• Aucun résultat trouvé

A lepton Dirac equation with additional mass term and a wave equation for a fourth neutrino

N/A
N/A
Protected

Academic year: 2022

Partager "A lepton Dirac equation with additional mass term and a wave equation for a fourth neutrino"

Copied!
25
0
0

Texte intégral

(1)

A lepton Dirac equation with additional mass term and a wave equation for a fourth neutrino

Claude Daviau, Jacques Bertrand

Fondation Louis de Broglie, 23 rue Marsoulan, 75012 Paris email:claude.daviau@nordnet.fr, bertrandjacques-m@orange.fr

ABSTRACT. From the relativistic wave equation for the electron we study a modified wave equation obtained by adding a second mass term. It is compatible with the electric gauge invariance. It does not modify the structure of plane waves, nor energy levels in the case of the H atom, calculated here with the H. Krüger’s method. It allows to account for a desintegrating particle with spin 12. We propose a wave equation for a fourth kind of neutrino.

Résumé : A partir de l’équation relativiste de l’électron, on étudie une modification de l’équation d’onde obtenue en ajoutant un second terme de masse. Celui-ci est compatible avec l’invariance de jauge électrique.

Il ne modifie pas la structure des ondes planes, ni les niveaux d’énergie dans le cas de l’atome d’hydrogène, calculés ici par la méthode de H.

Krüger. Il permet de prendre en compte la désintégration d’autres particules de spin 12. On propose une équation d’onde pour une quat- rième sorte de neutrino.

1 - Introduction

The Dirac equation [1] for the electron reads 0 = [γµ(∂µ+iqAµ) +im]ψ; q= e

~c ; m= m0c

~

(1.1) with the usual summation over repeated up and down index. Aµ are components of the electromagnetic potential space-time vector, eis the charge of the electron and m0 its proper mass. We use the following matrices :

γ00= 0 I

I 0

; I= 1 0

0 1

; −γjj =

0 −σj

σj 0

(1.2)

(2)

where σj, j = 1, 2, 3 are Pauli matrices. We also use Weyl spinorsξ andη :

ψ= ξ

η

; ξ= ξ1

ξ2

; η= η1

η2

. (1.3)

We use here only Pauli matrices and the Cl3=M2(C)Clifford algebra they generate [2]. In this frame the Dirac wave reads

φ=√ 2

ξ1 −η2 ξ2 η1

, φb=√ 2

η1 −ξ2 η2 ξ1

(1.4) while the Dirac equation reads

0 =∇φσb 21+qAφb+mφ (1.5)

∇=σµµ , ∂µ= ∂

∂xµ ; A=σµAµ

σ0=I; σj=−σj , σ212σ1=−iσ3. (1.6) We previously studied three kinds of modification-extension of the Dirac equation. The first one [2][3][5] changed the mass term by introducing the Yvon-Takabayasiβ angle

0 =∇φσb 21+qAφb+me−iβφ; ρe = det(φ). (1.7) This wave equation is equivalent to its invariant form [3]

0 =φ(∇φ)σb 21+φqAφb+mρ; φ=φb (1.8) obtained from (1.7) by multiplying byφon the left side and by identities φφ=φφ= det(φ) ; φφb φb= det(φ) =b ρe−iβ. (1.9) The wave equation (1.7) is homogeneous and non-linear. It solves the problem of negative energies for plane waves. It gives in the case of the H atom a countable set of solutions corresponding to the bound states of the hydrogen atom, with exactly the good number of states and the energy levels of the linear theory [2][3][6]. These solutions are very close to the solutions of the linear equation such as the Yvon-Takabayasi angle is everywhere defined and small. But the linear combinations of these solutions will have no such luck as to be solutions, or even approxima- tions of solutions in the non-linear case, because the determinant giving the Yvon-Takabayasi angle is quadratic. The solutions labelled by the

(3)

quantum numbersj,κ,λ,n, are plausibly the only solutions of the non- linear equation, in the case of the bound states of the hydrogen atom.

The homogeneous non-linear equation is the only example we know of a non-linear wave equation for which it can exist quantum energy le- vels, with exactly the right number of energy levels and the right energy levels.

Then the homogeneous non-linear equation has many advantages.

Introducing the Yvon-Takabayasi angle into the wave equation allows to suppress this angle everywhere it gives complicated results. The impulse- energy of the wave is the same as the impulse-energy of the electron- particle. Electromagnetic forces acting on the wave are identical to those acting on a classical electromagnetic fluid, as we prove it into appendix B of [2]. The homogeneous non-linear equation enables us more easily to see that the invariance group of the electromagnetism is greater than expected : Let R be a transformation of the space-time into itself such as

x0=R(x) =M xM (1.10)

x=x0+~x=

x0+x3 x1−ix2 x1+ix2 x0−x3

(1.11) x0=x00+x~0 =

x00+x03 x01−ix02 x01+ix02 x00−x03

(1.12) whereM si any invertible element inCl3 and

det(M) =re ; r6= 0 ; φ0 =M φ; φb0=Mcφ.b (1.13) Ris a Lorentz dilation, composed of a Lorentz rotation conserving space and time orientation and of a pure homothety with ratio r. The wave equation (1.7) is form invariant and its invariant form (1.8) does not change under the dilation defined by (1.10) (1.13) if and only if

q0A0 =M qAMc; m0ρ0=mρ; m=rm0, (1.14) because we get for any M the identity

∇=M∇0M ,c ∇0µ0µ , ∂0µ= ∂

∂x0µ. (1.15) With (1.10) to (1.15) the equation (1.8) is invariant under the group (Cl3,×) where Cl3 is the subset of invertible elements inCl3 [2]. The

