• Aucun résultat trouvé

ANDERSON LOCALISATION IN TWO-BAND SYSTEMS

N/A
N/A
Protected

Academic year: 2021

Partager "ANDERSON LOCALISATION IN TWO-BAND SYSTEMS"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: jpa-00220711

https://hal.archives-ouvertes.fr/jpa-00220711

Submitted on 1 Jan 1981

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ANDERSON LOCALISATION IN TWO-BAND SYSTEMS

H. Aoki

To cite this version:

H. Aoki. ANDERSON LOCALISATION IN TWO-BAND SYSTEMS. Journal de Physique Colloques,

1981, 42 (C4), pp.C4-51-C4-54. �10.1051/jphyscol:1981407�. �jpa-00220711�

(2)

ANDERSON LOCALISATION

I N

TWO-BAND SYSTEMS H. Aoki

Cavendish Laboratory, Madingley Road, Cambridge CB3 OHE, England

A b s t r a c t

-

The e l e c t r o n i c s t r u c t u r e of d i s o r d e r e d two-band systems i s i n v e s t i g a t e d s y s t e m a t i c a l l y f o r t h e f i r s t time t o s h e d l i g h t on t h e n a t u r e of l o c a l i s a t i o n i n r e a l i s t i c s y s t e m s . C h a r a c t e r i s t i c l o c a l i s a t i o n i n t h e models i n c l u d i n g i n t r i n s i c semiconductor and h y b r i d i s e d s-d systems i s s t u d i e d by b o t h t h e d i r e c t d i a g o n a l i - s a t i o n of t h e H a m i l t o n i a n and t h e d e c i m a t i o n method. We s t r e s s e d t h e importance of t h e i n t e r - b a n d n i x i n g , which produces i n t r i n s i c f e a t u r e s i n t h e e l e c t r o n i c s t r u c t u r e a r i s i n g from i n t e r p l a y of randomness and b a s i c e l e c t r o n i c s t r u c t u r e .

INTRODUCTION

The l o c a l i s a t i o n of s t a t e s , which i s s p e c i f i c t o random s y s t e m s , i s e s s e n t i a l f o r u n d e r s t a n d i n g t h e e l e c t r o n i c p r o p e r t i e s of n o n - c r y s t a l l i n e m a t e r i a l s . Much of t h e work on t h i s problem have been done i n models i n which a s i n g l e band i s assumed.

I f , however, we t u r n t o non-simple bands such a s a semiconductor w i t h v a l e n c e and c o n d u c t i o n b a n d s , o r a h y b r i d i s e d s-d s y s t e m s , t h e l o c a l i s a t i o n due t o randomness g i v e s r i s e t o even more f a s c i n a t i n g e l e c t r o n i c s t r u c t u r e . I n t h e p r e s e n t p a p e r , we e l u c i d a t e t h e c h a r a c t e r i s t i c n a t u r e of l o c a l i s a t i o n i n t h e two-band s y s t e m s , and show t h a t t h e i n t e r e s t i n g f e a t u r e s a r i s e from an i n t e r p l a y of b a s i c band s t r u c t u r e and t h e e f f e c t of randomness. I n p a r t i c u l a r we emphasize t h e i m p o r t a n t e f f e c t of i n t e r - b a n d m i x i n g , which can d r a s t i c a l l y a f f e c t t h e c h a r a c t e r of e i g e n - s t a t e s . We i n v e s t i g a t e d t h e e i g e n s t a t e s by n u m e r i c a l l y d i a g o n a l i q i n g t h e model H a m i l t o n i a n f o r l a r g e systems. We a l s o u s e d t h e d e c i m a t i o n f o r r e a l - s p a c e r e - n o r m a l i $ a t i o n developed by t h e p r e s e n t a u t h o r [I] t o a n a l y s e t h e e l e c t r o n i c s t r u c t u r e d i a g r a m m a t i c a l l y .

FORMULATI ON

I n a two-band model, t h e H a m i l t o n i a n i s w r i t t e n i n t h e t i g h t - b i n d i n g form a s

where li> i s a Wannier s t a t e a t i - t h s i t e , ~ i l ' i s t h e e n e r g y of t h e u-th o r b i t a l a t i , and V i j u v i s t h e t r a n s f e r e n e r g y between u-th o r b i t a l a t i and V-th o r b i t a l a t j . The band mixing i s d e t e r m i n e d by ciAB and

vijAB.

