY S PACE APPROACH

N/A
N/A
Protected

Academic year: 2022

Partager "TP 2: P ARITY S PACE APPROACH"

Copied!
3
0
0

Texte intégral

(1)

ESISAR 5A

Department : AUTOMATIQUE Damien KOENIG

2018 : Fault Diagnosis

TP 2: P ARITY S PACE APPROACH

Objective: Build a bank of residuals in order to detect and isolate the fault sensor

1 S

ENSOR FAULT DETECTION AND ISOLATION FOR A

BOILER SYSTEM EXCHANGER:

P

ARITY SPACE APPROACH

Theoretical study

Consider the following boiler system exchanger

The variables are:

 Tc : output water temperature at the boiler °C

 Tp : output water temperature of the primary circuit of the exchanger °C

 Ts : output water temperature of the second circuit of the exchanger °C

 Qg : gas flow m3/h

 Qp : water flow of the primary circuit of the exchanger l/h

 Qs: water flow of the second circuit of the exchanger l/h

The state of the system is desbribed by the following relation :

 

k

Tc

     

k Tp k Ts k

T

x 

the control inputs by :

 

k

Q

k2

 

Q k1

 

Q k5

 

Q k1

 

u g p p s

And the output by :

  kT

c

  k T

p

  k T

s

  k

T

y

TpO

Chaudière

Circuit primaire échangeur

Circuit secondaire échangeur TpO

Qg

Qp

Qs

TcO TcO

TpO

TsO

(2)

AC-514

2 The matrices A, B and C are given by :





33 31

22 21

12 11

0 0 0 a a

a a

a a

A ,





34 32

24 22

13 11

0 0

0 0

0 0

b b

b b

b b

B , C = I3

1.1 Parity space

 Without increasing the time k, how many parity equations can be deduced?

 Gives the parity equations with a minimum horizon of observation, to limit the detection delays.

 Gives the fault location decision table, each sensor fault alarm with the logic decision.

2 S

TATIC PARITY SPACE WITH NON PERFECT DECOUPLING Consider the static output relation:

 

k Cx

   

k k Fd

 

k

y   

where xRn, yRm anddRp .

y(k) is the output measurement, x(k) the state variable, d(k) the fault vector to be detected and (k) the noise measurement. Matrices C and F are known with appropriate dimension.

Assumption: m > n for a redundancy information existence.

We will find a parity vector sensitive to p-1 defaults and insensitive to di which represent the ith component of d.

This leads to explain the measurement vector in the form:

y

 

k Cx

   

k k Fd

 

k Fd

 

k

where d+ are d- are respectively the sensitive and insensitive faults. F + et F are the associated matrices.

2.1 Numerical Application:

Consider the following system:













 2 0 2

1 0 1

1 1 1

2 0 1

1 2 1

C ,













 1 0

5 2

0 0

2 1

2 1

F ,













 1 1 3 0 1 F

 Find the kernel w with the optimization problem described bellow. Give wTF- and wTF+.

 Check the products wTC, wTF- and wTF+ and conclude.

Solution:

The problem is reduced to find a matrices W such that

 

C F 0

W (1)

where the parity vector is given by : p

 

k W

 

k WFd

 

k

(3)

AC-514

3 The exact solution W of (1) holds if and if the line rank of (C F-) is deficient. If not the following optimization problem can be used:





 

2 2

0

F w

F min w

C w

T T w

T

remark: max(f(x)) = - min(-f(x)) example f(x) = x2-2

Explanation

Consider 

 



2 1

C

C C where C1 is of full rank. The constraints wTC = 0 is true by using the following changement :

Pw2

w

where

 





 I

C

P C T

T 1 2

1 .

Proof :

 

1 2 2 11

2 1 2

1

0

0     

 

 

w w C C

C w C w C

w

T T T T T thus

 

0

2 1 1 1 2

2 

 

 C I C C C

wT .

With identification:

   

2 2 1 2

1 1 1 2

2 w w Pw

I C w C

I C C w

w T

T T

T   





.

Using the new variable w2, the problem 2

2

0

F w

F min w

; C

w T

T w

T becomes :

     

 

2 22 22 2

2 2

2 2

2

2 w B~w

w A~ minw Pw F F P w

Pw F F P minw w F F w

w F F minw F

w F

min w T

T T w

T T

T T T T w

T T T T w

T

w   

where A~ PTF

 

F TP and B~PTF

 

F TP.

Since the small eigenvalue  of the pair (A~,B~

) is the minimal of the criteria, the corresponding eigenvector w2 is the solution of the optimization problem. Find , such that

B~

w20

A~

. From w2 and P deduce w and the parity relation:

 





 

d F d F w p

y w p

T T

That conclude the proof.

Références

Documents relatifs

Also, we have proved theorem which gener- alizes all previous results for the case, when the conditions on Fourier sine or cosine coefficients are the same (i.e., the analogue of

Study the variations of the curve and plot it together with the tangent lines at some points.. Calculate the length of

Lorsque la basse pression est supérieure à 0,8 bars, le clapet de sécurité s’ouvre et découvre l’orifice d’alimentation des trois chambres haute pression. Le gazole

This work was partially supported by the strategic project POS- DRU 107/1.5/S/77265, inside POSDRU Romania 2007-2013 co-financed by the Euro- pean Social Fund-Investing in

il faut par contre préciser qu'en régime stationnaire, la température de la résistance restant constante, celle-ci elle transmet au liquide sous forme de chaleur autant

On doit comparer cette puissance à la valeur moyenne de la puissance fournie par

C’est pourquoi,il décide de continuer son voyage selon les mêmes conditions que précédemment en allant au point A2016 symétrique du point A2015 par rapport au point

o Pour terminer, le fichier No_Stations vous fournit une table [no, no_réel] permettant d’établir la correspondance entre les numéros de stations dans les données que nous vous