• Aucun résultat trouvé

PLASMA EFFECTS IN ION BEAM TARGET INTERACTION

N/A
N/A
Protected

Academic year: 2021

Partager "PLASMA EFFECTS IN ION BEAM TARGET INTERACTION"

Copied!
15
0
0

Texte intégral

(1)

HAL Id: jpa-00223313

https://hal.archives-ouvertes.fr/jpa-00223313

Submitted on 1 Jan 1983

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

PLASMA EFFECTS IN ION BEAM TARGET INTERACTION

E. Nardi, Z. Zinamon

To cite this version:

E. Nardi, Z. Zinamon. PLASMA EFFECTS IN ION BEAM TARGET INTERACTION. Journal de

Physique Colloques, 1983, 44 (C8), pp.C8-93-C8-106. �10.1051/jphyscol:1983806�. �jpa-00223313�

(2)

JOURNAL DE PHYSIQUE:

C o l l o q u e C 8 , s u p p l e m e n t a u nO1l, T o m e 44, n o v e r n b r e 1 9 8 3 p a g e CO-93

PLASMA E F F E C T S IN ION BEAM TARGET INTERACTION

I;.. X a r d i a n d Z. Zinamon

Weizmann i n s t - i t u t o of Sciexce, Reiiouc; t , IsraeZ

On p r Q s e n t e t r o i s e x e m p l e s oG l e s p r o c e s s u s m i s e n j e u d a n s l ' i n t c r a c - t i o n d e f a i s c e a u x d e p a r t i c u l e s c h a r g 6 e s s o n t a f f e c t s s p a r l e f a i t q u e l a c i b l e e s t un p l a s m a .3 f o r t e d e n s i t 6 d 1 6 n e r g i e : 1 . E f f e t s d e p l a s m a s u r l c p o u v o i r d ' a r r d t . 2 . E f f e t s d e p l a s m a s u r l l G t a t d e c h a r g e d e s i o n s r a p i d e s . 3 . E f f e t s d e I ' o p a c i t 6 d u p l a s m a i m p o r t a n t s p o u r l ' i n t e r p r 6 t a ~ i o n d e s m e s u r e s s p e c t r o s c o p i q u e s .

A b s t r a c t

We p o i n t o u t t h r e e e x a m p l e s o f c a s e s i n w h i c h p r o c e s s e s i n v o l v e d i n t h e i n t e r a c t i o n o f c h a r g e d p a r t i c l e b e a m s a r e a f f e c t e d b y t h e f a c t t h a t t h e t a r g e t is a h i g h e n e r g y d e n s i t y p l a s m a : 1. P l a s m a e f f e c t s o n t h e s t o p p i n g m u e r . 2.

P l a s . n a e f f e c t s o n t h e c h a r g e s t a t e o f f a s t i o n s . 3. P l a g n a o p a c i t y e f f e 0 t . s i n p a r t a n t i n t h e i n t e r p r e t a t i o n of s p e c t r o s c o p i o m e a s u r e s e n t s .

1.

I n t r o d u c t i o n .

I n p a r t i c l e bea:n i n e r t i a l c o n f i n e m e n t f u s i o n s y s t m s o n e e n c o u n t e r s h i d h d e n s i t y , h i g h t e m p e r a t u r e m a t t e r . I n p a r t i c u l a r , t h e r e g i o n i n w h i c h t h e beam e n e r g y is d e p o s i t e d c o n s i s t s o f h i g h l y i o n i z e d p l a s m a a t t e m p e r a t u r e s w h i c h , u n d e r c o n d i t i o n s r e l e v a n t f o r a c t u a l f u s i o n s y s t e m s , a r e o f t h e o r d e ~ o f a f e u h u n d r e d s eV. Under s u c h c o n d i t i o n s many f e a t u r e s o f t h e b e a n - t a r g e t i n t e r a c t i o n p r o c e s s e s may b e s i g n i f i c a n t l y d i f f e r e n t f r o m t h e c o r r e s p o n d i n g o n e s i n t h e b e t t e r known s i t u a t i o n o f c o l d m a t t e r . I n t h i s work u e p r e s e n t s t u d i e s o f t h r e e e x a n p l e s o f s u s h c a s e s , w n i c h d e s e r v e e x p e r i m e n t a l a n d t h e o r e t i c a l t r e a t m e n t . T n e s e a r e : 1. P l a s m a e f f e c t s o n t h e s t o p p i n g power o f p a r t i c l e s o f known c h a r g e w h i c h b e n a v e l i k e p o i n t c h a r g e s , 2. P l a s a a e f f e c t s o n t h e c h a r g e s t a t e of f a s t

