• Aucun résultat trouvé

SOLITONS IN LOW TEMPERATURE PHYSICS

N/A
N/A
Protected

Academic year: 2021

Partager "SOLITONS IN LOW TEMPERATURE PHYSICS"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: jpa-00218078

https://hal.archives-ouvertes.fr/jpa-00218078

Submitted on 1 Jan 1978

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

SOLITONS IN LOW TEMPERATURE PHYSICS

K. Maki

To cite this version:

K. Maki. SOLITONS IN LOW TEMPERATURE PHYSICS. Journal de Physique Colloques, 1978,

39 (C6), pp.C6-1450-C6-1455. �10.1051/jphyscol:19786586�. �jpa-00218078�

(2)

JOURNAL DE PHYSIQUE

Colloque C6, supplPPnent au no 8, Tome 39, aozit 1978, page C6-1450

SOLITONS IN LOW T E M P E R A T U R E PHYSICS

K. Maki

Department of Physics University o f Southern CaZifornia,Los AngeZes, California 90007, U.S.A.

RLsum6.- Les s o l i t o n s s o n t d e s s o l u t i o n s s p d c i a l e s d e s d q u a t i o n s n o n l i n d a i r e s . 11s s o n t d e s o b j e t s l o c a l i s 6 s q u i s e comportent comme d e s c o r p u s c u l e s c l a s s i q u e s . Les s o l i t o n s p a ~ a i s s e n t j o u e r un r 6 l e de p l u s en p l u s important dans l a physique des b a s s e s temp6ratures.

Abstract.- S o l i t o n s a r e s p e c i a l s o l u t i o n s of n o n l i n e a r e q u a t i o n s . They a r e compact o b j e c t s and behave l i k e c l a s s i c a l p a r t i c l e s . S o l i t o n s appear t o p l a y a more and more important r o l e i n low temperature physics.

INTRODUCTION.- The phenomenon of s o l i t o n s o r s o l i t a - r y waves f i r s t d i s c o v e r e d by J . S c o t t R u s s e l l / I / i n t h e summer of 1834, when he was watching a huge bulge of water moving smoothly w i t h a uniform velo- c i t y along a water channel. He r e p o r t e d t h i s remar- k a b l e o b s e r v a t i o n t e n y e a r s l a t e r and he coined t h e term " s o l i t a r y wave". The i n t e r v e n i n g y e a r s were a p p a r e n t l y s p e n t confirming e x p e r i m e n t a l l y t h e e x i s - tence of t h i s phenomenon.

Probably t h e n e x t important e v e n t on t h i s s u b j e c t i s t h e d i s c o v e r y of Korteweg de V r i e s / 2 / e q u a t i o n i n 1895. This i s one of t h e s i m p l e s t non- l i n e a r e q u a t i o n s and d e s c r i b e s behavior of w a t e r waves i n a long shallow channel ; t h e e q u a t i o n h a s a c l a s s of s o l u t i o n s which d e s c r i b e a bulge o f w a t e r moving w i t h uniform v e l o c i t y . A f t e r t h i s e v e n t t h e

s u b j e c t appeared t o be completely f o r g o t t e n by t h e p h y s i c s community u n t i l modern times. I n t h e l a t e s i x t i e s , t h e i n t r i g u i n g s t a b i l i t y of t h e s e s o l u t i o n s were r e v e a l e d through computer experiments. Indeed, Zabusky and Kruskal 131 c h r i s t e n e d i t " s o l i t o n " t o i n d i c a t e t h i s remarkable s t a b i l i t y . Then Gardner e t a l . 141, d i s c o v e r e d t h a t t h e i n i t i a l v a l u e problem of Korteweg de V r i e s (KdV) e q u a t i o n i s solved com- p l e t e l y i n terms of a few s t e p s of l i n e a r o p e r a t i o n

( t h e i n v e r s e s c a t t e r i n g method). I n r a p i d succes- s i o n i t was shown t h a t a s i m i l a r method a p p l i e s t o o t h e r n o n l i n e a r e q u a t i o n s ; t h e c u b i c S c h r s d i n g e r and sine-Gordon (SG) e q u a t i o n s . It i s now known t h a t a l a r g e c l a s s of n o n l i n e a r e q u a t i o n s a r e amen- dable t o t h e i n v e r s e s c a t t e r i n g method 151. Almost a t t h e same time i t was r e a l i z e d t h a t many problems i n p h y s i c s , chemistry, b i o p h y s i c s and e n g i n e e r i n g reduce t o a few s e t s of n o n l i n e a r e q u a t i o n s , which

l e a d t o an e x p l o s i o n of l i t e r a t u r e on s o l i t o n s . I n t h e l i m i t e d time i t i s impossible t o cover a l l as- p e c t s of r e c e n t developments, even i f I c o n f i n e my- s e l f only t o s o l i t o n s i n low temperature p h y s i c s . T h e r e f o r e , I s h a l l t r y t o p r e s e n t h e r e only t h e g i s t of some of t h e r e c e n t developments

161.

