• Aucun résultat trouvé

THE PHENOMENOLOGICAL THEORIES OF MARTENSITE CRYSTALLOGRAPHY

N/A
N/A
Protected

Academic year: 2021

Partager "THE PHENOMENOLOGICAL THEORIES OF MARTENSITE CRYSTALLOGRAPHY"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: jpa-00222140

https://hal.archives-ouvertes.fr/jpa-00222140

Submitted on 1 Jan 1982

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

THE PHENOMENOLOGICAL THEORIES OF MARTENSITE CRYSTALLOGRAPHY

A. Crocker

To cite this version:

A. Crocker. THE PHENOMENOLOGICAL THEORIES OF MARTENSITE CRYSTALLOGRA- PHY. Journal de Physique Colloques, 1982, 43 (C4), pp.C4-209-C4-214. �10.1051/jphyscol:1982426�.

�jpa-00222140�

(2)

JOURNAL DE PHYSIQUE

CoZloque C4, suppllment au n o 12, Tome 43, dlcembre 1982

THE'PHENOMENOLOGICAL T H E O R I E S OF M A R T E N S I T E CRYSTALLOGRAPHY

A.G. C r o c k e r

Department of Physics, University o f Surrey, Guildford, Surrey GUZ SXH, Eng Land

( A c c e p t e d 9 A u g u s t 1982)

Abstract.- The development of the basic phenomenological theories of martensite m o g r a p h y i n t o the generalised mu1 t i p l e l a t t i c e invariant shear analysis

of Acton e t a l . , referred to a s the

CRAB

theory i s summarised. Unfortunately the generality of the

CRAB

theory, and perhaps t h e concise notation adopted

i n

i t s presentation, appears t o have obscured the f a c t t h a t i t incorporates, as a special case, a new and very simple, d i r e c t and powerful formulation of the basic single shear theory. In order t o encourage wider use of t h i s method of predicting the crystallographic features of martensitic transformations, the single shear

CRAB

theory i s presented here, using elementary matrix algebra, f o r the case when the parent s t r u c t u r e i s referred t o an orthonormal basis.

The corresponding equations which a r i s e when a general parent basis i s adopted are a l s o given using t h e notation of the tensor calculus, in an appendix.

Introduction.- The well established phenomenological theories of the crystallography of martensitic transformations due t o Wechsler, Lieberman and Read ( 1 ) and t o Bowles and Mackenzie ( 2 ) were developed about 30 years ago. These theories, and the

s l i g h t l y l a t e r analysis of Bullough and Bil by ( 3 ) based on surface dislocation theory, a r e a1 1 e s s e n t i a l l y equivalent ( 4 ) , a1 though t o some extent the original formulations were r e s t r i c t e d t o p a r t i c u l a r transformations. In each case the principal assumption i s t h a t the t o t a l shape deformation i s an invariant plane s t r a i n , which i s represented here by the matrix

F.

The s i n g l e plane which i s l e f t both undistorted and unrotated by t h i s deformation-is taken t o be the i n t e r f a c e between the parent and product s t r u c t u r e s , and any volume change associated with the transformation i s assumed t o be accommodated by a s t r a i n normal to t h i s plane. The theories formally resolve the deformation E i n t o a l a t t i c e deformation D, and a l a t t i c e invariant deformation 3

( 5 ) .

When combined with any necessary atomic shuffling, the deformation I! converts the parent s t r u c t u r e i n t o the product. I t i s completely defined by the crystal s t r u c t u r e s of the two phases and a correspondence matrix C which s p e c i f i e s which parent u n i t c e l l i s deformed into a p a r t i c u l a r product unit c e l l . In practice i t i s convenient t o resolve into a rotation 8 and a pure s t r a i n p, which includes the volume change of the transformation. The deformation

S

i s assumed t o be a simple shear of magnitude g in a direction

a.

on a plane with normal m. I t does not change t h e crystal s t r u c t u r e and may therefore-be considered t o be s l i p ; twinning o r f a u l t i n g . The basic theories use the two crystal s t r u c t u r e s ,

C ,

m and a as data and give solutions f o r g and F.

There are i n general two possible values of

g ,

which defines f o r example the fraction of the product s t r u c t u r e which i s twinned. For each of these two values there a r e two solutions f o r F giving four in a l l . Each of these defines a possible habit plane of normal h and associated direction u and magnitude f of the deformation ( 4 ) .