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1983806

(3)

(28-94 JOURNAL DE PHYSIQUE

i o n s a s t h e y a r e s l o w e d down, 3. P l a s m a o p a c i t y e f f e c t s i m p o r t a n t i n t h e i n t e r p r e t a t i o n o f m e a s u r e a e n t s , i n p a r t i c u l a r i n K, s p e c t r o s c o p y .

2. P l a s m a e f f e c t s o n t h e s t o p p i n g p o u e r .

-

-p--

Tne d i f f e r e n c e s i n s t o p p i n g power b e t w e e n p l a s n a t a r g e t s and c o l d m a t t e r t a r d e t s f o l l o w f r a n two f a c t o r s : 1. The s t o p p i n g power d u e t o t h e f r e e e l e c t r o n s i n t h e p l a s n a i s d i f f e r e n t f r a n t h e s t o p p i n g power d u e t o bound e l e c t r o n 3 i n c o l d m a t t e r . 2. The c o n t r i b u t i o n t o s t o p p i n g o f bound e l e c t r o n s i n t h e p l a s m i o n s is d i f f e r e n t f r o m t n a t o f bound e l e c t r o n s i n n e u t r a l a t o m s i n c o l d m a t t e r .

I n t h e p l a s m a s c o n s i d e r e d h e r e t h e f r e e e l e c t r o n s c a n be r e g a r d e d a s a n i d e a l non d e j e n e r a t e g a s ' ) . We c a l c u l a t e t h e i r c o n t r i b u t i o n t o t h e s t o p p i n g p d e r u s i n g t h e p l a s s a d i e l e c t r i c f u n c t i o n :

d e r e e i s t h e e l e c t r o n c h a r g e , 2 t h e p r o j e c t i l e c h a r g e , p t h e d e n s i t y , k t h e wave ntvnber, p + c o s 8 , g t h e a n g l e b e t w e e n t h e wave v e c t o r and t h e v e l o c i t y v e c t o r , v t n e p a r t i c l e v e l o c i t y , w t h e f r e q u e n c y . D t h e d i e l e c t r i c f u n c t i o n .

l h e c o n t r i b u t i o n o f t h e bound e l e c t r o n s i n t h e p l a s m a i o n s is e v a l u a t e d b y a c a l c u l a t i o n o f t h e e f f e c t i v e B e t h e i o n i z a t i o n e n e r g y I , u s i n g t h e h o m a s - F e r m i modcl f o r t h e i o n s . ' ) T n i s a l l o w s o n e t o t a k e i n t o c o n s i d e r a t i o n t h e e f f e c t of b o t h i o n i z a t i o n s t a t e and e x c i t a t i o n s of t h e p l a s m a i o n e . I n o u r m o d e l t h e e f f e c t i v e i o n i z a t i o n e n e r g y i s g i v e n by:

H e r e w i s a f r e q u e n c y o f r e v o l u t i o n g i v e n by

v h e r e Et i s t h e t o t a l e l e c t r o n e n e r g y a t p o i n t r , V ( r ) is t h e p o t e n t i a l , p i s t n e c h e n i c a l p o t e n t i a l , n ( w ) i s t h e number o f e l e c t r o n s p e r u n i t f r e q u e n c y a t U .