CANONICAL NONLINEAR EQUATIONS.- Let us f i r s t w r i t e down some of t h e n o n l i n e a r e q u a t i o n s which appear most f r e q u e n t l y i n l i t e r a t u r e / 7 / .

a ) Korteweg de V r i e s (KdV) e q u a t i o n

@ t + a@@x + v@xxx = 0 b ) Cubic Schrodinger e q u a t i o n

i+t + QXX + v1@I2

0

= 0 C ) @'

-

f i e l d t h e o r y

d) Sine-Gordon (SG) e q u a t i o n

@ t t

-

@xx + m2 s i n @ = 0

As a l r e a d y mentioned, KdV e q u a t i o n d e s c r i b e s t h e long water waves i n a shallow channel. The c u b i c Schrsdinger e q u a t i o n d e s c r i b e s t h e s p a t i a l conforma- t i o n of t h e e l e c t r i c f i e l d i n n o n l i n e a r o p t i c s and p o s s i b l y s u p e r f l u i d ' ~ e i n l i n e a r c a p i l l a r y . The

41' -

f i e l d theory d e s c r i b e s t h e l a t t i c e d i s p l a c e m e n t o f t h e system w i t h s t r u c t u r a l phase t r a n s i t i o n / 8 , 9 / . F i n a l l y , t h e SG e q u a t i o n i s u b i q u i t o u s i n low tempe- r a t u r e physics / l o / . Some examples a r e given i n S e c t i o n 111. A l l t h e above e q u a t i o n s p o s s e s s i n ad- d i t i o n t o l i n e a r s o l u t i o n s around t h e e q u i l i b r i u m c o n f i g u r a t i o n , s o l i t o n s o l u t i o n s which a r e summari- zed i n Table 1 . Furthermore t h e s e e q u a t i o n s e x c e p t t h e c a s e c a r e amendable t o t h e i n v e r s e s c a t t e r i n g method /5/.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:19786586

(3)

Equation Dispersion of

Radiations Soliton Solution

Cubic

Schrzdinger w = k2

SG w2 = k2 + rn2 O = 4 tan-' {exp

[

my ( x - ut)

1

1

TABLE I

The s o l i t o n s o l u t i o n s a r e c h a r a c t e r i z e d by : 1) They a r e l o c a l i z e d s o l u t i o n s ;

2) I n t h e absence of e x t e r n a l ~ e r t u r b a t i o n , th e y move w i t h c o n s t a n t v e l o c i t y . For a small p e r t u r - b a t i o n t h e y respond l i k e c l a s s i c a l p a r t i c l e s ; 3) They a r e q u i t e s t a b l e a g a i n s t p e r t u r b a t i o n . Often

t h e i r s t a b i l i t y i s guaranteed by t h e t o p o l o g i c a l c o n s e r v a t i o n ; t h e y c a r r y t o p o l o g i c a l charges of which sum has t o be conserved throughout physi- c a l p r o c e s s e s .

Because of t h e s e p r o p e r t i e s , s o l i t o n s appear a s a new c l a s s of elementary e x c i t a t i o n s , which resemble remarkably elementary p a r t i c l e s c a r r y i n g conserved quantum numbers. I n f a c t t h e r e i s t h e f a s c i n a t i n g p o s s i b i l i t y t h a t a l l known p a r t i c l e s a r e s o l i t o n s of some underlying f i e l d s and the conserved quantum numbers l i k e e l e c t r i c charge, baryon charge, e t c . , a r e n o t h i n g b u t t o p o l o g i c a l charges.

Among t h e above n o n l i n e a r e q u a t i o n s t h e s i n e - Gordon e q u a t i o n i s remarkable f o r i t s a d d i t i v e topo- l o g i c a l charge. This i s c l o s e l y r e l a t e d t o t h e f a c t t h a t t h e vacuum of t h e sine-Gordon f i e l d i s i n f i n i - t e l y degenerate ; t h e vacuum i s given by

$ = 0, f 2n,

+

471,

...