The original formulations of these theories (1-3) of martensite crystallography were a l l based on rather complex and lengthy matrix algebra and, apart from a few special cases, solutions could only be obtained following tedious numerical comput- a t i o n s . Alternative formulations based on geometrical methods

( 6 )

and manipulations using stereographic projections

( 7 )

were therefore developed. In addition f o r some transformations the nature of the l a t t i c e invariant shear o r the correspondence or even the product crystal s t r u c t u r e was not known, although experimental information was available on the t o t a l shape deformation. Versions of the theory which could be used i n reverse t o determine information about the unknown mechanisms were therefore

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1982426

(3)

C4-210 JOURNAL DE PHYSIQUE

formulated (8,9). However e a r l y applications of the basic theories revealed t h a t the crystallographic features of some transformations could not be predicted s a t i s f a c t - o r i l y (4) so e f f o r t s were made t o introduce some f l e x i b i l i t y into the assumptions.

For example a d i l a t a t i o n parameter was introduced to allow f o r possible uniform s t r a i n s of the i n t e r f a c e ( 2 ) and attempts were made t o assess the e f f e c t of non- uniform s t r a i n s (10). In addition the influence of more complex l a t t i c e invariant shears was investigated by resolving the matrix

S

i n t o two o r more shears (11). If the group of shears share the same plane

m

or the same direction

a

they a r e auto- matically equivalent t o a single shear and can therefore be immediately accommodated in the theory. This i s also t r u e i f a l l the shear plane normals

mi

and shear d i r e c t - ions

-

.ti l i e in a common plane S, except t h a t i n t h i s case an additional rotation

-

about the normal t o

2

i s required (12). However none of these developments constituted any e s s e n t i a l change t o the basic formulation of the theory.

In

1970 Acton, Bevis, Crocker and Ross (13) published a generalised but very concise version of the martensite crystallography theories which allowed f o r inde- pendent multiple l a t t i c e invariant shears. This had been developed from a new analysis of the theory of the crystallography of deformation twinning (14,15). The need f o r t h i s theory had arisen from the discovery t h a t the basic d e f i n i t i o n of a twinning shear, being a homogeneous shear which generates the same l a t t i c e in a new orientation, allowed twinning modes with d i f f e r e n t c h a r a c t e r i s t i c s from those accepted previously. In p a r t i c u l a r modes in which both the shear plane and shear direction have i r r a t i o n a l indices had been discovered whilst investigating the phenomenon of double twinning ( 1 6 ) . Conventional twinning modes have a t l e a s t one of these elements r a t i o n a l . The extension of t h i s work t o produce a martensite c r y s t a l - lography theory with a double l a t t i c e invariant shear was carried out independently by Acton and Bevis (17) and by Ross and Crocker (18). The two approaches were how- ever complementary, the former relying e n t i r e l y on algebraic manipulations while the l a t t e r was based on geometrical concepts. The two groups then collaborated to produce a general analysis which could be used t o investigate s i x types of l a t t i c e transfornation (13). These were s i n g l e and double twinninq shears, i n which the parent and product structures a r e the same, s i n g l e and double invariant plane trans- formations, w i t h a change of s t r u c t u r e but no l a t t i c e invariant shears, and f i n a l l y single and double shear martensitic transformations.

In the double shear martensite theory (17,18) the t o t a l shape deformation

F

i s resolved i n t o a rotation

R

a pure s t r a i n

P

and two l a t t i c e invariant shears and

S 2 .

Given the parent and product s t r u c t u r e s , the correspondence

C

the shear planes In, and rn, and directions

a,

and

a,

of

S,

and

S,

and the shear magnitude g, of

S ,

a r g, of

S,,

the theory provides two possible values of g, o r g, f o r each of which there a r e two solutions f o r

F.

The analysis therefore provides an additional parameter, e i t h e r gl and g2, which can be used in an attempt t o explain the c h a r a c t e r i s t i c features of transformations which do not s a t i s f y the basic theory.

(4)

U n f o r t u n a t e l y the g e n e r a l i t y o f the a n a l y s i s due t o Acton e t a l . (13), which here w i l l be r e f e r r e d t o as t h e CRAB theory, obscures t h e f a c t t h a t the new f o r m u l a t - i o n o f t h e b a s i c s i n g l e shear theory o f m a r t e n s i t e c r y s t a l l o g r a p h y , which i t i n c o r - porates, provides a very simple, d i r e c t and powerful method f o r o b t a i n i n g numerical s o l u t i o n s f o r t h e c h a r a c t e r i s t i c f e a t u r e s o f transformations, and a l s o gives a c l e a r i n s i g h t i n t o t h e mechanisms i n v o l v e d (19,20). I n t h e present paper a s i m p l i f i e d v e r s i o n o f t h e CRAB theory i n v o l v i n g o n l y a s i n g l e l a t t i c e i n v a r i a n t shear i s presented. I n most a p p l i c a t i o n s o f t h e theory i t i s p o s s i b l e t o make use o f simple m a t r i x algebra n o t a t i o n and t h i s has been adopted i n t h e main t e x t . The correspond-

i n g equations f o r the general case i n which the parent s t r u c t u r e i s u n r e s t r i c t e d are presented i n t h e Appendix. I n t h i s case t h e more convenient b u t perhaps l e s s f a m i l i a r n o t a t i o n o f t h e tensor c a l c u l u s has been used.