(4)

r max ( W ) is t h e r a d i u s beyond which t h e energy which f o l l o w s from W i n d i c a t e s a f r e e e l e c t r o n . A s h e l l c o r r e c t i o n is included by e l i m i n a t i n g t h o s e e l e c t r o n s f o r wnich 2mv 2 <b. As was shown e a r l i e r l s 2 ) t h e plasma e f f e c t under c o n d i t i o n s o f i n t e r e s t can r e s u l t i n a r a n g e s h o r t e n i n g by a f a c t o r c l o s e t o 2. Here we d e n o n s t r a t e t h e p o s s i b l e t e m p e r a t u r e e f f e c t on I, i . e . t h e e f f e c t o f d i f f e r e n t e x c i t e d p p u l a t i o n s a t d i f f e r e n t t e m p e r a t u r e s and d e n s i t i e s which r e s u l t i n t h e s a q e degree o f i o n i z a t i o n . In Table I we l i s t v a l u e s o f I a s c a l c u l a t e d i n our model f o r A l a t s o l i d and 0.01 s o l i d d e n s i t i e s o v e r t h e t e m p e r a t u r e range o f 0.1 KeV

-

0.2 KeV. For comparison we a l s o l i s t I v a l u e s c a l c u l a t e d by McCuire e t

f o r v a r i o u s A 1 i o n s i n t h e ground s t a t e . Che (nay conclude from t h i s t a b l e t h a t n o b i c e a b l e d i f f e r e n c e s i n I c a n a r i s e even when t h e charge s t a t e s in d i f f e r e n t plasmas a r e e q u a l .

T a b l e . I

E f f e c t i v e i o n i z a t i o n p o t e n t i a l 5 I f o r A 1 a t v a r i o u s t e m p e r a t u r e s and degrees o f i o n i z a t i o n .

McGuire e t a l .

5 I

(key)

p

= U 8 g / m 3

Z kT I

(key) [key)

Plasma e f f e c t s on t h e s t o p p i n g power a r e d e n o n s t r a t e d i n t h e fOl10wing

p

= ~ 8 x l 0 - ~ g / m ~

Z kT I

LkeY) (key)

exanple of a proposed e x p e r i m e n t a l t e s t c o n f i g u r a t i o n . A beam o f d e u t e r o n s o f 1 MeV a t 500 kA/cn2 o r 200 kA/cfi2 and 1 M A / U ~ ~ h i t s a 8 pm t h i c k CD2 f o i l . Such bean c u r r e n t d e n s i t i e s a r e a l r e a d y present-day s t a t e of t h e a r t . A s a r e s u l t o f t h e energy d e p o s i t i o n i n t h e f o i l it h e a t s up and expands. The p r o c e s s was c a l c u l a t e d b y a f u l l hydrodynamics s i m u l a t i o n . b e t o t h e dependence o f t h e s t o p p i n g p w e r on t h e t e m p e r a t u r e and d e n s i t y , t h e energy d e p o s i t i o n p r o f i l e v a r i e s with time. ?he r e s u l t s o f t h e c a l c u l a t i o n a r e shown i n F i g . 1, where t h e d e p o s i t i o n p r o f i l e s a r e g i v e n i n t a g r a n g e a n c o o r d i n a t e s a t t h e beginning of a s t e p f u n c t i o n p u l s e , and a f t e r 15 ns i n t o t h e p u l s e . The enhancement by a f a c t 0 1 c l o s e t o 2 of t h e s t o p p i n g power: i s e v i d e n t . S i n c e t h e 8 p m f o i l i s sub-range

(5)

C8-96 JOURNAL DE PHYSIQUE

t h i s enhancement i n s t o p p i n g power is expected to r e s u l t i n a t i m e dependence of t h e e x i t energy o f t h e beam p a r t i c l e s from t h e back s i d e o f t h e t a r g e t . This is shown i n Fig. 2. A p r o p e r measurement o f t h e t i m e dependent e x i t e;mrgy i s a t o o l f o r t e s t i n g t h e s t o p p i n g power t h e o r y .

1

I

1 I

I

0 2 4 6 8

LAGRANGIAN DISTANCE ( p m )

Fig. 1. Energy d e p o s i t i o n p r o f i l e s o f l MeV d e u t e r o n beams i n a CD2 t a r g e t a t t h e b e g i n n i n g and a f t e r 15ns o f t h e p u l s e .

5 10 15

t (ns)

Fig. 2. The e x i t energy o f d e u t e r o n s a t t h e back s i d e o f a CD2 t a r g e t . The t a r g e t and beams are t h e same a s i n Fig. 1.