A s o l i t o n given by

u = 4 tan-1 (ef my ( X

-

u ~ ) ) , w i t h y = ( 1

-

U2)-1/2/2;

c a r r i e s t h e t o p o l o g i c a l charge (1)

Q = -

,,

1

i,

dx

mX =I

271

'(-1 - rn (--;I

=

* i

(2) The sum of t h e t o p o l o g i c a l charges i n t h e presence of many s o l i t o n s and a n t i s o l i t o n s i s t h e n given

C 1

Qtotal = i

Q, A

=

-

2* ( 4 (rn)

-

$ (-my) (3)

which should c l e a r l y be conserved throughout a l l p h y s i c a l p r o c e s s . This e s s e n t i a l l y g u a r a n t e e s t h e s t a b i l i t y of t h e s o l i t o n .

Furthermore, t h e s o l i t o n - s o l i t o n s c a t t e r i n g and t h e s o l i t o n - a n t i s o l i t o n s c a t t e r i n g a r e e x a c t l y given by 1 1 1 1

4

s i n h (myx) t a n - = 4 u cosh (myut) and

tan

2

= ,-I s i n h (myut)

4 cosh (myx) (5)

r e s p e c t i v e l y where Y = (1

-

u 2 ) - '12.

Moreover, t h e bound s t a t e s of s o l i t o n and a n t i s o l i - ton a r e given by

where

Aw, sinh(wr t ) t a n

2

=

-

4

wr

cash (Amox)

These s o l u t i o n s a r e o f t e n c a l l e d b r e a t h e r s , s i n c e they d e s c r i b e l o c a l i z e d o s c i l l a t i o n of

Gt.

More g e n e r a l l y N-soliton, M-antisoliton s o l u t i o n s can be c o n s t r u c t e d e x a c t l y / l o / .

The quantum v e r s i o n of t h e sine-Gordon equa- t i o n i n t h e (1. l ) space-time dimension h a s a number of i n t r i q u i n g p r o p e r t i e s . For example Coleman 1121 e s t a b l i s h e d t h a t t h e SG theory i s e q u i v a l e n t t o t h e massive T h i r r i n g model. Recently t h e e x a c t S - m a t r i c e s d e s c r i b i n g s o l i t o n - s o l i t o n and s o l i t o n - a n t i s o l i t o n s c a t t e r i n g have been o b t a i n e d by Zamolodchikov 1131.

SINE-GORDON SOLITONS.- The sine-Gordon s o l i t o n s appear most commonly i n condensed m a t t e r physics.

We s h a l l s t a r t w i t h t h e s i m p l e s t example / l o / . 1) Mechanical models.

Perhaps t h e s i m p l e s t model i s a s e r i e s of pendula connected by e l a s t i c s t r i n g , which i s most r e a d i l y made by a t t a c h i n g p i n s on a r u b b e r band. The a n g l e

$. t h e i ' t h pendulum makes from t h e v e r t i c a l d i r e c - t i o n obeys t h e e q u a t i o n of motion

where I and m a r e t h e moment of i n e r t i a and t h e mass of t h e pendulum and K i s t h e e l a s t i c c o n s t a n t . I n t h e continuum l i m i t , eq. ( 7 ) reduces t o

$ t t = C: $xx

-

W: s i n $ (8)

where ,

c,

= ( K / I ) " ~ a ,

w,

= (gm1.0 ~2

and a i s t h e s p a c i n g between two pendula. A s o l i t o n i n t h e p r e s e n t model i s a 360" t w i s t of t h e rubber band.

(4)

JOURNAL DE PHYSIQUE

2) Propagation of d i s l o c a t i o n i n c r y s t a l s . I n 1939 degrees of freedom, t h e amplitude and t h e phase. I n Frenkel and Kontrova 1141 s t u d i e d a one-dimensional p a r t i c u l a r i n a weakly pinned condensate a t low tem- model shown i n f i g u r e 1 t o d e s c r i b e motion of a s l i p p e r a t u r e s , i t s dynamics i s d e s c r i b e d by t h e

i n t h e c r y s t a l . Lagrangian d e n s i t y

At@)

= N, {;

@ : - i

C:

4: -

v($)} (10)

where $ i s t h e phase of t h e CDW condensate, No(=

-1,

av 1

F

C o and wo a r e t h e d e n s i t y of s t a t e s , t h e pha- son v e l o c i t y and t h e pinning frequency. The s i m p l e s t

__t pinning p o t e n t i a l may be g i v e n by

F i g . 1 : A propagating s l i p i n one-dimensional chain It c o n s i s t s of two c h a i n s of atoms ; t h e lower chain i s assumed t o be f i x e d a t t h e r e g u l a r l a t t i c e posi- t i o n , w h i l e the upper c h a i n of atoms can move. The lower c h a i n c r e a t e s a p e r i o d i c p o t e n t i a l of t h e form A (1