(4)

invariant equation (1.8)includesthe Lagrangian densityLwhich gives (1.7) because naming< M >the (real) scalar part ofM we get [3]

L=< φ(∇φ)σb 21+φqAφb+mρ > . (1.16) The second extension of the Dirac theory replacesσ21byσ32orσ13 and interprets this as giving the wave equation of the two other kinds of charged leptons, muons with mass m0 and tauons with mass m00, with two other Lagrangian densities :

L=< φ(∇φ)σb 32+φqAφb+m0ρ > (1.17) L=< φ(∇φ)σb 13+φqAφb+m00ρ > . (1.18) Third modification of the Dirac theory : we get out of the frame of the Lagrangian formalism if we modify the wave equation (1.8) without changing its scalar part which is the Lagrangian density giving the wave equation before modification. This modification can be gauge invariant if we add to (1.8) a mass term commuting with σ21. There are two possibilities :

0 =φ(∇φ)σb 21+φqAφb+mρ(1 +ξσ3) (1.19) 0 =φ(∇φ)σb 21+φqAφb+mρ(1 +iζσ3). (1.20) where ξ and ζ are fixed real terms. This third modification is now the main purpose of our study.

2 - Plane waves and gauge invariance

Equations (1.19) (1.20) are respectively equivalent to

0 =∇φσb 21+qAφb+me−iβφ(1 +ξσ3) (2.1) 0 =∇φσb 21+qAφb+me−iβφ(1 +iζσ3). (2.2) They simplify in the caseA= 0and are respectively equivalent to

0 =∇φσb 21+me−iβφ(1 +ξσ3) (2.3) 0 =∇φσb 21+me−iβφ(1 +iζσ3). (2.4) Usual plane waves with a phaseϕand a reduced speedv read here

φ=φ0eϕσ21 ; ϕ=mvµxµ ; v=vµσµ (2.5)

(5)

whereφ0 is a fixed term. We get

∇φb=σµµ(φb0eϕσ21) =mvφσb 21. (2.6) Then (2.1) is equivalent to

vφb=e−iβφ(1 +ξσ3) (2.7) which is equivalent, withbσj =−σj, to

vφb =eφ(1b −ξσ3). (2.8) Using both (2.7) and (2.8) we get

(v·v)φ=vbvφ=v[eφ(1b −ξσ3)] =e(vφ)(1b −ξσ3)

=e[e−iβφ(1 +ξσ3)](1−ξσ3) =φ(1−ξ2). (2.9) We then get

kvk2=v·v= 1−ξ2 kmvk=mp

1−ξ2=m0c

~

p1−ξ2. (2.10) We let

m00=m0

p1−ξ2 ; mv= m00c

~ v0 (2.11)

which gives

1 =kv0k=

q

v020−~v 02. (2.12) It is then this reduced speedv0 which is linked with the usual~vvelocity by the relativistic formulas

v00= 1 r

1−~v2 c2

, v0j= vj

c r

1−~v2 c2

. (2.13)

This tells us : The true proper mass of the particle ism00. With (2.2) we get instead of (2.7)

vφb=e−iβφ(1 +iζσ3) (2.14)

(6)

which is equivalent to

bvφ=eφ(1 +b iζσ3) (2.15) or, taking adjoints, to

φv=e−iβ(1−iζσ3)φ. (2.16) We then get

vφφb v=e−iβφ(1 +iζσ3)e−iβ(1−iζσ3)φ vρe−iβv=e−2iβφ(1 +ζ2

ρvv=e−iβ(1 +ζ2)φφ=e−iβ(1 +ζ2)ρe

kvk=vbv=vv= 1 +ζ2. (2.17) We then let instead of (2.11)

m00=m0

p1 +ζ2 ; mv=m00c

~ v0 (2.18)

which gives again (2.12) and (2.13) : The true proper mass of the particle ism00.

As the Dirac equation or the homogeneous non-linear equation, the equation (2.1) is gauge invariant under the gauge transformation :

φ7→φ0 =φeiaσ3 ; Aµ7→Aµ0=Aµ−1

q∂µa. (2.19) This equation is not obtained from a Lagrangian density, we cannot use the Noether’s theorem to get an associated conservative current.

3 - The hydrogen atom

To solve the equation (2.1) we use a method separating the variables in spherical coordinates :

x1=rsinθcosϕ; x2=rsinθsinϕ; x3=rcosθ. (3.1) We use the following notations :

i123=iσ1 ; i231=iσ2 ; i312=iσ3 S= exp(−ϕ

2i3) exp(−θ

2i2) ; Ω =r−1(sinθ)−1/2S (3.2)

0 =∂0−(σ3r+1

1θ+ 1

rsinθσ2ϕ).