(6)

3. The c h a r g e s t a t e of f a s t i o n s i n plasma t a r g e t s .

-

Tne s t o p p i n g power c a l c u l a t i o n s d e s c r i b e d above assume a known c h a r g e o f t h e p o i n t p a r t i c l e s . k w e v e r , f o r heavy and i n t e r m e d i a t e i o n s t h e c h a r g e s t a t e of t n e p r o j e c t i l e a s i t moves through t h e t a r g e t h a s t o be d e t e r m i n a t e d . h e s i t u a t i o n i n plasma t a r g e t s is d i f f e r e n t from t h a t i n t h e b e t t e r known c a s e o f c o l d t a r g e t s 4 ) . The reason is t h a t t h e competing p r o c e s s e s o f l o s s and c a p t u r e of e l e c t r o n s by t h e p r o j e c t i l e a r e d i f f e r e n t i n t h e two c a s e s . The l o s s p r o c e s s in c o l d t a r g e t s is due t o c o l l i s i o n s with t h e t a r g e t atoms, while i~ plasma t a r g e t s i t is due t o c o l l i s i o n s with t h e i o n s and with t h e f r e e e l e c t r o n s . Tne c a p t u r e i n c o l d t a r g e t s t a k e s p l a c e f r o n bound s t a t e s i n t h e t a r g e t atoms, w h i l e i n p l a s a a t a r g e t s f r e e e l e c t r o n s a r e c a p t u r e d . ?he d i f f i c u l t y with t h e l a s t p r o c e s s is t h a t t h e e x c e s s energy o f t h e f r e e e l e c t r o n has t o be c a r r i e d away e i t h e r by r a d i a t i o n o r by a t h i r d body

-

a f r e e o r a bound e l e c t r o n .

I n our c a l c u l a t i o n s 5 ) c o l l i s i o n s with t a r g e t atoms =r i o n s a r e i n t h e b i n a r y encounter approximation (BEA). The t o t a l c r o s s s e c t i o n f o r t h i s p r o c e s s i S

Here Nn i s t h e number o f e l e c t r o n s i n s h e l l n , Un is t h e binding energy, Vn i s t h e s c a l e d v e l o c i t y v/vn where v i s t h e o r b i t a l v e l o c i t y o f t h e t a r a e t e l e c t r o n and v is t h e p r o j e c t i l e v e l o c i t y , and G(Vn) i s taken fram McGuire and Riohard

6 )

according t o Cryzinski

.

Zin i n E q . ( l ) i s t h e e f f e c t i v e c h a r g e o f t h e t a r g e t i o n f o r t h e c o l l i s i o n which is d e t e m i n e d following

ell^)

a s t h e c h a r d e i n s i d e a r a d i u s 1, which is equal t o

( ~ ~ / m ' ' ~ , g;

is t h e

cross

s e c t i o n f o r i o n i z a t i o n i n t h e BEA.

The c r o s s s e c t i o n f o r i o n i z a t i o n by t h e plasma fret3 e l e c t r o n s is '):

where N i s t h e nunber o f e l e c t r o n s i n t h e p r o j e c t i l e s h e l l c o n s i d e r e d , U i s t h e i r i o n i z a t i o n e n e r g y , ~ ~ = r n v ~ / 2 where v is t h e l a r g e r of t h e plasma t h e r m a l e l e c t r o n v e l o c i t y vt and t h e p r o j e c t i l e v e l o c i t y v .

(7)

JOURNAL DE PHYSIQUE

C a p t u r e by t h e p r o j e c t i l e o f bound e l e c t r o n s i n t h e t a r g e t i o n s is

c a l c u l a t e d by u s i n g B e l l ' s t h e o r y 7 ) . F o r c a p t u r e o f f r e e e l e c t r o n s we c o n s i d e r t h e r a d i a t i v e , t h r e e body, a n d d i e l e c t r o n i c r e c o m b i n a t i v n p r o c e s s e s , ' h e r a d i a t i v e r e c o m b i n a t i o n r a t e is c a l c u l a t e d f o l l o w i n g s e a t o n g ) f o r v("