-

cos ( 2 a $ k / a ) ) f o r t h e k-th atom i n t h e upper c h a i n w i t h $k displacement from t h e e q u i l i - brium l a t t i c e p o s i t i o n . The e q u a t i o n of motion f o r

@k i s then given by

2" s i n (2n

4 1 8 )

+ K

[mkil

- 2

m.($k)tt =

- y-

where K i s t h e e l a s t i c c o n s t a n t between two atoms i n t h e upper chain. Again i n t h e cantinuurn l i m i t eq. (9) reduces t o eq. (8), w i t h C o = (Kim) "2 a , t h e v e l o c i t y of t h e sound i n t h e c r y s t a l and w 0 = (2mt1A)l!~

Here t h e s o l i t o n corresponds t o t h e s l i p ( o r t h e d i s l o c a t i o n ) and has t h e minimum energy

The p r e s e n t model d e s c r i b e s a l o s s l e s s motion of d i s l o c a t i o n ; t h e s l i p moves uniformly w i t h o u t s l o - wing down. The p r e s e n t model i s extended t o c r y s t a l models w i t h two and t h r e e s p a t i a l dimensions.

3 ) $I

-

s o l i t o n s i n quasi-one dimensional charge d e n s i t y wave (CDW) condensatk.

The low temperature p r o p e r t i e s of quasi-one dimen- s i o n a l conductors l i k e K2Pt (CN),,Br 3H20 (KCP),

0 . 3

t e t r a t h i o f ulvalene- t e tracyanoquindime thane (TTF- TCNQ) and NbSe3 a r e of p a r t i c u l a r i n t e r e s t . They undergo a F r i j h l i c h t r a n s i t i o n a t low temperatures.

The a s s o c i a t e d CDW have been seen i n t h e X-ray s c a t - t e r i n g experiment. As p o i n t e d o u t by Lee, Rice and Anderson 1151, t h e ~ r i j l i c h CDW condensate h a s two

V ($) =

p

1 (1

-

cos (N$)) (1 I)

w i t h N i n t e g e r .

The Lagrangian (10) t h e n g i v e s t o a sine-Gordon e q u a t i o n . I n p a r t i c u l a r , R i c e , Bishop, Krumhansland T r u l l i n g e r 1161 p o i n t e d o u t t h a t t h e $ - s o l i t o n p l a y s an important r o l e i n t h e e l e c t r i c c o n d u c t i v i t y a t low temperatures. Equation (10) t e l l s us t h a t t h e

@ s o l i t o n h a s mass M = 2 (2/N12 N m / C

$ 0 0 0 (12)

Furthermore, i t c a r r i e s e l e c t r i c charge

Q = (2e)/N (13)

which f o l l o w s from t h e e x p r e s s i o n of t h e e l e c t r i c charge 1161

q ( x , t ) = @x (x, t ) (14)

where q ( x , t ) i s t h e charge d e n s i t y due t o t h e @ f i e l d . Therefore, a t low t e m p e r a t u r e s , where no t h e r - m a l l y a c t i v a t e d q u a s i - p a r t i c l e s a r e around, t h e e l e c t r i c conduction i s dominantly due t o t h e $-Soli-

t o n s

O$ = k e 2 m o t / ( E t B T )

''1

(ns i n )

'

exp (- E

4

/k T) B ( 15)

where R is t h e e l e c t r o n i c mean f r e e p a t h ,

c 2

and ns i s t h e s u p e r f l u i d d e n s i t y .

E$ = M$

This a c t i v a t e d form of t h e c o n d u c t i v i t y has been observed 1171 i n both KPC and TTF-TCNQ. Unfortunate- l y , however, t h i s i s t h e o n l y evidence s o f a r favo- r i n g t h e $ s o l i t o n h y p o t h e s i s . I n o r d e r t o p u t t h i s h y p o t h e s i s on f i r m e r groudd more works b o t h i n theo- r y and experiment a r e c l e a r l y d e s i r a b l e .

4 ) Magnetic f l u x propagation along a Josephson junc- t i o n . F i r s t l e t u s c o n s i d e r two superconductors se- p a r a t e d by a t h i n i n s u l a t i n g b a r r i e r ( s a y oxide f i l m of t h i c k n e s s 10

-

20 AO). As shown by Josephson 1181 i n 1962 t h e p a i r of e l e c t r o n s can t u n n e l from one superconductor t o a n o t h e r l e a d i n g t o t h e weak cou- p l i n g beatween two superconducting wave f u n c t i o n s Y and

Y

a c r o s s t h e j u n c t i o n . I n p a r t i c u l a r when

(5)

@ (s

@, - 4,)