(7)

H. Krüger [4] got the identity

−1∇=∇0−1. (3.3)

To separate the temporal variable x0 = ct and the angular variable ϕ from the radial variabler and the angular variableθ we let

φ= ΩXe(λϕ−Ex0+δ)i3 (3.4) whereXis a function ofrandθwith value intoCl3, E=~cEis the energy of the particle,δis a fixed arbitrary phase and λis a real constant. We then get

−1φ=Xe(λϕ−Ex0+δ)i3 ; Ω−1φb=Xeb (λϕ−Ex0+δ)i3. (3.5) We also get

ρe= det(φ) = det(Ω) det(X) det[e(λϕ−Ex0+δ)i3] det(Ω) =r−2(sinθ)−1 ; det[e(λϕ−Ex0+δ)i3] = 1

ρe= det(X)

r2sinθ. (3.6)

We let

ρXeX = det(X) (3.7) which gives

ρe= ρX

r2sinθeX ; ρ= ρX

r2sinθ ; β=βX. (3.8) The Yvon-Takabayasiβ angle is a function of onlyrandθ.

For the hydrogen atom we have

qA=qA0=−α

r (3.9)

where α is the fine structure constant. The equation (2.1) gives with (3.4)

(E+α

r)Xib 33rXb+1

1θXb+ λ

rsinθσ2Xib 3=me−iβXi3(1 +ξσ3) (3.10)

(8)

while (2.2) gives with (3.4) (E+α

r)Xib 33rXb+1

1θXb+ λ

rsinθσ2Xib 3=me−iβXi3(1 +iζσ3).

(3.11) We let now

X=

a −b c d

; Xb =

d −c b a

(3.12) where a, b, c, d are functions of r and θ with value into C, b is the conjugated ofb. Putting these matrices into (3.10) we get the equivalent system :

i(E+α

r)d+∂rd+1

r(∂θ+ λ

sinθ)b=ime−iβ(1 +ξ)a i(E+α

r)a−∂ra−1

r(∂θ+ λ

sinθ)c=ime(1−ξ)d i(E+α

r)b−∂rb+1

r(∂θ− λ

sinθ)d=ime−iβ(1 +ξ)c (3.13) i(E+α

r)c+∂rc−1

r(∂θ− λ

sinθ)a=ime(1−ξ)b.

This system is reduced, ifβ is null or negligible, to i(E+α

r)d+∂rd+1

r(∂θ+ λ

sinθ)b=im(1 +ξ)a i(E+α

r)a−∂ra−1

r(∂θ+ λ

sinθ)c=im(1−ξ)d i(E+α

r)b−∂rb+1

r(∂θ− λ

sinθ)d=im(1 +ξ)c (3.14) i(E+α

r)c+∂rc−1

r(∂θ− λ

sinθ)a=im(1−ξ)b.

As there are only two angular operators, we can let

a=AU ; b=BV ; c=CV ; d=DU (3.15) whereA, B,C,D are functions ofrand U and V are functions ofθ. If κexists satisfying

U0− λ

sinθU =−κV ; V0+ λ

sinθV =κU (3.16)

(9)

then (3.14) is equivalent to i(E+α

r)D+D0

rB=im(1 +ξ)A i(E+α

r)A−A0−κ

rC=im(1−ξ)D i(E+α

r)B−B0−κ

rD=im(1 +ξ)C (3.17) i(E+α

r)C+C0

rA=im(1−ξ)B.

The resolution of the angular system (3.16) gives integrable functions if and only if κis a not null integer, the total angular momentum j and the magnetic quantum numberλ[2] satisfy

j=|κ| − 1

2 ; λ=−j, −j+ 1,· · ·j−1, j. (3.18) To solve the radial system (3.17) we let

x=mr ; = E

m ; a(x) =A(r) =A(x m)

b(x) =B(r) ; c(x) =C(r) ; d(x) =D(r) (3.19) which allows to get instead of (3.17)

i(+α

x)d+d0

xb=i(1 +ξ)a i(+α

x)a−a0−κ

xc=i(1−ξ)d i(+α

x)b−b0−κ

xd=i(1 +ξ)c (3.20) i(+α

x)c+c0

xa=i(1−ξ)b.

By subtracting and adding the first and fourth equation, next the second and third, we get

i(+α

x)(d−c) + (d−c)0

x(b−a) =i(a−b) +iξ(a+b) i(+α

x)(d+c) + (d+c)0

x(b+a) =i(a+b) +iξ(a−b) i(+α

x)(a−b)−(a−b)0

x(d−c) =i(d−c)−iξ(d+c) (3.21) i(+α

x)(a+b)−(a+b)0−κ

x(c+d) =i(d+c)−iξ(d−c).

(10)

We let

a−b=F+iG ; a+b=F++iG+

d−c=F−iG ; c+d=F+−iG+ ; iξ=ζ. (3.22) This gives

i(+α

x)(F−iG) + (F−iG)0−κ

x(F+iG)

=i(F+iG) +ζ(F++iG+) i(+α

x)(F+−iG+) + (F+−iG+)0

x(F++iG+)

=i(F++iG+) +ζ(F+iG) i(+α

x)(F+iG)−(F+iG)0

x(F−iG)

=i(F−iG)−ζ(F+−iG+) (3.23) i(+α

x)(F++iG+)−(F++iG+)0−κ

x(F+−iG+)

=i(F+−iG+)−ζ(F−iG).

Adding and subtracting we get (−1 ++α

x)F−G0−κ

xG =ζG+

(1 ++α

x)G+F0 −κ

xF =ζF+

(−1 ++α

x)F+−G0+

xG+=ζG (3.24) (1 ++α

x)G++F+0

xF+=ζF.

