• Aucun résultat trouvé

AC LOSS IN AMORPHOUS GERMANIUM AT LOW TEMPERATURES

N/A
N/A
Protected

Academic year: 2021

Partager "AC LOSS IN AMORPHOUS GERMANIUM AT LOW TEMPERATURES"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: jpa-00220816

https://hal.archives-ouvertes.fr/jpa-00220816

Submitted on 1 Jan 1981

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

AC LOSS IN AMORPHOUS GERMANIUM AT LOW TEMPERATURES

A. Long, W. Hogg, N. Balkan, R. Ferrier

To cite this version:

A. Long, W. Hogg, N. Balkan, R. Ferrier. AC LOSS IN AMORPHOUS GERMANIUM AT LOW TEMPERATURES. Journal de Physique Colloques, 1981, 42 (C4), pp.C4-107-C4-110.

�10.1051/jphyscol:1981419�. �jpa-00220816�

(2)

JOURNAL DE PHYSIQUE

CoZZoque C4, suppZ6ment au nOIO, Tome 42, octobre 1981 page C4-107

AC LOSS I N AMORPHOUS GERMANIUM A T LOW TEMPERATURES

A.R. Long, W.R. Hogg, N. Balkan and R . P . F e r r i e r

Department o f NaturaZ PhiZosophy, University o f GZasgow, GZasgow G I 2 8QQ, Scot land

Abstract.- The frequency, temperature and f i e l d dependencesofthe audio frequency AC l o s s i n a s e r i e s of s p u t t e r e d hydrogenated amorphous germanium samples a r e i n v e s t i g a t e d over t h e temperature range 1

-

10K. The r e s u l t s c o n f l i c t with t h e p r e d i c t i o n s of t h e model i n which e l e c t r o n s a r e assumed t o tunnel between l o c a l i s e d s t a t e s uniformly d i s t r i b u t e d i n space and i n energy.

1. I n t r o d u c t i o n . The aim of t h i s work was to extend our previous measurements o f AC l o s s i n amorphous germanium, performed a t around l i q u i d n i t r o g e n temperature (1,2) t o very much lower temperatures. A t l i q u i d n i t r o g e n temperatures and above, t h e e l e - mentary theory o f e l e c t r o n hopping processes suggests t h a t t y p i c a l hopping e n e r g i e s w i l l be of magnitude a few kT, and hence a r e almost c e r t a i n t o involve multi-phonon processes, f o r which t h e matrix elements a r e n o t yetwellknown ( 3 , 4 ) . However i f measurements a r e made a t l i q u i d helium temperatures then t h e thermal e n e r g i e s involved a r e much smaller and s i n g l e phonon processes should dominate ( 4 ) . I t i s i n this low temperature regime t h a t IXv a r i a b l e range hopping i s observed i n impurity bands ( 5 ) and i n v e r s i o n l a y e r s (6). I t was our i n t e n t i o n t o study t h e AC l o s s a t l i q u i d helium temperatures t o see i f t h e i d e a s of v a r i a b l e range hopping a r e more s u c c e s s f u l i n explaining t h e new experimental d a t a than they were i n accounting f o r our previous observations ( 1 , Z ) .

2. P r e d i c t i o n s of t h e theory f o r AC l o s s by t u n n e l l i n g between l o c a l i s e d s t a t e s . The t h e o r i e s of AC l o s s i n amorphous germanium o r s i l i c o n i n v a r i a b l y assume a population of e l e c t r o n s t a t e s uniformly d i s t r i b u t e d i n energy and i n space, between which e l e c t r o n t r a n s f e r occurs by t u n n e l l i n g . The c a l c u l a t i o n s a r e usually performed i n t h e p a i r approximation and assume a r e l a x a t i o n time f o r e l e c t r o n t r a n s f e r between s t a t e s s e p a r a t e d i n energy by A and i n space by R o f t h e form

For reasons of s t a t e occupation, t h e l o s s w i l l be dominated by s t a t e s c l o s e t o t h e fermi l e v e l ( A / ~ T < 1 ) . Moreover i f each p a i r of s t a t e s i s assumed t o respond a s a Debye o s c i l l a t o r , then t h e maximum l o s s w i l l occur f o r an angular frequency % r - l . Taking t h e s e r e s u l t s t o g e t h e r implies an e f f e c t i v e hopping length a t an angular frequency w of