0 , where and @2 a r e phases of Y1 and Y,, t h e r e flows a s u p e r c u r r e n t J p e r u n i t a r e a a c r o s s t h e j u n c t i o n

J = J s i n @ (1 6)

where J i s a c o n s t a n t depending on t h e temperature and t h e c h a r a c t e r i s t i c s of t h e j u n c t i o n . Further- more, i f a v o l t a g e V i s a p p l i e d a c r o s s t h e j u n c t i o n ,

t h e phase d i f f e r e n c e

4

i n c r e s e s a s

These a r e t h e c e l e b r a t e d dc and a c Josephson e f f e c t r e s p e c t i v e l y . Now l e t us c o n s i d e r a l a r g e a r e a Josephson j u n c t i o n , which extends i n t h e x-y p l a n e . The l a r g e a r e a Josephson j u n c t i o n i s c h a r a c t e r i z e d i n terms of a t r a n s v e r s e ( s c a l a r ) v o l t a g e V and a t r a n s v e r s e c u r r e n t -f J ( t h e s u r f a c e c u r r e n t along t h e j u n c t i o n ) , which obey / l o /

-f -f

W = L J t ( 1 8 4

-f -f

V

.

J =

-

C V t

-

J~ s i n @ ( l a b )

+

-f

where J and V a r e t h e two dimensional v e c t o r s , t h e c a p a c i t a n c e C and t h e r e a c t a n c e L of t h e j u n c t i o n a r e

and K i s t h e d i e l e c t r i c c o n s t a n t , d i s t h e gap b e t - ween two superconductors, and

X

i s t h e London pe- n e t r a t i o n depth. E l i m i n a t i n g V and J faom eq. ( l a ) , -f

we have

LC @ t t

-

@xx

-

$yy =

-

2e LJ, s i n @ (20) t h e two dimensional SG e q u a t i o n . The s t a t e of t h e j u n c t i o n i s completely determined by

@.

Of t e c h n i c a l importance i s t h e l i n e a r j u n c t i o n , which c o n s i s t s of two t h i n t a p e s of superconductors s e p a r a t e d by a t h i n oxide l a y e r . I n t h i s c a s e eq. (20) reduces t o t h e (one-dimensional) SG e q u a t i o n . The s o l i t o n h e r e d e s c r i b e s moving magnetic f l u x l i n e s a l o n g t h e junc- t i o n . The f l u x l i n e c a r r i e s a s i n g l e f l u x quantum

m

2e and

O o 24 2 x 10-' gauss cm2

These p r o p a g a t i n g f l u x quanta may be used a s a s i g n a l u n i t i n a f u t u r e high speed computer.

So f a r i n d e r i v i n g eq. (20) t h e v o l t a g e l o s s a c r o s s t h e j u n c t i o n i s completely n e g l e c t e d . I f t h e l o s s

mechanism i s i n c l u d e d , t h e moving f l u x w i l l decele- r a t e o r sometimes t h e f l u x may be a n n i h i l a t e d by c o l l i d i n g w i t h t h e a n t i f l u x ( i . e . , t h e magnetic f l u x w i t h o p p o s i t e s i g n ) .

5) S o l i t o n s i n s u p e r f l u i d 3 ~ e . S u p e r f l u i d 3 ~ e con- s i s t s f o two d i s t i n c t phases ( o r t h r e e i n t h e pre- sence of magnetic f i e l d s ) ; 3 ~ e - ~ and 3 ~ e - ~ . The

o r d e r parameters d e s c r i b i n g t h e condensate of 3 ~ e - ~ and 3 ~ e - ~ a r e s i m i l a r t o t h a t of a superconductor except t h a t t h e p a i r i n g t a k e s p l a c e i n t h e s p i n t r i - p l e t and t h e P-wave s t a t e . T h i s i m p l i e s l a r g e de- g r e e s of freedom a s s o c i a t e d w i t h t h e i n t e r n a l confi- g u r a t i o n of t h e condensate (non-Abellian o r d e r para- m e t e r ) . Here I s h a l l d e s c r i b e t h e s i m p l e s t s o l i t o n

t h e $-soliton i n 3 ~ e - ~ . The t e x t u r e of s u p e r f l u i d 3 ~ e - ~ may be c h a r a c t e r i z e d by two u n i t v e c t o r s

2

and

k ,

where

2

d e s c r i b e s t h e d i r e c t i o n of t h e s p i n component of t h e condensate and

?,

denotes t h e symme- t r y a x i s of tihe q u a s i - p a r t i c l e energy gap. For sim- p l i c i t y we s h a l l c o n s i d e r t h e case of a s t a t i c f i e l d a p p l i e d i n t h e z d i r e d t i o n , which f o r c e s t h e

2

vec- t o r t o l i e i n t h e x-y plane. Furthermore, we assume t h a t l i e s i n t h e y d i r e c t i o n . (The d i p o l e energy f a v o r s t h a t

^R

l i e s i n t h e same d i r e c t i o n a s

2 ) .