To be s e c i f i c we adopt r e c t a n g u l a r d i s t r i b u t i o n s of random q u a n t i t i e s s u c h t h a t ciA, ciE and E i A B a r e d i s t r i b u t e d w i t h w i d t h s WA, WB and WAB c e n t r e d a t -Eo/2, E / 2 and EAB, r e s p e c t i v e l y . F o r s i m p l i c i t y we assume t h a t vijAA = VA, vijBB = VB,

VijgB

= 0 f o r n e a r e s t

neighbour ( i , j ) . The u n p e r t u r b e d band s t r u c t u r e i s d e t e r m i n e d by VA, Vg and Eo.

We s t u d y h e r e two t y p i c a l c a s e s : I n t h e f i r s t model we took -VA = VB = V = 1.0 and Eo 2ZV w i t h c o o r d i n a t i o n number Z , which r e p r e s e n t s a semiconductor w i t h a d i r e c t gap a t

r

p o i n t . I n t h e second model we have a narrow band embedded i n a

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1981407

(3)

JOURNAL DE PHYSIQUE

Fig. 1. ( a ) The A and B o r b i t a l s on a s q u a r e l a t t i c e a r e shown. The l i n e s between t h e o r b i t a l s s t a n d f o r t h e m a t r i x elements connecting them. The heavy l i n e and t h e wiggly l i n e show examples of t h e diagrams c o n t r i b u t i n g t o v i j A B ( l ) and V+ jBB ( I ) , r e s p e c t i v e l y . The f u l l (open) c i r c l e s r e p r e s e n t t h e r e t a i n e d (eliminated) s i t e s i n

fi

decimation. (b) The mixing of s t a t e s due t o inter-band e f f e c t s i s s c h e m a t i c a l l y shown. The shaded r e g i o n i n t h e d e n s i t y of s t a t e s , D , corresponds t o locali'sed s t a t e s i n t h e absence of i n t e r - b a n d mixing, H ~ ~ ,

wide band with VA=-5.0, VB=-1.0 and Eo%O, which r e p r e s e n t s a h y b r i d i s e d s-d system as a n o t h e r p r o t o t y p e of two-band l o c a l i b a t i o n . The importance of t h e inter-band mixing i s r e a d i l y s e e n , s i n c e t h e amplitudes of t h e A and B band components, a i and b i r e s p e c t i v e l y , a r e governed by coupled e q u a t i o n s of motion d e r i v e d from t h e Hamiltonian (1). I n f i g u r e 1 we show t h e mixing of t h e two-band components due t o inter-band e f f e c t s by both diagrams and d e n s i t y of s t a t e s .

RESULTS

The Hamiltonian (1) i s expressed a s a 2Nx2N m a t r i x , where N i s t h e t o t a l number of s i t e s . Here we took 2N=512 corresponding t o a 16x16 s q u a r e l a t t i c e w i t h p e r i o d i c boundary c o n d i t i o n s i n both x and y d i r e c t i o n s . For each sample t h e random m a t r i x elements a r e g e n e r a t e d according t o t h e d i s t r i b u t i o n above. We o b t a i n e d t h e eigen- v a l u e s and e i g e n s t a t e s by d i a g o n a l y s i n g t h e m a t r i x . Each e i g e n s t a t e i s a l i n e a r combination of A and B components as

One of t h e most conspicuous r e s u l t s i s t h a t t h e r e i s a s i g n i f i c a n t c o r r e l a t i o n i n t h e A and B components f o r an e i g e n s t a t e . T h i s i s b e s t expressed a s a c o r r e l a t i o n f u n c t i o n ,