The S i n g l e Shear CRAB Theory of M a r t e n s i t e Crystallography.- L e t t h e parent s t r u c t u r e be deformed by an i n v a r i a n t plane s t r a i n o f magnitude f on a plane o f normal

h

i n t h e d i r e c t i o n

u.

Here and o t h e r deformations w i l l be represented by (3x3) m a t r i c e s and h and u and o t h e r u n i t vectors by (3x1) column matrices. Hence

where

I

i s the u n i t m a t r i x and the s u p e r s c r i p t T i n d i c a t e s t r a n s p o s i t i o n . Resolve

F

i n t o an orthogonal r o t a t i o n m a t r i x

R,

a symmetric pure s t r a i n

P

and a l a t t i c e i n v a r i - a n t shear

S ,

so t h a t

F = R F " . E l i m i n a t e

5

by using t h e i d e n t i t y R T Fj =

I

t o o b t a i n

E T ~

=

s ~ ~ ~ s

=

Q

i.e.

~ = F ' F - Q = o .

(4)

The m a t r i x

X

i s symmetric so t h a t s u b s t i t u t i n g f o r

E

from ( 1 ) i n t o ( 4 ) s i x independent equations a r e obtained. These a r e

X,, = f 2 h f

+

2 f u,h,

+

1

-

Qll = 0

,

(5a

and s i m i l a r l y f o r X,, and X33, and

X,, = f 2 hlh2

+

f(ulh2

+

u2hl)

-

Q12 = 0

,

(5b

1

and s i m i l a r l y f o r X,, and X,,.

Equations ( 5 ) may be solved i n t h e f o l l o w i n g way f o r t h e f i v e unknowns f, hl/h3, h2/h3, u,/u, and u2/u3 which d e f i n e

F,

and a s i n g l e parameter contained i n

g.

F i r s t t h e t r a c e Xll

+

X22

+

X 3 3 o f

X

gives

f 2 = Qll + Q2, + Q3,

-

2 F

-

1

,

( 6 ) where F i s t h e determinant

I F (

= 1

+

f ( h l u ) o f F and i s t h e r e f o r e equal t o t h e known

- -

r a t i o o f t h e volumes o f corresponding c e l l s o f t h e two phases. Equation ( 6 ) gives two equal and o p p o s i t e values o f t h e magnitude f o f t h e i n v a r i a n t plane s t r a i n . Also t h e expression 2 hlh2X,,

- hi^,, -

h:~,, gives t h e q u a d r a t i c equation

(5)

c4-212 JOURNAL DE PHYSIQUE

f o r hl/h2 and s i m i l a r expressions g i v e corresponding compatible q u a d r a t i c s f o r h2/h3 and h3/hl. I n general these equations g i v e r i s e t o two s o l u t i o n s f o r t h e i n v a r i a n t plane

2.

The equation Xll = 0 may now be w r i t t e n

2 f h1ul = Q,,

-

f2h:

-

1 (8)

g i v i n g ul i n terms o f f and hl and s i m i l a r l y f o r u2 and u 3 . Thus t h e r e i s one displacement d i r e c t i o n f o r each f and b u t changing the s i g n o f f simply changes t h e s i g n o f u and does n o t provide a d i s t i n c t s o l u t i o n .

-

Hence i f Q i s known equat- i o n s ( 6 ) , ( 7 ) and (8) g i v e two s o l u t i o n s f o r the i n v a r i a n t plane s t r a i n

E.

A convenient method f o r determining Q i s t o i n v e r t equation ( 3 ) t o o b t a i n

S u b s t i t u t i n g i n ( 9 ) from

then gives

R 1 l = F - ~ ~ ~ u :

-

2 F-lf hlul

+

1

- 4;:

= 0

,

( l l a ) and s i m i l a r l y f o r

zZ2

and

x337

and

and s i m i l a r l y f o r

X Z 3

and

f,,.