I n t h i s circumstance 3 ~ e - ~ i s c h a r a c t e r i z e d by two or- d e r parameters A+ and A+ t h e up s p i n p a i r s and t h e down s p i n p a i r s . S i n c e t h e amplitudes of A+ and A+

a r e almost c o n s t a n t , dynamics of A+ and AS a r e des- c r i b e d by t h e i r phases @+ and @+. I n p a r t i c u l a r @ =

@

-

$+ d e s c r i b e s t h e magnetic p r o p e r t i e s of 3 ~ e - ~ ; 4-

t h e l o c a l m a g n e t i z a t i o n and t h e m a g n e t i z a t i o n cur- r e n t a r e given by

++ s p i n

where

xN

and Ps a r e t h e s t a t i c s p i n s u s c e p t i b i - l i t y and t h e s p i n s u p e r f l u i d d e n s i t y t e n s o r of 3 ~ e - A. We n o t e t h a t @ a l s o ' s p e c i f i e s t h e d i r e c t i o n of

.. 2

from t h e y a x i s ; $ = 28 where I3 i s t h e a n g l e d makes from t h e y a x i s .

The l o c a l s p i n c o n s e r v a t i o n then r e q u i r e s

s i n @ (23)

Where H i s t h e t o t a l Hamiltonian of t h e system, ED i s t h e n u c l e a r d i p o l a r i n t e r a c t i o n energy and QA i s t h e l o n g i t u d i n a l resonance frequency of 3 ~ e - ~ . The r h s of e q r (23) i m p l i e s t h a t t h e l o c a l s p i n conser- v a t i o n i n 3 ~ e - ~ i s broken due t o t h e n u c l e a r d i p o l e

(6)

C6-

1454 JOURNAL DE PHYSIQUE

i n t e r a c t i o n , which t r a n s f e r t h e up s p i n p a i r s i n t o the down s p i n p a i r s and v i c e v e r s a . This i s v e r y si- m i l a r t o t h e Josephson e f f e c t , although t h e d i p o l e energy i s bulk a g e n t . S u b s t i t u t i n g eq. (22) i n t o eq.

( 2 3 ) , we have

@ t t

- cq

(@xx + @ z z )

- crI

+yy =

- "

s i n @ (24)

where CL and CII a r e t h e s p i n wave v e l o c i t i e s perpen- d i c u l a r and p a r a l l e l t o

x.

Equation (24) i s t h e t h r e e dimensional SG e q u a t i o n . I n t h e p r e s e n t c i r - cumstance s o l i t o n s a r e moving domain w a l l s i n t h e t h r e e dimensional space. These s o l i t o n s may be crea- t e d m a g n e t i c a l l y 1191. So f a r we have assumed t h a t

^R

i s f i x e d and uniform i n space. I n a c t u a l s i t u a t i o n s t h e

^d

s o l i t o n i s n o t s t a b l e , s i n c e the energy of t h e domain w a l l i s reduced by allowing t h a t

a

is a l s o

space dependent. The lowest energy c o n f i g u r a t i o n thus o b t a i n e d i s t h e t w i s t composite s o l i t o n . There a r e o t h e r composite s o l i t o n s depending on t h e geome- t r i c c o n s t r a i n t 1201 ( s e e f i g u r e 2 ) .

t h a t SG s o l i t o n s play an important r o l e i n a v a r i e t y of phenomena i n low temperature p h y s i c s . Obviously t h e most u r g e n t q u e s t i o n i s t h a t i f t h e n o t i o n of s o l i t o n can be extended t o t h e h i g h e r dimensions. To e x p l o r e t h i s p o s s i b i l i t y , I would l i k e t o s t a r t w i t h an e l e g a n t n e g a t i v e theorem by Derrick 1231, i n t h e case of a r e a l s c a l a r f i e l d t h e o r y , t h e r e i s no con- f i n e d s o l i t o n i n more t h a n one space dimension. The s c a l a r f i e l d t h e o r y i n d-dimensional space can b e d e s c r i b e d by a Hamiltonian;

w i t h

I n o r d e r t o have a s o l i t o n l i k e s o l u t i o n t h e vacuum @

i

I v ( + ~ ) = 01 have t o be degenerate. Suppose we f i n d a confined s o l u t i o n @ ( x ) i n t h e d-dimensional space w i t h energy E. Then l e t us c o n s i d e r a new so- l u t i o n

