• Aucun résultat trouvé

POTENTIAL DISTRIBUTION IN METAL-VACUUM-METAL PLANAR BARRIERS CONTAINING SPHERICAL PROTRUSIONS OR INCLUSIONS

N/A
N/A
Protected

Academic year: 2021

Partager "POTENTIAL DISTRIBUTION IN METAL-VACUUM-METAL PLANAR BARRIERS CONTAINING SPHERICAL PROTRUSIONS OR INCLUSIONS"

Copied!
9
0
0

Texte intégral

(1)

HAL Id: jpa-00224401

https://hal.archives-ouvertes.fr/jpa-00224401

Submitted on 1 Jan 1984

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

POTENTIAL DISTRIBUTION IN

METAL-VACUUM-METAL PLANAR BARRIERS CONTAINING SPHERICAL PROTRUSIONS OR

INCLUSIONS

A. Lucas, J. Vigneron, J. Bono, P. Cutler, T. Feuchtwang, R. Good, Jr.

Huang, Z. Huang

To cite this version:

A. Lucas, J. Vigneron, J. Bono, P. Cutler, T. Feuchtwang, et al.. POTENTIAL DISTRIBU- TION IN METAL-VACUUM-METAL PLANAR BARRIERS CONTAINING SPHERICAL PRO- TRUSIONS OR INCLUSIONS. Journal de Physique Colloques, 1984, 45 (C9), pp.C9-125-C9-132.

�10.1051/jphyscol:1984922�. �jpa-00224401�

(2)

30URNAL DE PHYSIQUE

Colloque C9, supplément au n°12, Tome 45, décembre 1984 page C9-125

POTENTIAL D I S T R I B U T I O N IN METAL-VACUUM-METAL PLANAR BARRIERS CONTAINING

SPHERICAL PROTRUSIONS OR INCLUSIONS +

A.A. L u c a s , J . P . V i g n e r o n , J . Bono*, P.H. C u t l e r * , T . E . Feuchtwang*, R.H. Good, J r * and Z. Huang*

Department de Physique, F.N.D.P., 61, rue de Bruxelles, 5000 Namur, Belgium

*Physias Department, The Pennsylvania State University, University Park, Pennsylvania 16802, U.S.A.

Résumé - On présente une méthode exacte pour l e c a l c u l r a p i d e a) de l a d i s - t r i b u t i o n de p o t e n t i e l é l e c t r o s t a t i q u e régnant e n t r e deux é l e c t r o d e s planes p a r a l l è l e s contenant une p r o t r u s i o n sphérique ou i n s e r t i o n sphérique con- d u c t r i c e e t soumises à une d i f f é r e n c e de p o t e n t i e l e t b) du p o t e n t i e l image c l a s s i q u e r e s s e n t i par un é l e c t r o n t r a v e r s a n t l a j o n c t i o n p l a n o - s p h é r i q u e . A b s t r a c t - We p r e s e n t an e x a c t method f o r the f a s t computation of a) t h e e l e c t r o s t a t i c p o t e n t i a l d i s t r i b u t i o n between two biased p l a n a r , p a r a l l e l e l e c t r o d e s c o n t a i n i n g a s p h e r i c a l p r o t r u s i o n o r an i s o l a t e d c o n d u c t i n g , s p h e r i c a l i n s e r t i o n and b) t h e c l a s s i c a l image charge p o t e n t i a l experienced by an e l e c t r o n c r o s s i n g the p i a n o - s p h e r i c a l j u n c t i o n .

I - INTRODUCTION

I n t e r e s t i n t u n n e l i n g through non p l a n a r MVM j u n c t i o n s has r e c e n t l y been enhanced by t h e advent of the Scanning T u n n e l i n g Microscope (STM)1.

T h e o r e t i c a l m o d e l s2'3'1* have been c o n s t r u c t e d aiming a t a b e t t e r u n d e r s t a n d i n g of the observed s p a t i a l r e s o l u t i o n of the m i c r o s c o p e .

P r i o r t o t h i s , t h e o r e t i c a l work 5 had been concerned w i t h nonplanar t u n n e l i n g i n metal whisker diodes which have a geometry s i m i l a r t o STM and which were i n s t r u m e n - t a l i n e s t a b l i s h i n g the r e c e n t l y d e f i n e d v e l o c i t y of l i g h t6. A l s o , t u n n e l i n g through curved i n t e r f a c e s occurs i n e l e c t r o l u m i n e s c e n t MOM j u n c t i o n s7 where the luminescence i s enhanced by roughness.