The t r a c e of

R

now gives

and e l i m i n a t i n g f 2 from ( 6 ) and (12) r e s u l t s i n t h e f o l l o w i n g r e s t r i c t i o n on

Q.

Now from ( 3 ) , =

s ~ P ~ ?

where

S

i s a l a t t i c e i n v a r i a n t shear o f magnitude g on a plane o f normal m i n t h e d i r e c t i o n

_a,

and may thus be represented by

S = ; + g $ ? T

.

(14)

S u b s t i t u t i n g from (14) i n t o (13) the f o l l o w i n g q u a d r a t i c equation i s o b t a i n e d f o r g g 2 { F - l ( a P'Q) T

-

F ( ? ~ P - ~ ? )

> +

2 g { ~ - l ( ? ~ ~ 2 ; )

+

F(aTp-2,)

- -

1

+

IF-'T(P2)

-

F T(P-2)

-

F - l

+

F } = 0 (15)

where T(P2) = P2 11 + P i 2 + P i 3 + 2 P:2

+

2 Pz3

+

2 P:l i s t h e t r a c e o f 'P and s i m i l a r l y f o r T(P-2). Equation (15) gives two values f o r g which i n t u r n using (14) d e f i n e two p o s s i b l e shears

S

and hence two p o s s i b l e matrices Q.

The procedure f o r c a l c u l a t i n g t h e p r e d i c t e d c r y s t a l l o g r a p h i c f e a t u r e s o f a m a r t e n s i t i c t r a n s f o r m a t i o n u s i n g t h e CRAB f o r m u l a t i o n i s t h e r e f o r e as f o l l o w s .

( i ) Choose a correspondence r e l a t i n g t h e s t r u c t u r e s and c a l c u l a t e t h e pure s t r a i n Pand volume r a t i o 7 from t h i s correspondence and the l a t t i c e parameters.

( i i ) Choose a shear plane 3 and d i r e c t i o n % f o r t h e l a t t i c e i n v a r i a n t shear

S.

( i i i ) S u b s t i t u t e F,

e,

m_ and g i n t o (15) and s o l v e f o r t h e magnitude g o f

S.

( i v ) S u b s t i t u t e g i n t o (14) t o o b t a i n

5

and

P

and

2

i n t o ( 3 ) t o o b t a i n

Q.

(6)

( v ) S u b s t i t u t e F and

q

i n t o ( 6 ) t o o b t a i n f,

9

i n t o ( 7 ) t o o b t a i n

h

and 0, f and

b

i n ( 8 ) t o o b t a i n u.

( v i ) S u b s t i t u t e f,

h

and

u

i n t o ( 1 ) t o o b t a i n

F.

I n g e n e r a l f o r each F, P, m and .L t h e r e w i l l be two values f o r g and f o u r v a l u e s f o r

F

Conclusions.- The phenomenological t h e o r i e s o f t h e c r y s t a l l o g r a p h y o f m a r t e n s i t i c t r a n s f o r m a t i o n s which were f i r s t developed i n t h e 7950s were o r i g i n a l l y p r e s e n t e d as l e n g t h y f o r m u l a t i o n s and t o some e x t e n t t h e analyses were r e s t r i c t e d t o p a r t i c u l a r t r a n s f o r m a t i o n s . A l t h o u g h s u c c e s s f u l l y p r e d i c t i n g t h e c r y s t a l l o g r a p h i c f e a t u r e s o f many t r a n s f o r m a t i o n s t h e r e have been n o t a b l e e x c e p t i o n s , so t h a t a t t e m p t s have been made t o g e n e r a l i s e t h e t h e o r i e s . Most o f these g e n e r a l i s a t i o n s have been t r i v i a l b u t t h e m u l t i p l e l a t t i c e i n v a r i a n t shear a n a l y s i s o f Acton e t a l . ( 1 3 ) c o n s t i t u t e d a genuine advance. However t h e most s i g n i f i c a n t f e a t u r e o f t h i s t h e o r y was p r o b a b l y t h e f a c t t h a t i t i n c o r p o r a t e d as a s p e c i a l case a much more d i r e c t and e l e g a n t