This system is made of two systems with opposite signs ofκin the case ζ = 0, which is the case of the Dirac equation. To solve the system in the general case we use

F+=e−Λx

X

n=0

anxs+n ; G+=e−Λx

X

n=0

bnxs+n

F=e−Λx

X

n=0

cnxs+n ; G=e−Λx

X

n=0

dnxs+n. (3.25)

(11)

Putting these functions into (3.24) we get, frome−Λxxs−1 terms : αd0+ (s−κ)c0= 0

αc0−(s+κ)d0= 0

αa0−(s−κ)b0= 0 (3.26)

αb0+ (s+κ)a0= 0.

This system has a not null solution only if determinants are null, which gives

s22−α2 (3.27)

and the convergence at the origin implies s=p

κ2−α2 (3.28)

which is always defined as κ is a not null integer. Coefficients of e−Λxxs+n−1 give :

(1 +)dn−1−Λcn−1−ζan−1+αdn+ (s+n−κ)cn= 0 (−1 +)cn−1+ Λdn−1−ζbn−1+αcn−(s+n+κ)dn= 0

(−1 +)an−1+ Λbn−1−ζdn−1+αan−(s+n−κ)bn= 0 (3.29) (1 +)bn−1−Λan−1−ζcn−1+αbn+ (s+n+κ)an= 0.

The integrability of radial functions implies that series in (3.25) are po- lynomials with degreen. We begin with the casen >0. We then get

(1 +)dn−Λcn=ζan ; (−1 +)cn+ Λdn=ζbn

(−1 +)an+ Λbn=ζdn ; (1 +)bn−Λan =ζcn. (3.30) Ifζ6= 0we get

cn= 1 + ζ bn−Λ

ζan ; dn=−1 + ζ an

ζbn

(1 +)[−1 + ζ an

ζbn]−Λ[1 + ζ bn−Λ

ζan] =ζan (3.31) (−1 +)[1 +

ζ bn−Λ

ζan] + Λ[−1 + ζ an

ζbn] =ζbn. (3.32) This gives

(−1 +2+ Λ2)an2an ; (−1 +2+ Λ2)bn2bn. (3.33)

(12)

So we must have

Λ2= 1 +ζ22; Λ =p

1 +ζ22. (3.34)

>From (3.29) we calculate terms with indexn: n(2s+n)dn =αζan−1−ζ(s+n−κ)bn−1

+ [αΛ−(s+n−κ)(1−)]cn−1 + [Λ(s+n−κ)−α(1 +)]dn−1 n(2s+n)cn =αζbn−1+ζ(s+n+κ)an−1

−[αΛ + (s+n+κ)(1 +)]dn−1 + [Λ(s+n+κ) +α(1−)]cn−1

n(2s+n)an =αζdn−1+ζ(s+n−κ)cn−1 (3.35)

−[αΛ + (s+n−κ)(1 +)]bn−1 + [Λ(s+n−κ) +α(1−)]an−1 n(2s+n)bn =αζcn−1−ζ(s+n+κ)dn−1

+ [αΛ−(s+n+κ)(1−)]an−1

+ [Λ(s+n+κ)−α(1 +)]bn−1.

Ifnis the degree of radial polynomials we can also use (3.30) and we get with (3.34) and (3.29)

0 = 2[Λ(s+n)−α][−ζcn−1−Λan−1+ (1 +)bn−1]

0 = 2[Λ(s+n)−α][(s+n+κ)an+αbn] (3.36) and also

0 = 2[Λ(s+n)−α][−ζdn−1+ Λbn−1+ (−1 +)an−1]

0 = 2[Λ(s+n)−α][(s+n−κ)bn−αan]. (3.37) We cannot get

0 = (s+n+κ)an+αbn

0 =−αan+ (s+n−κ)bn (3.38) withan orbn not null, because the determinant of this system is

(s+n)2−κ22=n(2s+n)>0 if n>0. (3.39)

(13)

Therefore, in the casen >0, we get

Λ(s+n) =α (3.40)

α22= (1 +ζ22)(s+n)2 2= 1 +ζ2

1 + α2 (s+n)2 =

p1 +ζ2 s

1 + α2 (s+n)2

. (3.41)

This gives also

=

p1−ξ2 s

1 + α2 (s+n)2

. (3.42)

Then the energy E of the particle satisfies with (2.11) : E = m0c2p

1−ξ2 s

1 + α2 (s + n)2

= m00c2 s

1 + α2 (s + n)2

. (3.43)

A particle following the Dirac equation with a proper massm00has there- fore the same bound states as a particle with a proper massm0following (2.1).

4 - Case of radial polynomials with degree 0

The number of the bound states with a principal quantum number n=n+|κ|is2n2. This number is obtained from the Dirac theory as a sum

2n2=n(n+ 1) +n(n−1) (4.1) because there is, in the case n = 0 only one possible sign for κ. It is necessary to get also this result from (2.1). We let here in the place of (3.25)

F+=e−Λxa0xs; G+=e−Λxb0xs

F=e−Λxc0xs ; G=e−Λxd0xs. (4.2)

(14)

The radial system (3.24) is then equivalent to

0 =αd0+ (s−κ)c0 (4.3)

0 =αc0−(s+κ)d0 (4.4)

0 =αa0−(s−κ)b0 (4.5)

0 =αb0+ (s+κ)a0 (4.6)

ζa0= (1 +)d0−Λc0 (4.7) ζb0= (−1 +)c0+ Λd0 (4.8) ζd0= (−1 +)a0+ Λb0 (4.9) ζc0= (1 +)b0−Λa0. (4.10) Equations (4.3) to (4.6) have not null solutions only ifs=√