In d i s c u s s i n g t h e t u n n e l i n g i n STM, i t may be i m p o r t a n t t o use r e a l i s t i c models of the j u n c t i o n s8. I n one such model t h e t i p s u r f a c e i s a p l a n a r conductor p r o v i d e d w i t h a hemispherical p r o t r u s i o n which models an atomic c l u s t e r through which the

tunnel c u r r e n t i s b e l i e v e d t o pass i n t h e actual d e v i c e . The actual imper- f e c t i o n s are not expected t o have such r e g u l a r shapes but t h i s model p e r m i t s a t h e o r e t i c a l a n a l y s i s and i s expected t o give a f i r s t a p p r o x i m a t i o n t o actual experimental c o n d i t i o n s . The counter e l e c t r o d e r e p r e s e n t i n g t h e s u r f a c e t o be exami- ned by STM i s here a f l a t metal conductor separated from t h e t i p by a vacuum gap.

In t h i s paper we r e p o r t on methods o f s o l v i n g two problems :

1) D e t e r m i n a t i o n of the t h r e e - d i m e n s i o n a l p o t e n t i a l b a r r i e r due t o the e x t e r n a l bias f i e l d . That i s , given the p o t e n t i a l s a t the two e l e c t r o d e s , determine t h e p o t e n -

+ This research was supported in part by the NATO Research Grants Program, Grant ho 1902, Scientific Affairs Division, Brussels, Belgium and the Office of Naval Research, Arlington, Virginia, Contract No. N00014-82-K-0702.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1984922

(3)

C9-126 JOURNAL DE PHYSIQUE

t i a l d i s t r i b u t i o n i n t h e space between them.

2) D e t e r m i n a t i o n o f t h e c l a s s i c a l image charge p o t e n t i a l . T h a t i s , w i t h t h e e l e c t r o - des grounded and a p o i n t charge i n t h e space between them, c a l c u l a t e t h e poten- t i a l energy o f t h e system as a f u n c t i o n o f t h e p o s i t i o n o f t h e p o i n t charge.

The sum o f these two p o t e n t i a l b a r r i e r s r e p r e s e n t s t h e c l a s s i c a l vacuum p o t e n t i a l b a r r i e r across w h i c h t h e e l e c t r o n s i n a STM t u n n e l .

The s o l u t i o n f o r t h e s t a t i c p o t e n t i a l o b t a i n e d h e r e c o u l d a l s o be d e r i v e d by s o l v i n g Maxwell ' S e q u a t i o n s aX&indary c o n d i t i o n s f o r the c o r r e s p o n d i n g quasi s t a t i c p r o - blem i n which t h e metal e l e c t r o d e s a r e r e p r e s e n t e d by a l o c a l , frequency-dependent d i e l e c t r i c f u n c t i o n & ( m ) . Such an approach, which would a l s o g i v e the r e s o n a n t modes o f t h e MVM j u n c t i o n , has r e c e n t l y been adopted by Rupping (who used a general method due t o ~ e r r e m a n l ' ) f o r a s i n g l e p l a n a r e l e c t r o d e w i t h one h e m i s p h e r i c a l bump, i n t h e c o n t e x t o f Surface Enhanced Raman S c a t t e r i n g .

As expected, f o r r e a l i s t i c values o f the g e o m e t r i c a l l e n g t h parameters, t h e t u n n e l i n g b a r r i e r e x h i b i t s s t r o n g d e v i a t i o n s f r o m t h e p l a n a r MVM b a r r i e r o f t h e same m a t e r i a l s . I n p a r t i c u l a r , s u b s t a n t i a l n a r r o w i n g o f t h e b a r r i e r a l o n g t h e a x i a l d i r e c t i o n o f t h e t i p add l a r g e b a r r i e r asymmetry w i t h r e s p e c t t o b i a s r e v e r s a l are obtained. G r a p h i c a l r e p r e s e n t a t i o n o f these numerical r e s u l t s wi l 1 be p r e s e n t e d and discussed.

I 1

-

STATIC BIAS POTENTIAL DISTRIBUTION

We w i l l t r e a t t h e g e n e r a l case o f f i g . 2 w h i c h covers a l l s i t u a t i o n s o f p a r t i a l l y p r o t r u d i n g spheres ( a G R) o r i s o l a t e d s p h e r i c a l i n c l u s i o n s ( a

>

R ) such as found i n roughened e l e c t r o l umi nescent MOM j u n c t i o n s .