t

where aZR is t h e r a t e i n c m 3 /S f o r a n i o n o f h y d r o g e n - l i k e c h a r d e s t q t e Z, IZ 1s t h e i o n i z a t i o n e n e r g y , Te i s t h e e l e c t r o n t e s ~ e r a t u r e i n O K and ne i s t h e f r e e e l e c t r o n d e n s i t y . For v > v t T i s r e p l a c e d b y mv /2k. ' h e t h r e e body 2

r e c o s b i n a t i o n i s c a l c u l a t e d u s i n s t h e a d a D t a t i o n l O ) o f Thornson's classical t h e o r y . For v < v t :

d t = vk E L R:-z '' f l o

wi.lere R o = 2 2 e 2 / 3 k ~ . In t h e c a s e ">vt. v t is r e p l a c e d b y V i n E q . ( 4 ) and 3kT/2 i s r e p l a c e d b y mv2/2. F o r t h e d i e l e c t r o n i c r e c o s b i n a t i o n r a t e we c h o s e t h e v a l u e 1 1 )

% = l 0 - l 1 , which is b e l i e v e d t o be a n u p p e r l i m i t , d u e t o t h e n e g l e c t o f t h e e f f e c t s o f c o l l i s i o n s i n d e s t a b i l i z i n g t h e e x c i t e d i n i t i a l c o n f i g u r a t i o n s .

F i n a l l y , t h e p o p u l a t i o n s o f e a c h c h a r g e s t a t e P a r e c a l c u l a t e d s e l f c o n s i s t e n t l y w i t h t h e e n e r g y l o s s a l o n g t h e beam t r a j e c t o r y :

where j d e n o t e s a c h a r g e s t a t e , aR and a I a r e t h e t o t a l r a t e s o f r e c o n b i n a t i o n and i o n i z a t i o n , r e s p e c t i v e l y .

In t h e f o l l o w i n g we p r e s e n t some r e s u l t s o f o u r c a l c u l a t i o n s . R e s u l t s f o r c a r b o n i o n s i n c i d e n t o n a l i t h i u m t a r g e t a r e g i v e n i n F i g . 3. For a f u l l y i o n i z a d t a r g e t t h e c a r b o n i o n s a r e a s s u s e d t o h a v e i n i t i a l c h a r g e s t a t e o f Z = 3 . Tne i n i t i a l e n e r g y i s 1 MeV/amu. F o r c o m p a r i s o n we show also t h e c h a r g e p r e d i c t e d f o r a c o l d t a r g e t . 1 2 ) I t is e v i d e n t t h a t t h e l e s s e f f i c i e n t C a p t u r e o f f r e e e l e c t r o n s c a u s e s a s u c h h i g h e r i o n i z a t i o n S t a t e i n t h e p l a s a a t h a n I n t h e c o l d t a r g e t , a n d t h i s h i g h d e g r e e o f i o n i z a t i o n i s m a i n t a i n e d down t o q u i t e I O W

e n e r g i e s . The same h o l d s f o r aluminium i o n s i n a c a r b o n t a r l g e t ( F i g . 4 ) . & r e we show how t n e c h a r g e s t a t e is a f f e c t e d b y t h e t a r g e t d e g r e e o f i o n i z a t i o n . ' h e v a l i d i t y o f o u r c a l c u l a t i o n s f o r c o l d m a t t e r i s c h e c k e d by cornparins o u r r e s u l t s

(8)

w i t h t h o s e p r e d i c t e d b y & t z . 12) Tne e f f e c t s o f t h e enhanced c h a r g e s t a t e on t h e d e p o s i t i o n p r o f i l e a r e shown i n F i g . 5. A p a r t f r m t h e e x p e c t e d r a n d e

s h o r t e n i n g , t h e r e i s a d r a s t i c e f f e c t o n t h e s h a p e o f t h e p r o f i l e . h e Bradg peak i s due t o t h e f a c t t h a t i n a p l a s a a t a r g e t t h e h i g h and n e a r l y o o n s t a n t i o n i z a t i o n s t a t e p r e v a i l s down t o v e r y low e n e r g i e s .