a n a l y s i s o f t h e t r a d i t i o n a l s i n g l e shear m a r t e n s i t e c r y s t a l l o g r a p h y t h e o r y . U n f o r t u n - a t e l y because o f i t s g e n e r a l i t y , and p o s s i b l y t h e c o n c i s e n o t a t i o n used i n i t s p r e s e n t a t i o n , t h i s p o w e r f u l a n a l y s i s has been l i t t l e used. The aim o f t h e p r e s e n t paper has t h e r e f o r e been t o p r o v i d e a s i m p l e v e r s i o n o f t h i s a n a l y s i s , r e f e r r e d t o a s t h e C?AB t h e o r y , f o r s i n g l e shear m a r t e n s i t e . ,!llthough r e c e n t developments i n t h e a n a l y s i s o f m a r t e n s i t i c t r a n s f o r m a t i o n s have tended t o c o n c e n t r a t e on mechanisms a s s o c i a t e d d i r e c t l y w i t h i n t e r f a c e s t r u c t u r e and d e f e c t s , i t i s i m p o r t a n t t h a t t h e macroscopic r e s t r i c t i o n s which f o r m t h e b a s i s o f t h e phenomenological t h e o r i e s s h o u l d a l s o be s a t i s f i e d . I t i s t h o u g h t t h a t t h e f o r m u l a t i o n o f t h e t h e o r y g i v e n h e r e w i l l p r o v i d e a s i m p l e t o o l w i t h which t o perform t h e necessary computations.

Yeferences

1. WECHSLER M.S., LIEBEQMAPI D.S. and READ T.A., Trans. AI?T(FI)E

x,

1503(1953).

2. BOLILES J.S. and IfACKEPIZIE J.K., A c t a Met.

2,

129(1954).

3. BULLOUGH R. and BILBY B.A., Proc. Phys. Soc. (Lond.) B69, 1276(1956).

4. CHRISTIAN J.W., The Theory o f T r a n s f o r m a t i o n s i n

etar rand

A1 l o y s , Pergamon Press, O x f o r d 1965; second e d i t i o n , p a r t I, 1975.

5. CHRISTIAN J.I.1. and CROCKEQ A.G., D i s l o c a t i o n s and L a t t i c e T r a n s f o r m a t i o n s , i n NABARRO F.9.N. ed., D i s l o c a t i o n s i n S o l i d s

3,

Moving D i s l o c a t i o n s , N o r t h Holland, Amsterdam, 1980.

6. CHRISTIAN J.W., J. I n s t . I l e t . 84, 343(1955-6).

7. WECHSLER H.S. ,READ T.A. and L I ~ E R ~ I A N D.S., Trans. AIWE

-

218, 202(1960).

8. LIEBERFIAN D.S., A c t a Net. 6, 680(1958).

9. ROSS N.D.H. and ABELL J.S.; Phys. S t a t . Sol. ( a )

1,

K33(1970).

10. WAYMAN C.N., Acta Net. 9, 912(1961).

11. CROCKER A.G. and BILBY

B.A.,

A c t a Met. 9, 678(1961).

12. CROCKER A.G., A c t a Met. 13, 815(1965). -

13. ACTON A.F., BEVIS : I . , CRXKEX A.G. and ROSS N.Q.H., Proc. Koy. Soc. (Lond.)=, 101 (1970).

14. BEVIS 11. and CROCKER A.G., Proc. 90y. Soc. (Lond. )A304, 123(1968).

15. BEVIS

H.

and CROCKER A.G., Proc. Eoy. Soc. ( ~ o n d . ) E , 509(1969).

16. CROCKEQ A.G., P h i l . Mag. 7, 1901 (1962).

17. ACTON A.F. and BEVIS PI., Mster. S c i . Eng.

5,

19(1969)

18. ROSS N.D.H., and CROCKER A.G., Acta Met.,

18,

405(1970).

19. FLEllITT P.E.J., ASH P.J. and CSOCKER A.G., Acta Met.

g,

669(1976).

20. CROCKER A. G. and FLElsIITT P.E.J., The M i g r a t i o n o f I n t e r p h a s e Boundaries by Shear Mechanisms, i n SrIITH D.A. and CHADllICK G.A., I n t e r p h a s e Boundaries i n S o l i d s , Academic Press, London, i n t h e p r e s s .

(7)

C4-214 JOURNAL DE PHYSIQUE

Appendix: The S i n g l e Shear CRAB Theory Using a General Co-ordinate System.- Using t h e n o t a t i o n of t h e t e n s o r c a l c u l u s (13), equations ( 1 ) - ( 1 5 ) o f the main t e x t may be w r i t t e n as f o l l o w s

Note t h a t although t h e product l a t t i c e basis pi i s n o t contained e x p l i c i t l y i n t h i s a n a l y s i s i t i s introduced i n the d e f i n i t i o n o f P I . which i s given by

.

. J

Pi PJ =

pijcikcja ,

'ij k a.

where

ci

i s t h e correspondence.

j

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to