The f i r s t t h i n g we do i s t o r e f l e c t i n t h e p l a n e z=O b o t h t h e vacuum gap and t h e sphere o f f i g . 2, as shown i n f i g . 3. I t i s easy t o convince o n e s e l f t h a t t h e poten- t i a l d i s t r i b u t i o n i n t h e upper h a l f ( z > 0) o f t h e double gap c o i n c i d e s , by symme- t r v , w i t h t h e p o t e n t i a l o f t h e a c t u a l j u n c t i o n o f f i g . 2.

The p o t e n t i a l a t

?

would be known i f we knew t h e i n d u c e d s u r f a c e charge d e n s i t y 5

on a l l s u r f a c e s . I n f a c t , the knowledge o f t h e s u r f a c e charge d e n s i t y a(?o) on t h e upper sphere w i l l s u f f i c e i f we observe t h a t

i ) by_symmetry, the s u r f a c e charge d e n s i t y on t h e l o w e r sphere i s i d e n t i c a l t o a ( r ) and

i i ) emp?oying t h e method o f images t o s a t i s f y t h e boundary c o n d i t i o n s , t h e s u r f a c e charse d e n s i t y on t h e p l a n a r conductors a t d and - d can be r e ~ l a c e d bv an i n - f i n i t e s e r i e s - o f s p h e r i c a l charge d i s t r i b u t i o n s o b t a i n e d by imaging t h e two spheres i n t h e t w i n m i r r o r s a t d and -d.

Thus t h e problem i s e n t i r e l y reduced t o c a l c u l a t i n g t h e p o t e n t i a l due t o a l i n e a r a r r a y of+i d e n t i c a l spheres, c l u s t e r e d b y p a i r s

,

and a1 l c a r r y i n g t h e same charge d e n s i t y a ( r o ) as t h e r e a l sphere So. I t i s c l e a r t h a t i f we o b t a i n t h e p o t e n t i a l a t

?,

due t o So alone, we can o b t a i n t h e t o t a l p o t e n t i a l b y a d d i n g up t h e image sphere'con- t r i b u t i o n s t h r o u g h s u i t a b l e t r a n s l a t i o n s o f t h e z c o o r d i n a t e . L e t us w r i t e t h e a x i a l l y symmetric t o t a l p o t e n t i a l a t f = (p,z) as

where we have separated t h e s i m p l e p l a n a r gap c o n t r i b u t i o n Voz/d which must be r e c o - vered f o r a s y m p t o t i c a l l y l a r g e 0 . The p e r t u r b a t i o n V ' s a t i s f ~ e s t h e b o u n d a r y c o n d i - t i o n s

v l = O f o r z = O ( a ) V ' = 0 f o r z =

*

d ( b )

\I

(4)

L e t us expand o i n Legendre polynomial S : + m

a ( r o ) = C AR PR(cos eO)

R=l ( 3 )

where the R = 0 term i s excluded f o r charge n e u t r a l i t y . The p o t e n t i a l due t o t h e r e a l sphere i s given by

where

?

i s the p o s i t i o n o f p o i n t P w i t h r e s p e c t t o the c e n t e r o f the sphere So.

l n s e r t i a g t h e generating f u n c t i o n o f the P ' s

and usi ng t h e a d d i t i o n theorem o f s p h e r i c a l harmoni CS

i n ( 4 ) g i v e s

2 1

V;

= 4'R C AR

m F

y;(e,@)

1

dQo PR(coseo) Y;

*

( e o y @ o )

Rkm a S o

O r t h o g o n a l i t y o f the Y;'S reduces V; t o

where z = z - a, and BR are new unknown c o e f f i c i e n t s , p r o p o r t i o n a l t o AL.

a

Now we can add c o n t r i b u t i o n s t o the p o t e n t i a l from a l l spheres centered a t zn =

+

(a+2nd), n = 1,2

,... .