κ2−α2and in this case we get

s=|κ|

r 1−α2

κ2 >0 (4.11)

d0= κ−s

α c0; b0= s−κ

α a0. (4.12)

Putting these relations into (4.7) - (4.10) we get (1 +)κ−s

α c0−Λc0=ζa0 (4.13)

(−1 +)c0+ Λκ−s

α c0=ζs−κ

α a0 (4.14)

(−1 +)a0+ Λs−κ

α a0=ζκ−s

α c0 (4.15)

(1 +)s−κ

α a0−Λa0=ζc0. (4.16) With (4.14) and (4.15) we get

α

s−κ(−1 +)c0−Λc0=ζa0 (4.17) α

κ−s(−1 +)a0−Λa0=ζc0. (4.18)

(15)

Comparison between (4.13) and (4.17), or between (4.16) and (4.18) gives

(1 +)κ−s

α = α

s−κ(−1 +) (1 +)(κ−s)22(1−)

α2−(κ−s)2= [α2+ (κ−s)2] = α2−(κ−s)2

α2+ (κ−s)2. (4.19) But we have

(κ−s)22−2κs+s22−2κs+κ2−α2

= 2κ(κ−s)−α2

α2−(κ−s)22−[2κ(κ−s)−α2] = 2[α2+κ(s−κ)] (4.20) =2[α2+κ(s−κ)]

2κ(κ−s) =α2+κs−κ2 κ2−κs

= κs−s2

κ2−κs= s(κ−s) κ(κ−s) = s

κ (4.21)

We can remark that the energy levels withn= 0are independent ofξ.

Asandsare positive, κmust also be positive : We get again the true result on the number of states2n2 for the principal quantum numbern.

This result does not depend onξorζ, then it is available for each linear equation considered here.

We must nevertheless point out a difference with the equation (1.7) about the Yvon-Takabayasi angle. It is not null in the plane z = 0. So the non-linear equation and its linear approximation may have solutions with a small difference of the energy levels.

5 - Resolution in the Coulombian case with σ

1

and σ

2

We start now from the wave equation (2.1) where we replace σ3 by σ1or σ2. Wave equations are now

0 =∇φσb 32+qAφb+me−iβφ(1 +ξσ1) (5.1) 0 =∇φσb 13+qAφb+me−iβφ(1 +ξσ2). (5.2)

(16)

And the linear approximations of these wave equations, in the case of a β angle null or very small, are respectively

0 =∇φσb 32+qAφb+mφ(1 +ξσ1) (5.3) 0 =∇φσb 13+qAφb+mφ(1 +ξσ2). (5.4) For (5.1) and (5.3) we let

φ=φ1eπ42. (5.5)

We then get

φb=φb1eπ42 ; φ=eπ42φ1

ρe=φφ=φ1eπ42eπ42φ11φ1= det(φ1). (5.6) Then β is the same forφ or φ1. Multiplying respectively (5.1) or (5.3) byeπ42 on the right, and using

eπ42σ32eπ42 =eπ22σ32=iσ2σ32=−iσ321 (5.7) eπ42σ1eπ42 =eπ22σ1=iσ2σ1=i(−iσ3) =σ3 (5.8) we get

0 =∇φb1σ21+qAφb1+me−iβφ1(1 +ξσ3) (5.9) 0 =∇φb1σ21+qAφb1+mφ1(1 +ξσ3). (5.10) Therefore we return to wave equations previously studied, and we get the same results.

For (5.2) and (5.4) we let

φ=φ2eπ41. (5.11) We then get

φb=φb2eπ41 ; φ=eπ41φ2

ρe=φφ=φ2eπ41eπ41φ22φ2= det(φ2). (5.12) Then β is the same forφ or φ2. Multiplying respectively (5.2) or (5.4) byeπ41 on the right, and using

eπ41σ13eπ41 =eπ21σ13=−iσ1σ13=−iσ321 (5.13) eπ41σ2eπ41 =eπ21σ2=−iσ1σ2=−i(iσ3) =σ3 (5.14)

(17)

we get

0 =∇φb2σ21+qAφb2+me−iβφ2(1 +ξσ3) (5.15) 0 =∇φb2σ21+qAφb2+mφ2(1 +ξσ3). (5.16) Therefore we return again to wave equations previously studied, and we get the same results.

6 - Conservation or not of the current of probability.

In the frame of the Clifford algebra Cl3 the density of probability ψψ, which is the time component of a space-time vector, readsD00, time component of the space-time vector D0, one of four space-time vectors Dµ =φσµφ forming a mobile orthogonal basis of the space-time [2] :

D0·D02 ; Dj·Dj=−ρ2, j= 1, 2, 3

Dµ·Dν= 0 , µ6=ν. (6.1)

The waveφallows to consider a second mobile orthogonal basis : Dµ=φσµφb; D0·D02 ; Dj·Dj =−ρ2, j= 1, 2, 3

Dµ·Dν = 0, µ6=ν. (6.2)

ComponentsDνµ satisfy, withj, k= 1, 2, 3:

D00=D00 ; D0j=−D0j ; Dj0=−D0j ; Dkj =Djk. (6.3) The differential term of the invariant form of the wave equation includes

φ(∇φ) =b v1+iv2 ; v1=1

2[φ(∇φ) + (φ∇)b φ]b iv2=1

2[φ(∇φ)b −(φ∇)φ].b (6.4) We can see v1 as a space-time vector andiv2 as a space-time pseudo- vector since

φ=φb ; ∇=∇; [φ(∇φ)]b = (φ∇)φb

v1 =v1 ; (iv2)=−iv2. (6.5)

(18)

We can then let

v1=v1µσµ=v01−v11σ1−v12σ2−v13σ3

v2=v2µσµ=v02−v21σ1−v22σ2−v23σ3. (6.6) We get

φ(∇φ) =b v10−v11σ1−v12σ2−v13σ3+iv20−v121−v222−v233 (6.7) φ(∇φ)σb 21=−v32−v21σ1+v11σ2+v02σ3−v221+v122−v013+v13i.