where

R ~ ~ - I R ~ - R ~ ! ,

angular b r a c k e t s s t a n d f o r an average over c o n s t a n t R;j and K i s a decay c o e f f x c i e n t which i s f i n i t e f o r l o c a l i ' s e d s t a t e s . The e x p o n e n t i a l form f o r f a i s c o n s i s t e n t w i t h an e x p o n e n t i a l envelope f u n c t i o n f o r l o c a l i s e d wave- f u n c t i o n s . I n f i g u r e 2 we show an example of t h e behaviour of t h i s c o e f f i c i e n t as a f u n c t i o n of energy. I t i s c l e a r l y seen t h a t K h a s a s h a r p peak a t t h e pseudo-gap where t h e valence and conduction bands merge. This r e s u l t shows t h a t t h e s t a t e s a r e l o c a l i k e d w i t h a s t r o n g c o r r e l a t i o n between t h e two-band components i n t h e pseudo-gap region. This c o r r e l a t i o n can be e x p l a i n e d i21 by a simple p e r t u r b a t i o n t h e o r y i f we r e g a r d t h e band mixing as a p e r t u r b a t i o n . We can look i t another way when t h e t a i l s of t h e valence and conduction bands o v e r l a p ( f i g . l ( b ) ) . The s p l i t t i n g caused by t h e band mixing produces, i n t h e z e r o t h approximation i n t h e degenerate p e r t u r b a t i o n , e i g e n s t a t e s w i t h bonding and anti-bonding c h a r a c t e r s composed of l o c a l i b e d s t a t e s i n A and B bands. These c o r r e l a t e d s t a t e s should have an e f f e c t on p h y s i c a l q u a n t i t i e s such a s p h o t o c o n d u c t i v i t y .

(4)

energy i n t h e semiconductor model w i t h W~=Wg=2.9, E0=7.5, W~g=1.6, EAB=0.8 and -V~=Vg=1.0. The d e n s i t y of s t a t e s i s a l s o shown f o r comparison.

The e f f e c t of band mixing produces a n o t h e r i n t e r e s t i n g phenomenon i n t h e h y b r i d i s e d s-d model. I n t h i s c a s e , t h e presence of a wide s-band h a s a d r a s t i c e f f e c t on t h e narrow d-band. I n t h e case of a s i n g l e d - o r b i t a l i m p u r i t y i n s-band t h e impurity

l e v e l becomes a v i r t u a l bound s t a t e C31 with a width % ~ < k s l ~ s d l i d > ! $ D ( E F ) , where D i s t h e d e n s i t y of s e l e c t r o n s . I n t h e p r e s e n t c a s e , we a r e f a c e d w i t h a much more complicated s i t u a t i o n with a whole d-band which has a locali'sed regime due t o d i s o r d e r b e f o r e t h e h y b r i d i s a t i o n i s turned on. When t h e band mixing i s turned on, a c h a r a c t e r i s t i c h y b r i d i s a t i o n r e s u l t s . An example i s shown i n f i g u r e 3. I n t h i s f i g u r e we have p l o t t e d t h e t o t a l amplitude of t h e A-band component, A2 E

zil

a i l 2 , f o r each normali'sed e i g e n s t a t e ( 2 ) . For a r e l a t i v e l y small band mixing, we have a

F i g . 3. The t o t a l magnitude of A- band component, A2, i s p l o t t e d v e r s u s energy i n t h e s-d model w i t h W~=4.0, Eo=O.O, VAZ-5.0, Vg=-l.O.

The below l e f t ( a ) i s a r e s u l t f o r WB=1.5, W~g=1.0, E A B = ~ . ~ , w h i l e t h e below r i g h t (b) i s f o r Wg=7.0, W ~ ~ = 7 . 0 , E ~ g = 3 . 5 . The d e n s i t y of

n

s t a t e s f o r t h e former case i s a l s o

shown f o r comparison.

(5)

JOURNAL DE PHYSIQUE

l a r g e f l u c t u a t i o n i n A2 i n t h e r e g i o n of energy where s and d bands o v e r l a p . T h i s i s a g a i n e x p l a i n e d by a d e g e n e r a t e p e r t u r b a t i o n t h e o r y w i t h t h e band mixing a s a p e r t u r b a t i o n L21. For l a r g e band mixing, t h e z e r o t h o r d e r w a v e f u n c t i o n i t s e l f i s determined by t h e band mixing, and we have a smoother dependence of A2 on energy ( f i g u r e 3 ( b ) )

.