The f i n a l r e s u l t i s

(5)

C9-128

JOURNAL

D E PHYSIQUE

I t i s easy t o v e r i f y t h a t F, i s antisymmetric (change n i n t o -n)

which guarantees the bounaary c o n d i t i o n (3-a). By v i r t u e o f the image c o n s t r u c t i o n , FR a l s o s a t i s f i e s ( t h e n t h term cancels t h e - ( n + l ) t h term) F ~ ( p , + d ) = 0 which guarantees the boundary c o n d i t i o n (3-b). F i n a l l y , the unknown c o e f f i c i e n t s B, are determined by impoSing the l a s t c o n d i t i o n (3-c) :

f o r a-R G z G a+R, p2 = R?-z2

The BR c o e f f i c i e n t f o r R up t o an upper mu1 t i p o l a r l i m i x L can be found as the s o l u - t i o n s o f a s e t o f L l i n e a r equations obtained by imposing the c o n d i t i o n (11) a t L d i s t i n c t values o f z s u i t a b l y chosen i n the i n d i c a t e d i n t e r v a l . However i t i s more accurate t o determine t h e f i r s t L c o e f f i c i e n t s by l e a s t ~ q u a r e a d j u s t i n ~ " them t o a much l a r g e r number N

>>

L o f equations (11) w r i t t e n f o r N d i s t i n c t values o f z.

For a hemispherical p r o t r u s i o n ( a = O), the s o l u t i o n (8) ( 9 ) reduces t o

and, by symmetry, i n v o l v e s o n l y odd m u l t i p o l e s . I t t u r n s o u t t h a t the convergence o f the n-summation over the images i n (14) i s very f a s t ( n G 10 s u f f i c e s t o g e t the FE w i t h 10-5 accuracy). Regarding the m u l t i p o l e expansion, t a k i n g R G 3 proves s u f f i c i e n t t o determine the CR's w i t h 1od5 accuracy. A few e q u i p o t e n t i a l s are i l- l u s t r a t e d i n f i g . 4. The p o t e n t i a l values along t h e a x i a l z d i r e c t i o n ( p = 0) are p l o t t e d i n f i g . 5. The c h a r a c t e r i s t i c b u l d g i n g o u t o f the p o t e n t i a l

,

as compared t o the l i n e a r behaviour o f a p l a n a r MVM j u n c t i o n , i s c l e a r l y seen. I t r e f l e c t s t h e enhancement o f the e l e c t r i c f i e l d a t the sphere apex.

I 1 1

-

- ELECTRON MULTIPLE IMAGE

The c o n s t r u c t i o n o f the s e l f image p o t e n t i a l o f t h e t u n n e l i n g e l e c t r o n i s s t r a i g h t - forward when using an a p p r o p r i a t e sequence o f m u l t i p l e images. We i l l u s t r a t e the p r i n c i p l e o f the method f o r the case o f a hemispherical p r o t r u s i o n which, as i s w e l l known, presents the s i m p l i f y i n g f e a t u r e o f r e q u i r i n g o n l y t h r e e images i n the non p l a n a r e l e c t r o d e ( f i g . 6 ) .

L e t us denote (q,pq,zg) t h e charge and p o s i t i o n o f t h e t y n n e l i n g p a r t i c l e . This has e x a c t l y t h r e e images i n t h e l o w e r e l e c t r o d e s given by ( q

,

pq

,,

zql),(-q' ,pql ,-zql) and (-q ,pq ,-zq) where

(6)

The source charge q and i t s three images i n the lower e l e c t r o d e are considered as the f i r s t generation of an i n f i n i t e s e t o f generations constructed as shown i n f i g . 6. The second generation, a l s o having 4 charges, i s simply the images i n the plane z = d o f the previous charges. Each o f t h e new charges i n t h e upper e l e c t r o d e gives r i s e t o e x a c t l y three new image charges i n the lower e l e c t r o d e and so f o r t h . Thus, the 2nth and (2n-1)th generations have the same number o f charges, namely 4.3"l ( n = 1,2, . . . , m ) .

Once the image charge a r r a y q i has been constructed, the s e l f image p o t e n t i a l energy of the source charge q i s w r i t t e n as

where the f a c t o r 1/2 takes account o f the induced nature o f the images12.

Each charge generation being n e u t r a l , the p o t e n t i a l c a l c u l a t e d froms(16) converges very f a s t : 10 generations s u f f i c e t o g e t W w i t h an accuracy o f 10-

.

One t y p i c a l r e s u l t i s i l l u s t r a t e d i n f i g . 7 f o r p = 0. The image p o t e n t i a l energy i s a l s o s l i o h t l y asymmetrical as expected and, o f course, diverges a t z = R and z = d. I f desired, t h i s can be e a s i l y c o r r e c t e d i n the usual way by withdrawing the image planes s l i g h t l y i n s i d e the conductors. These irrage p o t e n t i a l values must be added t o t h e s t a t i c b i a s p o t e n t i a l o f f i g . 4 t o c o n s t r u c t t h e tunnel b a r r i e r through the pro- trusion''.