Tne knowledge o f t h e p r o j e c t i l e c h a r g e s t a t e i s e s s e n t i a l f o r d e a l i n g w i t h t h e p r o b l e n o f bean p r o p a g a t i o n i n a b a c l y r o u n d n e u t r a l i z i n g low d e n s i t y plasma.

An e x a n p l e i s g i v e n i n F i g . 6 i n which t h e c h a r g e s t a t e o f 1 #eV/anu c a r b o n i o n s ( i n i t i a l l y Z c 2 ) i s shown a s f u n c t i o n o f t h e d i s t a n c e it t r a v e r s e s i n a f u l l y i o n i z z d l o w d e n s i t y He p l a s n a c h a n n e l . A s i m i l a r c a s e f o r U p r o j e c t i l e is shown i n F i g . 7. I n c o n j u n c t i o n w i t h a n e x p e r i m e n t d e v i s e d by E e i

as

13) t o m e a s u r e t h e c h a r g e s t a t e o f e n e r g e t i c i o n s i n l a s e r produced p l a s n a , we h a v e c a l c u l a t e d t h e c h a r g e s t a t e o f 1 MeV/amu c o p p e r i o n s a s f u n c t i o n o f d i s t a n c e t r a v e r s e d i n a CH2 p l a s n a a t a t e n p e r a t u r e o f 1 keV and a d e n s i t y o f 1 ~ - ~ ~ / c 1 1 ~ ( F i g . 8). Tne d i f f e r e n c e f r a n t h e p r e d i c t i o n f o r c o l d m a t t e r i s v e r y s i g n i f i c a n t qnd o b s e r v a b l e o v e r t h e e x p e c t e d p l a s s a d i m e n s i o n s .

h (a) fully ionized target

e I

2l C beam, Li target E (MeV)

F i g . 3 . The c h a r g e s t a t e o f c a r b o n i o n s s l o w e d down i n l i t h i u m t a r g e t s .

(9)

JOURNAL DE PHYSIQUE

I I 1 T I 1 I 1 I 1

(a) fully ionized target

-

(b) 2bound electrons in target

- -

-

AI beam,

C

target

Oo

1

10

I 1

20

I l 30 I I

40

I 1

5 0

1

E

(MeV)

Fig. 4. The charge state of aluminium ions slowed down in carbon targets.

Fig. 5. Energy deposition profiles of carbon and aluminium ions slowed down in

201j

lithium and carbon targets.

10

C b e a m

-

Li target

-

Fully ionized target

-

Cold target

10- I I I I I I l

I

A I b e a m - C target Fully lon~zed target

-

Cold target

I l l I

0 1.0 2.0 3.0 4.0

rng /cm2

(10)

DISTANCE ( c m )

C projectile in He channel ( p =10-~cj/crn fully ionized )

3

- I I L I I I I I I

6 -

-

- -

Fig. 6 . Charge s t a t e o f i n i t i a l l y 1 MeY/amu carbon i o n s i n a low d e n s i t y He

2 - I

plasma channel.

- -

U projectile at I MeV/ amu in He channel

( p = ~ ~ - 6 g

/cm3, fully ionized)

35 1 I 1 1 1 1 1 1

-

- BETZ -

I 1 0 10 20 30 4 0 50 60 70

' 0 k 2 15 1'8 $1 2!4 :7

DISTANCE ( cm )

Fig. 7. Charge s t a t e of i n i t i a l l y 1 MeY/amu u r a n i u q i o n s in a lo* d e n s i t y He plasma channel.

(11)

JOURNAL DE PHYSIQUE

I

( m m )

F i g . 8. Charge s t a t e o f i n i t i a l l y 1 ~ e V / a m u c o p p e r i o n s i n a l a s e r produced CH2

3 3

p l a s m a T = i k e ~ ,

P

-10- g/cm

.

