• Aucun résultat trouvé

Multipoint formulas for inverse scattering at high energies

N/A
N/A
Protected

Academic year: 2021

Partager "Multipoint formulas for inverse scattering at high energies"

Copied!
4
0
0

Texte intégral

(1)

HAL Id: hal-02983682

https://hal.archives-ouvertes.fr/hal-02983682

Preprint submitted on 30 Oct 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Multipoint formulas for inverse scattering at high energies

Roman Novikov

To cite this version:

Roman Novikov. Multipoint formulas for inverse scattering at high energies. 2020. �hal-02983682�

(2)

Multipoint formulas for inverse scattering at high energies

R.G. Novikov

CMAP, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France;

IEPT RAS, 117997 Moscow, Russia e-mail: novikov@cmap.polytechnique.fr

We consider the Schr¨ odinger equation

∆ψ + v(x)ψ = Eψ, x R d , d 1, E > 0, (1) where v is complex-valued,

v ∈ C c ( R d ), (2)

where C c denotes infinitely smooth compactly supported functions.

For equation (1) we consider the scattering solutions ψ + (x, k) = e ikx + ψ sc (x, k), k R d , k 2 = E, where ψ sc satisfies the Sommerfeld radiation condition:

| x | (d 1)/2 (

| x | i | k |sc (x, k) 0 as | x | → + (3) uniformly in x/ | x | . This implies that

ψ sc (x, k) = e i | k || x |

| x | (d 1)/2 f 1 (k, | k | x

| x | ) + O ( 1

| x | (d+1)/2

) , | x | → + , (4)

where f 1 is the scattering amplitude for equation (1). For more details about definitions of ψ + and f 1 , see, e.g., [BSh], [N2] and references therein.

It is convenient to represent f 1 as follows

f 1 = c(d, | k | )f(θ, ω, E), (θ, ω) S d 1 × S d 1 , where (5) c(d, | k | ) = πi( 2πi) (d 1)/2 | k | (d 3)/2 , θ = k/ | k | , ω = x/ | x | .

In order to formulate our results we also use the following notations:

ˆ

v(p) = (2π) d

∫ R

d

e ipx v(x)dx, p R d , (6)

ω = { p R d : = 0 } , ω S d 1 , (7)

θ(p, ω, E) = E 1/2 (p + (E p 2 ) 1/2 ω), p ω , ω S d−1 , E 1/2 > 0, (8)

(3)

R.G. Novikov

α j ( ξ) =

j 1

i=1

j ξ i ) for 1 < j n, α 1 ( ξ) = 1,

β n,j ( ξ) =

n

i=j+1

i ξ j ) for 1 j < n, β n,n ( ξ) = 1,

(9)

where ξ = (ξ 1 , . . . , ξ n ).

Theorem 1. Let v satisfy (2). Then the following formulas hold:

ˆ v(p) =

n

j=1

( 1) n j (s + τ j ) n 1 fj (s), ω, E j (s))

α j (⃗ τn,j (⃗ τ) + O(s n ) as s + , θ j (s) = θ(p, ω, E j (s)), E j (s) = (s + τ j ) 2 , s > 0,

τ = (τ 1 , . . . , τ n ), τ 1 = 0, τ j

1

< τ j

2

for j 1 < j 2 ,

(10a)

ˆ v(p) =

n

j=1

( 1) n j λ n−1 j fj (s), ω, E j (s))

α j ( λ)β n,j ( λ) + O(s n ) as s + , θ j (s) = θ(p, ω, E j (s)), E j (s) = (λ j s) 2 , s > 0,

λ = (λ 1 , . . . , λ n ), λ 1 = 1, λ j

1

< λ j

2

for j 1 < j 2 ,

(10b)

where p ω , ω S d 1 (and ω, p are fixed).

Formulas (10a), (10b) are explicit asymptotic formulas for finding the Fourier trans- form ˆ v(p) at fixed p R d , d 2, from the scattering amplitude f at n points at high energies E 1 , . . . , E n . The precision of these formulas is O(s n ) as s + and in this sense is proportional to n. To our knowledge these formulas are new for n 2. For n = 1, formulas (10a), (10b) are a known variation of the Born formula at high energies for smooth v; see, e.g., Proposition 3.4 of [M] and formula (5.1) of [N1]. (For n = 1, formulas (10a) and (10b) coincide.)

Formulas (10a) and (10b) follow from Proposition 3.4 of [M] about the asymptotic expansion of f (θ, ω, s 2 ) as s + , for s(θ (θω)ω) = p, and from applying to this expansion Theorems 3.1 and 3.2 of [N2].

Acknowledgements

The author is partially supported by the PRC n 2795 CNRS/RFBR: Probl` emes in- verses et int´ egrabilit´ e.

References

[BSh] F.A. Berezin, M.A. Shubin, The Schr¨ odinger Equation, Vol. 66 of Mathematics and Its Applications, Kluwer Academic, Dordrecht, 1991.

[ M] R.B. Melrose, Geometric Scattering Theory. Stanford Lectures. Cambridge University Press, 1995.

2

(4)

Multipoint formulas for scattered far field

[ N1] R.G. Novikov, Multidimensional inverse scattering for the Schr¨ odinger equation, Book series: Springer Proceedings in Mathematics and Statistics. Title of volume: Math- ematical Analysis, its Applications and Computation - ISAAC 2019, Aveiro, Por- tugal, July 29-August 2; Editors: P. Cerejeiras, M. Reissig (to appear), e-preprint:

https://hal.archives-ouvertes.fr/hal-02465839v1

[ N2] R.G. Novikov, Multipoint formulas for scattered far field in multidimensions, Inverse Problems 36(9), 095001 (2020)

3

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to