Considering t h e c o n t r i b u t i o n of each p a i r of s t a t e s independently it i s s t r a i g h t - forward t o deduce an AC c o n d u c t i v i t y

where g i s t h e d e n s i t y s t a t e s . This r e s u l t , f i r s t derived by Austin and Mott ( 7 ) , was confirmed using more d e t a i l e d s t a t i s t i c s by P o l l a k (8) and using a p e r c o l a t i o n approach by Butcher and Hayden ( 9 ) . I t p r e d i c t s a l o s s which v a r i e s d i r e c t l y a s t h e

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1981419

(3)

JOURNAL DE PHYSIQUE

Fig. 1. The Equivalence of F i e l d and Temperature i n changing conductance.

F i e l d curves a t 1 . 2 K , ( a ) 3KHz (b) 1KHz.

Temperature curves a t low f i e l d ( c ) 3KHz (d) lKHz

(Sample B5)

.

temperature, and has a frequency exponent s (when t h e l o s s i s expressed a s wS) given by

which should be approximately independent of frequency f o r wro << 1 and independent of temperature. Recently a more r e f i n e d c a l c u l a t i o n by Movaghar, Pohlmann and Sauer (10) has shown t h a t s may be a weak function of temperature.

3. Experimental Observations. For our i n v e s t i g a t i o n , we chose t o work with amorphous germanium samples s p u t t e r e d i n argon and argon/hydrogen atmospheres which can be prepared i n a more reproducible manner than evaporated samples. O u r samples were of sandwich configuration and measured using a simple AC bridge. Some DC p r o p e r t i e g m a s u r e d around l i q u i d nitrogen temperatures a r e given i n t a b l e 1. These, together with t h e higher temperature AC l o s s r e s u l t s a r e t o be discussed i n a forth- coming paper. The most i n t e r e s t i n g r e s u l t f o r our purposes i s t h a t t h e DC conduc- t i v i t y of t h e s e samples a t 77K v a r i e s by some 6 orders when hydrogen i s incorporated, which i s not f u l l y explained by t h e changes i n To, t h e temperature exponent i n t h e Mott T)a r e l a t i o n s h i p ( accurately obeyed by a l l t h e samples around 77K).

However when t h e AC l o s s i n these samples a t helium temperatures was measured, it was found t o vary very l i t t l e with hydrogen content (see t a b l e 1); a l l t h e c o n d u c t i v i t i e s measured a t t h e same temperature (4.2K) and frequency were within a f a c t o r of 2 of one another. The frequency exponents s (measured a t 4.2K) were again s i m i l a r from sample t o sample having values i n t h e region of 0.9. s was observed to be only a weakly decreasing function of temperature, varying f o r sample B5 f o r example from 0.88 a t 1.2K t o 0.84 a t 8K. These r e s u l t s a r e i n accord with t h e equations of 1 2. On t h e o t h e r hand t h e temperature dependence of t h e conductance

(G) a t a f i x e d frequency ( f i g u r e 1) does not agree with equation 3. G does not have a simple power law dependence on temperature, b u t becomes l e s s temperature dependent a s t h e temperature i s lowered.

I n a d d i t i o n t o these standard observations, we have detected a new low tempera- t u r e e f f e c t , a n AC f i e l d e f f e c t . A s the AC e l e c t r i c f i e l d F across our sample i s increased, t h e conductance, i n i t i a l l y independent of f i e l d , begins t o increase

( f i g u r e 2). The onset f i e l d a t which changes begin i n c r e a s e s w i t h temperature, and a t high f i e l d s t h e l o s s curves f o r d i f f e r e n t temperatures converge, with t h e l o s s becoming temperature independent. Similar f i e l d curves a r e observed over t h e f u l l range of frequencies a t which data was taken ( f i g u r e 2 ) . We were not a b l e , t o t h e accuracy of our d a t a , to d e t e c t any frequency v a r i a t i o n of t h e o n s e t f i e l d .