4. O p a c i t y e f f e c t s .

--p

x-rays e s i s s i o n i s a u s e f u l t o o l i n plasma d i a g r ) o s t . i c ~ . ' ~ ) I n c o l d m a t t e r t h e K p h o t o n s a r e a b s o r b e d by t h e p h o t o e l e c t r i c e f f e c t . However a t

a

h i g h e r t e n p e r a t u r e s , uhen t h e L - s h e l l is i o n i z e d , r e s o n a n t l i n e a b s q r p t i o n i s a l s o p o s s i b l e , and t h i s may h a v e a d r a s t j c e f f e c t o n t h e s e l f a b s o r p t i o n and nence on t h e i n t e r p r e t a t i o n o f m e a s u r e x ~ e n t s ~ ~ ) . T h i s r e s o n a n t l i n e a b s o r p t i o n i s n a d e p o s s i b l e by t h e e x i s t e n c e i n t h e p l a s m a o f a d i s t r i b u t i o n o f i o n i z a t i o n s t a t e s . Thus t h e l i n e

i s absorbed b y

T n i s r e s o n a n t s e l f a b s o r p t i o n n a y h a v e a d r a s t i c e f f e c t o n t h e o b s e r v e d K a s p e c t r u m , and t h e r e f o r e s h o u l d b e c o n s i d e r e d i n t h e i n t e r p r e t a t i o n o f K

a d i a g n o s t i c s i n h i g h t e m p e r a t u r e s y s t a n s . As a n e x a n p l e we u s e t h e c a s e of a 1 MeV, 1 ~ ~ / cp r o t o n bean h i t t i n g a 1Gp m ~ m t h i c k a l u m i n i ~ n f o i l . The r e s u l t s o f a

(12)

f u l l h y d r o d y n a n i c s i m u l a t i o n c a l c u l a t i o n a r e shown i n F i g s . 9-11. I n F i g . 9 t h e t e , n p e r a t u r e p r o f i l e a f t e r 1 5 n s i n t o t h e p u l s e i s shown. In F i g . 10 we p r e s e n t t h e r e s u l t i n g d i s t r i b u t i o n s o f t h e v a r i o u s d e g r e e s o f i o n i z a t i o n i n t h e p l a s m a , The e x p e c t e d s p e c t r u m w i t h and w i t h o u t t h e r e s o n a n t s e l f a b s o r p t i o n i s shown i n F i g . 11. h e c a l c u l a t i o n o f t h i s s p e c t r u i n is a a d e s i m p l e r by t h e f a c t t h a t t h e l i n c ' s i n t h e a r r a y c o r r e s p o n d i n g to e a c h t r a n s i t i o n m e r g e i n t o b a n d s o f a p p r o x i n a t e l y 5 e V i n w i d t h . 1 5 ) I t is e v i d e n t fr0.n F i g . 11 t h a t t h e l i n e o p a c i t y e f f e c t is v e r y b i g b o t h o n t h e i n t e n s i t y a n d o n t h e s p e c t r u i n o f t h e $ e m i s s i o n .

a h i s s h o u l d b e t a k e n i n t o a c c o u n t i n d e s i g n i n g and i n t e r p r e t i n g e x p e y i a e n t s u s i n s K d i a g n o s t i c s i n h i g h t a n p e r a t u r e t a r g e t s .

a

X

( c m )

F i g . 9. T e m p e r a t u r e p r o f i l e i n an i n i t i a l l y 10 m a l u m i n i u m t a r g e t h i t by 1 MeY,

2

r

1 MA/cm p r o t o n beam, afer 15 n s i n t o t h e p u l s e .

(13)

JOURNAL DE PHYSIQUE

Fig. the target of Fig. 9.

X (cm)

10. Distributions of the various degrees of ionization in

z

Fig. 11. Calculated K d s a t e l l i t e s p e c t r a a t t h e back s i d e o f t h e t a r g e t of Fig.

9,10. [a) S e l f a b s o r p t i o n due t o l i n e s and p h o t o e f f e c t , Cb) S e l f a b s o r p t i o n due t o p h o t o e f f e c t a l o n e .

0

';;0 2 -

C t 3

?' P

- -

n

L

0 +- X -

V) C W

2

4-

2 -

I I I I I l

4-

a

-

-

-

I I

I

-

I

b

6-

-

-

-

-

-

- -

-

I

I

2 3 4 5 6 7 8

(14)

5. C o n c l u s i o n s .

-

We h a v e shown t h r e e e x a n p l e s o f c a s e s i n which p l a s n a e f f e c t s a r e i m p o r t a n t i n d e a l i n g w i t h p r o b l e s s o f b e a n - t a r g e t i n t e r a c t i o n :

1. P l a s s a e f f e c t s o n t h e r a n $ e o f p a r t i c l e s o f known c h a r g e a r e i m p o r t a n t ( f a c t o r o f o r d e r 2 r e l a t i v e t o c o l d t a r g e t s ) i n t h e r a n g e o f p a r a s e t e r s r e l e v a n t t o ICF.