Oh

= @(Ax). The energy of $A is o b t a i n e d a s

+

+ V

(4

(Ax)) I

= h2-d (KE)@

+

(PE)@

i

(26)

*---

where

a *

V ($ ( X I )

a-

- --

(27) Since b o t h (KE) and (PE) a r e nonnegative, eq. (26)

+) @ @

a)

i s minimized o n l y f o r h + when d

2

2 , implying

Fig. 2 : Two t y p i c a l composite s o l i t o n s i n super- f l u i d 3He-~, a ) t w i s t s o l i t o n ; and b ) s p l a y s o l i t o n . S o l i d arrows i n i i c a t e t h e d i r e c t i o n of

II

and broken arrows t h a t of d.

These composite s o l i t o n s have d i s t i n c t s a t e l l i t e f r e q u e n a i e s i n t h e n u c l e a r magnetic resonance and a r e r e a d i l y i d e n t i f i e d 1211. I n 3 ~ e - ~ on t h e o t h e r hand, t h e condensate i s c h a r a c t e r i z e d by a r o t a t i o n matrix%

(g,

0 ) , where n -+ i s t h e a x i s of r o t a t i o n and 8 i s t h e r o t a t i o n a n g l e around n. Then

+

8 i s u s u a l l y f i x e d by t h e d i p o l e i n t e r a c t i o n energy a t 0 = =

I

+

cos-I (-

$.

The n v e c t o r i s c o n t r o l l e d then by t h e superweak i n t e r a c t i o n s , which g i v e r i s e t o t h e n

-+

s o l i t o n s . The n s o l i t o n -+ i s c e r t a i n l y the most l i k e - l y c a n d i d a t e , which allows a simple i n t e r p r e t a t i o n of unusual t r a n s v e r s e N M R observed by Osheroff 1221 i n 3 ~ e - ~ .

SOLITONS I N HIGHER DIMENSION.- So f a r we have seen

t h a t t h e r e i s no confined o b j e c t e x c e p t i n t h e one space dimension. This n e g a t i v e r e s u l t may be more simply o b t a i n e d from t o p o l o g i c a l c o n s i d e r a t i o n . There i s no homotopy mapping between d i s c r e t e p o i n t s ( i . e . , t h e vacua of

4)

t o a sphere i n t h e d dimensional space 1241. Therefore, i n o r d e r t o c o n s t r u c t exten- t e d o b j e c t s i n t h e h i g h e r dimensional space, t h e b a s i c f i e l d h a s t o be n e c e s s a r i l y multicomponent.

For example, s u p e r f l u i d ' ~ e o r a superconductor a r e c h a r a c t e r i z e d by a complex s c a l a r (two component) f i e l d and v o r t e x l i n e s i n t h e above system may be considered a s s o l i t o n s i n t h e two space dimension ( i . e . , t h e l i n e a r s o l i t o n ) , s i n c e t h e i r s t a b i l i t y i s guaranteed by t o p o l o g i c a l c o n s e r v a t i o n . A screw d i s l o c a t i o n i n t h e c r y s t a l i s a n o t h e r two dimensio- n a l s o l i t o n i n t h e v e c t o r c r y s t a l f i e l d theory. Simi- l a r l y , monopoles and i n s t a n t o n s 1251 i n gauge theo- r i e s a r e s o l i t o n s i n t h e t h r e e and t h e f o u r space dimension r e s p e c t i v e l y . I n our t h r e e dimensional s p a c e , t h e one dimensional s o l i t o n , t h e two dimen-

(7)

s i o n a l s o l i t o n and t h e t h r e e dimensional s o l i t o n

1111

S e e n e r , A., Donth, H . , and ~ o c h e n d b r f e r , A., a r e p l a n a r s o l i t o n , l i n e a r s o l i t o n and p o i n t l i k e Z phys.

134

(1953) 173 ; P e r r i n g , J.K., and Skyrme, T. H.R., Nuclear Phys.

21

(1962) 550.

o b j e c t s a s shown i n f i g u r e 3 .

/12/ Coleman, S., Phys. Rev. D

11

(1975) 2088.

1131 Zamolodchikov, A.B., Pisma JE TF

2

(1977) 499.

F i g . 3 : The d-dimensional s o l i t o n s embedded i n t h e t h r e e d i m e n s i o n a l s p a c e . a ) p l a n a r s o l i t o n ; b) l i n e a r s o l i t o n ; c ) p o i n t - l i k e s o l i t o n ; and

d)

i n s t a n t o n .