We get also

2v1=φ(∇φ) + (φ∇)bb φ=φ(σµµφ) + (∂b µφσµ)bφ=∂µ(φσµφ)b φσ0φb=D0=Dµ0σµ=D00σ0−D01σ1−D02σ2−D03σ3

0(φσ0φ) =b ∂0(φσ0φ) =b ∂0D00σ0−∂0D10σ1−∂0D02σ2−∂0D03σ3. (6.8) We get also forj = 1, 2, 3:

φσjφb=−φσjφb=−Dj =−Dµjσµ

=D0jσ0−Dj1σ1−D2jσ2−Dj3σ3

j(φσjφ) =b ∂jD0jσ0−∂jD1jσ1−∂jDj2σ2−∂jDj3σ3. (6.9) This gives

2v1= 2(v10σ0−v11σ1−v12σ2−v13σ3)

=∂µ(φσµφ) =b ∂0(φσ0φ) +b ∂j(φσjφ)b

=∂0D00σ0−∂0D01σ1−∂0D20σ2−∂0D03σ3 +∂jDj0σ0−∂jDj1σ1−∂jDj2σ2−∂jD3jσ3

= (∂µD0µ0−(∂µD1µ1−(∂µDµ22−(∂µDµ33 (6.10) and we get, forν= 0, 1, 2, 3:

2v1ν=∂µDνµ=∇ ·Dν. (6.11) The calculation of the gauge termφqAφbis similar and we get

φqAbφ=q[(A·D00−(A·D11−(A·D22−(A·D33]. (6.12)

(19)

The wave equation (1.19) is equivalent to the system of its components in the basis(1, σ1, σ2, σ3, iσ1, iσ2, iσ3, i):

0 =−v23+q(A·D0) +mρ (6.13)

0 =−v12−q(A·D1) (6.14)

0 =v11−q(A·D2) (6.15)

0 =v02−q(A·D3) +mξρ (6.16)

0 =−v22 (6.17)

0 =v12 (6.18)

0 =−v10 (6.19)

0 =v31. (6.20)

There are, as with the homogeneous non-linear wave equation (1.7), two conservative currents, the currentD0which has as time component the probability density D00ψ, and the current D3. To see this, we use (6.11) and the system (6.13) to (6.20) becomes

0 =−v32+q(A·D0) +mρ (6.21) 0 =−1

2(∇ ·D2)−q(A·D1) (6.22) 0 = 1

2(∇ ·D1)−q(A·D2) (6.23) 0 =v02−q(A·D3) +mξρ (6.24)

0 =−v22 (6.25)

0 =v12 (6.26)

0 =−1

2(∇ ·D0) (6.27)

0 = 1

2(∇ ·D3). (6.28)

Equation (6.27) is the law of conservation of the current of probability, and (6.28) is the law of conservation of the current D3, linked to the chiral gaugeφ7→eiaφ[2].

The same calculation, from the wave equation (1.20) gives instead of

(20)

(6.21) to (6.28) the system

0 =−v32+q(A·D0) +mρ (6.29) 0 =−1

2(∇ ·D2)−q(A·D1) (6.30) 0 = 1

2(∇ ·D1)−q(A·D2) (6.31)

0 =v02−q(A·D3) (6.32)

0 =−v22 (6.33)

0 =v12 (6.34)

0 =−1

2(∇ ·D0) +mρζ (6.35)

0 = 1

2(∇ ·D3). (6.36)

The currentD3 is still conservative, but the current of probabilityD0 is no more conservative because (6.35) implies

µDµ0 = 2mρζ. (6.37) In the simple case whereD00 does not vary in the space andDj0= 0, for instance with a plane wave and a null velocity we getρ=D00and (6.37) gives

0D00= 2mζD00 ; ∂0[ln(D00)] = 2mζ

D00=ke2mζx0. (6.38)

The density of probability in the case ζ < 0 is a declining exponen- tial function. This is usually interpreted as a radioactive decline. The corresponding particle has then a half-life :

T = ln(2)

2mc|ζ|. (6.39)

Ifζ is small, we then getm0≈m00and ζ≈ − ln(2)~

2m00c2T. (6.40)

For a muon the lifetime is T = 2.2×10−6s, the proper mass is m00 = 1.88×10−28kg, so ζ ≈ −1×10−18, and for a tau the lifetime is T =

(21)

2.9×10−13s, the proper mass ism00= 3.16×10−27kg, soζ≈ −4.4×10−13 The difference betweenm0andm00is too small to be seen in experiments.

As the proper mass is inversely proportional to ζ in (6.40), this pa- rameter is very small, but it can be greater for neutrinos, their proper masses being much smaller.