2. P l a s a a e f f e c t s o n t h e c h a r g e s t a t e o f h e a v y and i n t e r m e d i a t e i o n s may r e s u l t i n d r a s t i c e f f e c t s 'on t h e r a n g e and s h a p ~ o f t h e e n e r g y d e p o s i t i o n c u r v e .

3. Plasma e f f e c t s o n t h e i n t e n s i t y and s p e c t r u u o f K e m i s s i o n s h o u l d be c o n s i d e r e d i n t h e d e s i g n and i n t e r p r e t a t i o n o f e x p e r i i n e n t s u s i n g K d i a g n o s t i c s .

A l l t h e s e e f f e c t s d e s e r v e e x p e r i m e n t a l v e r i f i c a t i o n . T h i s is d i s c u s s e d i n a n o t h e r p a p e r . 16)

R e f e r e n c e s .

1. E. N a r d i , E. P e l e g , and Z. Z i n a n o n , Phys. F l u i d s

21,

578 ( 1 9 7 8 ) . E. t b r d i and Z. Zina:non, Pnys. Rev.

m,

1246 ( 1 9 7 8 ) .

2. E. N a r d i , E. P e l e g , and Z. Z i n a s o n , Appl. Phys. L e t t .

39,

46 (1981).

3. E. J. McCuire, J. M. P?ck, and L. C. P i t c h f o r d , Pnys. Rev.

a,

7318 ( 1 9 8 ~ ) .

4. D. S. B a i l e y , Y. T. Lee, and R. M. More, B u l l . An. PhyS. Soc.

6 ,

900

( 1 9 8 1 ) .

5. E. Nardi and Z. Z i n a n o n , F'hys. Rev. L e t t .

3,

1251 ( 1 9 5 2 ) .

6. P. R i c h a r d , i n A t o s i c I n n e r S h e l l P r o c e s s e s I, e d i t e d b y B. Crasemann ( A c a i i e s i c , New Y o r k , 1 9 7 5 ) , p . 73.

7. C. I. B e l l , F h y s . Rev.

90,

548 ( 1 9 5 3 ) .

8. U: L o t z , 2. Fhys.

z,

2 0 3 ( 1 9 6 7 ) and

216,

241 ( 1 9 6 8 ) .

(15)

CB-106 JOURNAL DE PHYSIQUE

g. M . J. S a t o n , Mon. M t . Roy. A s t r o n . S o c . 1 1 9 , 81 (1953).

10. Ya. B. Z e l d o v i c h and Yu. P. R a i z e r , P h y s i c s of % o c k Waves and High t e m p e r a t u r e H y d r o d y n a m i c Rlenomena ( A c a d a i c , N e w Y o r k , 1 9 6 6 ) Vol. I, p . 406.

11. Y. H a l e n , P h y s . Rev.

g,

2 8 9 6 (1980).

12. H. D. B e t z . Rev. Mod. P h y s .

E.

465 (1972).

13. R. k i - C a s , i n H i g h Fbwer B e a n s 8 1 , e d i t e d b y H. J. b n c e t and J. H. Buzzi ( E c o l e F b l y t e c h n i q u e , P a l a i s e a u , F r a n c e , 1981) p. 457.

14. I. M. V i t k o v i t s k i , L. S. L e v i n e , D. M o s h e r , a n d S. J. S t e p h a n a k i s , Appl.

Pnys. k t t . j, g (1973); D. J. J o h n s o n , B u l l . An. P h y s . Soc.

z,

925

( 9 7 9 ) .

15. E. N a r d i and 2. Z i n a m o n , J. A p p l . P h y s .

52,

7075 (1981 ).

16. E. b r d i and 2. Z i n a a o n , t h e s e p r o c e e d i n g s .

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to