I t i s a p l e a s u r e t o thank a l l of t h o s e who h e l p e d me t o u n d e r s t a n d s o l i t o n r e l a t e d problems.

I n p a r t i c u l a r , I have b e n e f i t e d g r e a t l y f r m d i s c u s - s i o n s w i t h Pradeep Kumar, Y.R. Lin-Liu and S t e v e T r u l l i n g e r . I am a l s o g r a t e f u l t o Hans B o z l e r , C h r i s Gould, Doug Osheroff and J o h n Wheatley, who p r o v i d e d me w i t h c o n t i n u o u s s t i m u l i i n t h i s new v e n t u r e . The p r e s e n t work i s s u p p o r t e d by t h e N a t i o n a l S c i e n c e Foundation under Grant No. DMR76-21032.

R e f e r e n c e s

/ 1 / R u s s e l , J . S c o t t , Proc. Roy. Soc. Edinburg (1844) 319.

/ 2 / Korteweg, D . J . , and de V r i e s , G . , P h i l , Mag.

2

(1895) 422.

/ 3 / Zabusky, N . J . , and K r u s k a l , M.D., Phys. Rev.

L e t t .

11

(1965) 240.

/ 4 / Gardner,C.S., Greene, J.M., K r u s k a l , M.D., and Miura, R.M., Phys. Rev. L e t t .

2

(1967) 1095.

/ 5 / See f o r example, Ablowitz, M . J . , Kaup, D . J . , Newell, A.C., and S e g u r , H., S t u d i e s i n A p p l i e d Mathematics,

53

(1974) 249.

1 6 1 See f o r a d e l i g h t f u l r e v i e w of e a r l y h i s t o r y , L i b c h a b e r , A., and Toulouse, G . , La Recherche 7 (1976) 1027.

-

1 7 1 Whitham, G.B., L i n e a r and N o n l i n e a r Waves ( J o h n Wiley and Sons, New York 1974), c h a p t e r 17.

/ 8 / Krumhansl, ' J.A., aild S c h r i e f f e r , J.R., phys.

Rev. B

fi

(1975) 3535.

/ 9 / S c h n e i d e r , S., and S t o l l , E., Phys. Rev. L e t t . 35 (1975) 296.

-

/ l o / Barone, A., E s p o s i t o , F., Magee, C . J . , and S c o t t , A.C., R e v i s t a d e l Nuovo Cimento 1 (1971) 227 ; S c o t t , A.C., Chu, F. Y.

F.

and McLaughlin, D.W., P r o c e e d i n g s of t h e IEEE

61

( 1973) 1443.

1141 F r e n k e l , J . , and Kontrova, T., J o u r Phys. USSR I (1939) 137.

-

1151 Lee, P.A., R i c e , T.M., and Anderdon, P.W., S o l i d S t a t e Commun.

16

(1974) 703.

1161 R i c e , M . J . , Bishop, A.R., Krumhansl, J. A. and T r u l l i n g e r , S.E., Phys. Rev. L e t t .

36

(1976)

1 ,.A

/17/ Z e l l e r , H., Advan. S o l i d S t a t e Phys.

13

(1973) 31 ; P i e t r o n e r o , L. S t r a s s l e r , S., and 'Eoomhes, G.A., Phys. Rev. B

12

(1975) 5213 ; Cohen, M . J . , Newman, P.R., and Heeger, A.J., Phys.

Rev. L e t t .

37

(1976) 1500.

1181 J o s e p h s o n , B.D., Adv. Phys.

16

(1965) 419.

1191 Maki, K., and Kumar, P . , Phys. Rev. B

16

(1976) 118 ; B

14

(1976) 3920.

1201 Maki, K., and Kumar, P., Phys. Rev. B

16

(1977) 182 ; B

2

(1976) 1088.

/21/ See f o r a r e v i e w , Maki, K., i n P h y s i c s a t U l t r a l o w Temperatures e d i t e d by Sugawara, T., e t a l . , (Phys. Soc. of J a p a n , Tokyo 1978) pp.

66.

1221 O s h e r o f f , D.D., i n Quantum F l u i d s and S o l i d s , e d i t e d bv. T r i c k e v . S.B., Adams, E.D.,

. .

- . and Dufty, J . W . , (Plenum p r e s s , N e w - ~ o r k 1977) pp. 161.

1231 D e r r i c k , G.H., J. Math. Phys.

2

(1964) 1252.

1241 Coleman, S., E r i c e L e c t u r e s (1975) t o b e pu- b l i s h e d .

/25/ B e l a v i n , A., Polyakov, A., Schwartz, A., and Tyupkin, Y . , Phys. L e t t . B

2

(1975) 8 5 .

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to