7 - A fourth possibility

We previously associate each kind of neutrinos to one of the threeσj

terms. But theCl3algebra contains four independent terms with square

−1 : σ12, σ23, σ31, and i = σ123 Then there must be a fourth wave equation on the model of (1.7) :

0 =∇φib +me−iβφ; ρe= det(φ). (7.1) Usual plane waves with a phaseϕand a reduced speedv read here

φ=φ0e ; ϕ=mvµxµ ; v=vµσµ (7.2) whereφ0 is a fixed term. We get

∇φb=σµµ(bφ0e−iϕ) =−ime−iϕvφb0. (7.3) We get also, withdet(φ0) =ρ0e0

φφ=ρe0eφ0e0φ0e2iϕ0ei(β0+2ϕ) (7.4) and we get

ρ=ρ0 ; β =β0+ 2ϕ. (7.5) Then (7.1) is equivalent to

0 =−imve−iϕφb0i+me−i(β0+2ϕ)eφ0 (7.6)

vφb0=−e−iβ0φ0 (7.7)

bvφ0=−e0φb0. (7.8)

With both (7.7) and (7.8) we get

(v·v)φ0=vvφb 0=−v(−vφb 0) =−ve0φb0=−e0vφb0

=−e0(−e−iβ0φ0) =φ0 (7.9) v·v= 1 if det(φ0)6= 0. (7.10)

(22)

and we get usual relations (2.13) between reduced speed and velocity.

This wave equation is very different from the three ones with a σij

term, there is no linear approximation, the Yvon-Takabayasi angle being used and not small. The invariant form of this wave equation is

0 =φ(∇φ)ib +mρ. (7.11)

With (1.10), (1.13) andm=rm0 this equation is invariant. Therefore it is relativistic invariant. We can add a gauge termφqBφ, we getb

0 =φ(∇φ)ib +φqBφb+mρ. (7.12) But this equation is very different from (1.8) : for instance the second order equation contains a (−m2)φ term instead of the (+m2)φ term in the second order equation issued from the Dirac equation. More, the fourDµcurrents are conservative, not only theD0andD3current : With (6.4), (7.12) is equivalent to

0 = (v1+iv2)i+φqBφb+mρ (7.13) or to the vectorial system

v1= 0 (7.14)

v2=φqBφb+mρ (7.15)

>From equations (6.6) and (6.11), (7.14) is equivalent to

∇ ·Dµ= 0 ; µ= 0, 1, 2, 3. (7.16) AsD0 is conservative this wave has no radioactive decline, is stable.

The generatoriof the gauge is the generator of the Lochak’s theory of the monopole [7] . So a charged lepton corresponding to the neutral wave following (7.1) should be very different from an electron, a muon or a tauon, and perhaps similar to the Lochak’s magnetic monopole ifB is a Cabibbo-Ferrari potential.

As the β angle is the angle of the U(1) group which is the kernel of the homomorphism from Cl3 into theD group of Lorentz dilations [2][3] we get only the identity of D, no moving center of dilation, no moving particle [8].

The coupling between a charged lepton and its neutrino may not exist here or may be very different and with (7.1) we may have no electro- weak interaction. A fourth neutrino interacting only by gravitation is expected today.

(23)

References

[1] P. A. M. Dirac, Proc. Roy. Soc. (London)117, 610 (1928)

[2] C. Daviau : L’espace-temps double, Ed. JePublie Paris 2011. English translation :Nonlinear Dirac Equation, Magnetic Monopoles and Double Space-Time, C.I.S.P. 2012.

C. Daviau :Cl3 Invariance of the Dirac Equation and of Electromagne- tism, Advances in Applied Clifford Algebras, accepted for publication.

[3] C. Daviau :Double Space-Time and more, Ed. JePublie Paris 2012.

[4] H. Krüger, New solutions of the Dirac equation for central fields in The Electron, D. Hestenes and A. Weingartshofer eds, Kluwer Academic Pu- blishers, 49-81.

[5] C. Daviau et G.Lochak : Sur un modèle d’équation spinorielle non li- néaire, Ann. Fond. Louis de Broglie,16n1 1991

C. Daviau : Equation de Dirac non linéaire, (Thèse de doctorat, Univer- sité de Nantes), 1993

C. Daviau : Linear and Nonlinear Dirac Equation, Found. of Phys.,23 n11, 1993

C. Daviau : Remarques sur une équation de Dirac non linéaire, Ann.

Fond. Louis de Broglie,19n4, 1994

[6] C. Daviau : Sur la résolution de l’équation de Dirac pour l’atome d’hy- drogène, Ann. Fond. Louis de Broglie,20n1, 1995

C. Daviau : Solutions of the Dirac equation and of a non-linear Dirac equation for the Hydrogen Atom,Int. Conference on the Theory of the Electron, Mexico 1995

C. Daviau : Sur la résolution d’une équation d’onde non linéaire pour l’atome d’hydrogène, Ann. Fond. Louis de Broglie,352010.