I V

-

CONCLUSION

The most important r e s u l t o f t h e present c a l c u l a t i o n s i s t o demonstrate t h e dominant r o l e o f t h e c l a s s i c a l m u l t i p l e image p o t e n t i a l i n determining t h e shape o f t h e vacuum b a r r i e r i n the STM j u n c t i o n where t h e s t a t i c b i a s p o t e n t i a l s a r e on t h e order o f 10 meV. Consequently, i t i s e s s e n t i a l t o recognize t h e n o n s e p a r a b i l i t y o f t h i s b a r r i e r which precludes t h e use o f a one-dimensional transmission c o e f f i c i e n t f o r t u n n e l i n g c a l c u l a t i o n s i n a r e a l i s t i c model o f t h e STY. A more complete discus- s i o n o f t h e c a l c u l a t e d b a r r i e r s and t h e s i g n i f i c a n c e i n three-dimensional t u n n e l i n g w i l l be published elsewhere.

REFERENCES

1. G. Binnig, H. Bohrer, Ch. Berber and E. Weibel, Phys. Rev. L e t t e r s 49, 57 (1982); - Phys. Rev. L e t t e r s 50, 120 (1983).

2. J. T e r s o f f and D. H z a n n , Phys. Rev. L e t t . 50, 1998 (1983).

3. N. Garcia, C. Ocal and F. Flores, Phys. R e v T L e t t .

50,

2002 (1983).

4. A. B a r a t o f f , Europhysics Conference Abst. 7b, 364 (1983).

5 . T.E. Feuchtwang, P.H. C u t l e r , N.M. ~ i s k o w s 5 and A.A. Lucas, "Quantum Metrology and Fundamental Physical Constants", ed. by P.H. C u t l e r and A.A. Lucas, NATO AS1 Series B, vol. 98, p . 529 (1983). Plenum Press, New York.

6. K.M. Evenson, "Quantum Metro1 ogy and Fundamental Physical Constantsi', ed. by P.H. C u t l e r , N.M. Miskowsky and A.A. Lucas, NATO AS1 Series B, v o l . 98, p.

(1983). Plenum Press, New York.

7 . A. Adamson, J.C. Wyss and P.K. Hansma, Phys. Rev. L e t t . 32, 545 (1978).

8. T.E. Feuchtwang, P.H. C u t l e r and N.M. Miskowsky, Phys. L s t . 99A, l 6 7 (1983).

-

9. R. Ruppin, S o l i d S t a t e Comm. 39, 903 (1981).

10. D:W. Berreman, Phys. Rev. 1635-855 (1967); Phys. Rev. B1, 381 (1970).

11. G.E. Forsythe, M.A. Malcolm and C.B. Moler, Computer Methods f o r Mathematical Computations. Prentice-Ha1 l, Englewood C l i f f s , 1977.

12. Proper i n c l u s i o n of the f a c t o r 1/2 i n the image p o t e n t i a l i s important f o r c a l - c u l a t i ng the tunnel c u r r e n t , as shown i n N.M. Miskowsky, P.H. C u t l e r , T.E.

Feuchtwang and A.A. Lucas, Appl

.

Phys.

-

A27, 139 (1982).

(7)

JOURNAL DE PHYSIQUE

Figure

l

Model planar MVM junction with hemispherical protrusion.

Figure

2

Model planar MVM junction with spherical inclusion.

Figure 3

Antisymmetrical duplication o f t h e junction of Fig. 2

(8)

Figure 4

Equipotential lines in the MVM junction biased to 5 V.

Figure 5

Potential distributions in the vacuum gap of a junction biased to 5 V.

a, b, c and d correspond to a width of 5, 10, 15 and 20 a respectively.

The hemispherical protrusion has a radius of 10 8.

(9)

JOURNAL

DE

PHYSIQUE

Figure

6

- I t e r a t i o n method t o generate t h e s e t of m u l t i p l e images of t h e o b j e c t charge

q

i n t h e vacuum gap of a junction with hemispherical protrusion.

Figure

7

- Self-image p o t e n t i a l along t h e symmetry a x i s f o r a charge i n a junction

of

30

A width having a hemispherical protrusion of 10 a.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to