I t should be emphasised t h a t t h e v a r i a t i o n of conductance with f i e l d i s an AC e f f e c t , and i s not r e l a t e d t o t h e DC conductance. Although these samples i n v a r i a b l y have a f i e l d dependent DC leakage path i n p a r a l l e l with t h e AC l o s s , i n t h e measure- ments described t h i s leakage was never more than 10% o f t h e AC conductance a t low f i e l d s and could be s u b t r a c t e d from t h e d a t a t o leave t h e AC l o s s without introduc- i n g an e r r o r of g r e a t e r than a few p e r cent. The accuracy of t h i s conclusion is confirmed by the observation t h a t a s i m i l a r f i e l d e f f e c t i s observed a t a l l

(4)

-- k

0

--

m

A Fig. 2. The AC f i e l d

dependence of t h e conductance a t d i f f e r e n t frequencies and temperatures (Sample B 2 )

.

frequencies o f measurement, whereas t h e r e l a t i v e importance of t h e DC c o r r e c t i o n decreases with frequency.

An important c l u e a s t o t h e meaning o f t h e f i e l d e f f e c t i s provided when curves of G(F) a t a c o n s t a n t low temperature and G(T) a t low f i e l d a r e compared ( f i g u r e 1).

The s i m i l a r i t y between t h e s e s e t s o f d a t a suggest t h a t t h e energy changes a s s o c i a t e d with temperature (kT) and with t h e a p p l i e d f i e l d ( e F G f f ) a c t i n t h e same way. For t h e sample i l l u s t r a t e d , by comparing regions o f c o n s t a n t conductance and w r i t i n g eF%ff 5 kT, we may e s t i m a t e Reff a s (0.8

+

0.l)nm.

Unfortunately complete enough s e t s o f temperature and f i e l d d a t a a r e n o t a v a i l - a b l e f o r a l l t h e samples. For t h e s e we e s t i m a t e Reff by determining t h e f i e l d a t which t h e conductance had i n c r e a s e d by 10% over i t s low frequency value (measured a t 4.2K and 3KHz) and using eFReff % kT. The Ref= values given by t h i s technique a r e given i n t h e t a b l e i n b r a c k e t s and s e r v e a s a good i n d i c a t i o n of t h e pronounced t r e n d i n our d a t a , which i s f o r Reff t o i n c r e a s e s t r o n g l y a s t h e hydrogen incorpora- t e d (measured by i t s concentration i n t h e s p u t t e r i n g gas) i n c r e a s e s .

4. I n t e r p r e t a t i o n i n terms of t u n n e l l i n g between l o c a l i s e d s t a t e s a t t h e f e d l e v e l . I n applying t h e theory of s e c t i o n 2 t o o u r d a t a , we start from t h e f e a t u r e most c l o s e l y i n agreement with theory, namely t h e temperature independent s value of 0.9. Using equation 4, this suggests a r0 value of around 1 0 - ~ ~ s . This i s s i m i l a r t o t h e values obtained from t r y i n g t o f i t AC d a t a a t higher temperatures (9, 101, and i s n o t easy t o e x p l a i n using r e a l i s t i c parameters, even i n t h e framework of t h e Miller-Abrahams (11) r e l a x a t i o n r a t e s . A more important o b s t a c l e becomes apparent however when t h i s r e s u l t i s a p p l i e d t o c a l c u l a t e

%ff

using equation 2.

Taking e s t i m a t e s o f a-I of lnm from thickness dependent c o n d u c t i v i t y (12) o r 1.5nm from DC f i e l d e f f e c t (13) (both r e s u l t s assuming t h e v a l i d i t y of t h e Mott v a r i a b l e range hopping model), we g e t Reff values of 20 and 30nm r e s p e c t i v e l y , very much g r e a t e r than t h e f i e l d e f f e c t values o f Table 1. A l t e r n a t i v e l y , r e v e r s i n g t h e argument, accepting t h e bff values from t h e AC f i e l d e f f e c t , we o b t a i n an a-' f o r t h e pure f i l m of around 40 pm, which would correspond, using simple quantum mechanics t o an energy gap value of 24eV. Such a value i s obviously unphysical.

Moreover one would n o t expect from t h i s model such a r a p i d v a r i a t i o n of a-I with hydrogen content. (The o p t i c a l gap changes by some 100% over t h i s range o f hydrogenation (141, b u t t h e change i s i n t h e o p p o s i t e sense t o t h a t p r e d i c t e d by simple quantum mechanics from the

a'

d a t a ) .