[7] G. Lochak : Sur un monopôle de masse nulle décrit par l’équation de Dirac et sur une équation générale non linéaire qui contient des monopôles de spin 12. Ann. Fond. Louis de Broglie,8n4 1983 and9n1 1984 G. Lochak : The symmetry between electricity and magnetism and the wave equation of a spin 12 magnetic monopole. Proceedings of the 4-th International Seminar on the Mathematical Theory of dynamical systems and Microphysics. CISM 1985

G. Lochak : Wave equation for a magnetic monopole.Int. J. of Th. Phys.

24n10 1985

G. Lochak : Nonlinear Spinorial Wave Equation for a Magnetic Mo- nopole, in : Nonlinear World, International Workshop on Nonlinear and Turbulent Processes in Physics, Kiev 1989, World Scientific, Singapore, 1990

G. Lochak : Sur un modèle d’équation spinorielle non linéaire, Annales de la Fondation Louis de Broglie,16, 1991, p. 43, with C. Daviau.

(24)

G. Lochak : Un monopôle magnétique dans le champ de Dirac, (Etats magnétiques du champ de Majorana), Annales de la Fondation Louis de Broglie,17, 1992, p. 203.

G. Lochak : Sur les solutions localisées d’une équation non linéaire re- présentant un monopôle magnétique, Annales de la Fondation Louis de Broglie,18, 1993, p. 1, with E. Maslov.

G. Lochak : The symmetry between Electricity and Magnetism and the Problem of the Existence of a Magnetic Monopole, contribution au re- cueil : Advanced Electromagnetism, Ed. T. W. Barrett, D. M. Grimes, World Scientific, Singapore, 1995, p. 105-148

G. Lochak : Sur la présence d’un second photon dans la théorie de la lumière de Louis de Broglie, Annales de la Fondation Louis de Broglie, 20, 1995, p. 111.

G. Lochak : Les symétries P,T,C, les solutions à énergie négatives et la représentation des antiparticules dans les équations spinorielles, partie I, Annales de la Fondation Louis de Broglie,22, 1997, p. 1.

G. Lochak : Les symétries P,T,C, les solutions à énergie négatives et la représentation des antiparticules dans les équations spinorielles, partie II, Annales de la Fondation Louis de Broglie,22, 1997, p. 187.

G. Lochak : Un lepton magnétique capable d’intervenir dans les inter- actions faibles, Annales de la Fondation Louis de Broglie 27, 2002, p.

727.

G. Lochak : L’équation de Dirac sur le cône de lumière : Electrons de Majorana et monopôles magnétiques Annales de la Fondation Louis de Broglie28, 2003 p. 403.

G. Lochak : "Photons électriques" et "photons magnétiques" dans la théorie du photon de de Broglie (un renouvellement possible de la théorie du champ unitaire d’Einstein), Annales de la Fondation Louis de Broglie 29, 2004, p. 297 and33, 2008, p. 107.

G. Lochak : Quelques questions à propos de la formule de Dirac pour la charge d’un monopôle magnétique, Annales de la Fondation Louis de Broglie, 27, 2004, p. 695 (Translated in Russian in Prikladnaja fizika, 6-2004 p. 5.

G. Lochak : Low-Energy Nuclear Reactions and Leptonic Monopoles, en collaboration avec Leonid Urutskoev, Conférence Internationale sur la Fusion Froide (ICCF 11), Marseille 31.10.04 to 05.11.04, 2004.

G. Lochak : Theory of Light Monopoles and their Physical, Chemical, Biological and Nuclear Effects, Conférence Internationale sur la Fusion Froide (ICCF 11), Marseille 31.10.04 au 05.11.04. Translated in Russian in Prikladnaja fizika, 2006 p. 5.

G. Lochak : The Equation of a Light Leptonic Magnetic Monopole and its Experimental Aspects, Z. Naturforsch. 62a, 2007, p.231.

(25)

G. Lochak : A Leptonic Magnetic Monopole : Theory and Experiment, Colloque de Peyresc 2007, Ann. Fond. Louis de Broglie,33, 2008, p. 1.

G. Lochak : Sur la présence de monopôles magnétiques légers au pôle Nord G. Bardout, G. Lochak, D. Fargue, Annales de la Fondation Louis de Broglie,32, 2007, p. 551.

G. Lochak : Twisted space, chiral gauge and magnetism. Ann. Fond.

Louis de Broglie,32n2-3 2007.

[8] C. Daviau : Aspects particulaires de l’onde de Dirac, Ann. Fond. Louis de Broglie,34n12009.

(Manuscrit reçu le 21 juin 2012)

Références

Documents relatifs

We prove the global well-posedness and we study the linear response for a system of two coupled equations composed of a Dirac equation for an infinite rank operator and a nonlinear

Grâce à l’onde de de BROGLIE, nous avons montré dans les chapitres précédents qu’une solution propagative exacte à l’équation de DIRAC décrivait une particule

Thanks to the de BROGLIE wave, we have learned to relate the kinematic properties of a point particle to the exact solutions of the DIRAC equation which express the

La conception pour l’environnement s’inscrit dans une démarche qui prend en considération tous les aspects de l'environnement dans chaque étape du processus du développement d’un

La discussion des mesures calo- rimétriques permet d’établir que le champ moléculaire aux hautes températures pour les aimantations faibles et aux basses températures

Results also showed that female physicians’ behavioral adaptability regarding nonverbal affiliation and dominance is more related to positive consultation outcomes for the

On traite aussi le cas de l'opérateur de Schrödinger et de l'opérateur de Dirac avec champ électrique et magnétique en dimension 2 et 3 (on donnera dans ce cas l'équation de

Décomposition de S(i-) selon les types.. Anticommutateurs des champs des neutrinos.. Lagrangien du neutrino.. Vecteur-courant du neutrino.. Tenseur canonique