DISCUSSION

The e l e c t r o n i c s t r u c t u r e r e v e a l e d above comes b a s i c a l l y from t h e diagrammatic s t r u c t u r e shown i n f i g u r e 1. The d e c i m a t i o n method o f r e a l - s p a c e r e n o r m a l i s a t i o n developed by t h e p r e s e n t a u t h o r proved t o b e q u i t e powerful i n a n a l y s i n g a v a r i e t y of systems i n c l u d i n g non-simple systems L41 a s w e l l a s u s u a l two o r t h r e e dimen- s i o n a l systems [ l l . By t h e d e c i m a t i o n t r a n s f o r m a t i o n , t h e system can b e r e g a r d e d a s a n assembly of t h e s i t e s w i t h a l a r g e r l a t t i c e s p a c i n g ( f u l l c i r c l e s i n f i g u r e 1 ) i n t e r a c t i n g v i a e f f e c t i v e i n t e r a c t i o n s . The e f f e c t i v e i n t e r a c t i o n , V i j u v ( n ) , can b e e x p r e s s e d i n terms of t h e l o c a t o r e x p a n s i o n f o r t h e Green f u n c t i o n . A n e a t way of e x p r e s s i n g t h e decimated H a m i l t o n i a n can b e d e r i v e d i n which t h e o r i g i n a l e q u a t i o n f o r t h e Green f u n c t i o n , (E

-

H

+

i 6 ) G = 1, i s reduced i n t o

w i t h K E E-H+i6. The s u f f i c e s f o r K s t a n d f o r t h e p a r t of t h e m a t r i x r e p r e s e n t a - t i o n of K such t h a t (KAB);j = K i j ( i E A , ' j E B ) , e t c , where A (B) i s t h e r e t a i n e d ( e l i m i n a t e d ) s u b s e t o f b a s l s i n t h e d e c i m a t i o n . I f we t a k e A - o r b i t a l s a s t h e s u b s e t A i n t h e two-band model f o r t h e b a s i s above (v;jAB = O), we have an e f f e c t i v e i n t e r a c t i o n ,

where GB(E) i s t h e B-band Green f u n c t i o n . T h i s c o n c i s e l y e x p l a i n s why t h e band mixing g i v e s r i s e t o s u c h a d r a s t i c e f f e c t on t h e e l e c t r o n i c s t r u c t u r e , and a l s o shows t h a t t h e l o c a l i s a t i o n and d e l o c a l i s a t i o n of t h e h y b r i d i s e d s t a t e s i n t h e whole energy spectrum a r e determined s e l f - c o n s i s t e n t l y . I f , f o r i n s t a n c ~ , GB(E) h a s a s t r u c t u r e of extended s t a t e s , t h i s i s r e f l e c t e d i n t h e l o n g - r a n g e V ; . ~ ( E ) , t h u s a f f e c t s t h e A-band, and v i c e v e r s a . T h i s s t r u c t u r e of i n t e r a c t i o n s a l s o a f f e c t s t h e d i s t r i b u t i o n w i d t h of r e n o r m a l i s e d t r a n s f e r e n e r g i e s , which i s g a u s s i a n i n l o g a r i t h m i c s c a l e .

The c o n c e p t of two-band l o c a l i k a t i o n i n a s i m p l e model d e s c r i b e d h e r e can b e r e a d i l y a p p l i e d t o r e a l i s t i c systems such a s f o u r - f o l d o r t h r e e - f o l d c o o r d i n a t e d semi.conductors, i n which t h e i n t e r - b a n d mixing e l e m e n t s a r e between t h e b a s i s f o r s-p h y b r i d i s e d o r b i t a l s . As f o r t h e s-d s y s t e m , we can make t h e model more r e a l - i s t i c by i n c l u d i n g t h e f i v e - f o l d degeneracy of d - o r b i t a l s f o r t h e t r a n s i t i o n o r n o b l e m e t a l s .

Acknowledgements - Valuable d i s c u s s i o n s w i t h P r o f e s s o r S i r Nevi11 Mott a r e g r a t e f u l l y acknowledged. Work a t t h e Cavendish L a b o r a t o r y was s u p p o r t e d by t h e S c i e n c e Research C o u n c i l .

REFERENCES

1. AOKI H . , S o l i d S t a t e Cormnun. 3 1 (1979) 999; J. Phys. C13 (1980) 3369.

2. AOKI H . , J. Phys. C14 (1981), t o be p u b l i s h e d . 3. ANDERSON P.W., Phys. Rev. 124 (1961) 41.

4. AOKI H . , S o l i d S t a t e Commun. 37 (1981) 677.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to