The temperature dependence and f i e l d e f f e c t d a t a cannot be explained e i t h e r using t h e i d e a s o f t u n n e l l i n g i n a uniform d e n s i t y of s t a t e s . A s we have a l r e a d y sugges- t e d , t h e low f i e l d l o s s should vary l i n e a r l y with temperature. The observed

temperature dependence would imply a narrow peak i n t h e d e n s i t y o f s t a t e s a t t h e F e d l e v e l of width % kT, which we consider p h y s i c a l l y u n l i k e l y . I n t h e high f i e l d

(5)

C4-1 10 J O U R N A L DE PHYSIQ'JE

l i m i t , t h e AC l o s s i s n o n - l i n e a r and d i f f i c u l t t o c a l c u l a t e . However we do n o t b e l i e v e t h a t t h e o b s e r v a t i o n s a r e i n a c c o r d w i t h t h i s m d e l .

Our c o n c l u s i o n t h e r e f o r e i s t h a t , a s w i t h t h e h i g h t e m p e r a t u r e d a t a ( 1 , 2 ) , t u n n e l l i n g o f e l e c t r o n s between s t a t e s u n i f o r m l y d i s t r i b u t e d i n s p a c e and i n e n e r g y c a n n o t p r o v i d e a n e x p l a n a t i o n o f t h e o b s e r v a t i o n s .

5. C o n c l u s i o n . Given t h a t t h e e f f e c t i v e hopping d i s t a n c e f o r p u r e f i l m s is o n l y o f t h e o r d e r o f lnm, w e p o s t u l a t e t h a t the AC l o s s we a r e measuring o c c u r s i n i n t i m a t e p a i r s o f s t a t e s w i t h o n l y weak c o u p l i n g between t h e p a i r s . I n o r d e r t o e x p l a i n why t h e s e s t a t e s r e s p o n d a t a u d i o f r e q u e n c i e s , w h i l e r e t a i n i n g a r e a s o n a b l e v a l u e f o r t h e i n t r i n s i c " a t t a c k f r e q u e n c y " T , - ~ , t h e p a i r s must b e c o u p l e d v i a a p o t e n t i a l b a r r i e r o f magnitude many t i m e s kT. T h i s model r e s e m b l e s t h e i d e a s which h a v e b e e n s u c c e s s f u l i n e x p l a i n i n g o u r n i t r o g e n t e m p e r a t u r e d a t a ( 1 , 2 ) and we hope to p u r s u e t h i s comparison i n f u t u r e work.

R e f e r e n c e s

1; LONG A.R. and BALKAN N . , P h i l . Mag. 8% (1980) 287.

2. LONG A.R. a n d BALKAN N . , Amorphous and L i q u i d S e m i c o n d u c t o r s , e d i t e d by W. P a u l a n d M. K a s t n e r (tJ.?rth HollanC, b t e r d a m , 1980) p.415.

3. EMIN D., Adv. Phys.

2

(1975) 305.

4. EMIN D . , Phys. Rev. L e t t .

2

(1974) 303.

5. ALLEN F.R. a n d ADKINS C.J., P h i l . Mag.

26

(1972) 1027.

6. MO'lT N.F., PEPPER M., POLLITT S., WALLIS R.H. and ADKINS C.J., P r o c . Roy. SOC.

A345 (1975) 169.

7 .

-

AUSTIN I .G. a n d MOTT N.F., Adv. Phys.

18

(1969) 41.

8. POLLAK M . , ~ h i l . Mag.

2

(1971) 519.

9. BVTCHER P.N. and HAYDEN K.J., Amorphous and L i q u i d S e m i c o n d u c t o r s , e d i t e d by W.E. S p e a r ( C e n t r e f o r I n d u s t r i a l C o n s u l t a n c y a n d L i a i s o n , Edinburgh, 1977) 234 10. MOVAGHAR B., POHLMANN B., a n d SAUER G.W., Phys. S t a t . S o l . ( b )

97

(1980) 533.

11. MILLER A. and ABRAHAMS S

.,

P h y s . Rev.

120

(1960) 745.

12. KNoTEK M.L. and POLLAK M., Phys. Rev. B z (1974) 664.

13. APSLEY N., DAVIS E.A., TROUP A.P. and YOFFE A.D., Amorphous and L i q u i d S e m i c o n d u c t o r s , e d i t e d by W.E. S p e a r ( C e n t r e f o r I n d u s t r i a l C o n s u l t a n c y and L i a i s o n , dinb burgh, 1977) p.447.

14. CONNELL G.A.N. a n d PAWLIK J.R., Phys. Rev. 813 (1976) 787.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to