• Aucun résultat trouvé

THE DYNAMIC BEHAVIOR OF CONCRETE MATERIALS

N/A
N/A
Protected

Academic year: 2021

Partager "THE DYNAMIC BEHAVIOR OF CONCRETE MATERIALS"

Copied!
10
0
0

Texte intégral

(1)

HAL Id: jpa-00224741

https://hal.archives-ouvertes.fr/jpa-00224741

Submitted on 1 Jan 1985

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

THE DYNAMIC BEHAVIOR OF CONCRETE

MATERIALS

R. Sierakowski, H. Adeli

To cite this version:

R. Sierakowski, H. Adeli. THE DYNAMIC BEHAVIOR OF CONCRETE MATERIALS. Journal de

Physique Colloques, 1985, 46 (C5), pp.C5-81-C5-89. �10.1051/jphyscol:1985511�. �jpa-00224741�

(2)

JOURNAL

DE

PHYSIQUE

Colloque C5, supplCment a u n08, Tome 46, aoQt 1985 page C5-81

THE DYNAMIC BEHAVIOR OF CONCRETE MATERIALS R.L. Sierakowski and H. Adeli

Department of C i v i l Engineering, The Ohio S t a t e U n i v e r s i t y , CoZwnbus, Ohio 43210, U.S.A.

Resume

-

Nous presentons l ' e t a t des connaissances s u r l e comportement des betons sous chargement dynamique (chocs ou charges i m p u l s i v e s ) . Nous passons en r e v u e e t nous d i s c u t o n s l e s t r o i s aspects q u i i n t e r a g i s s e n t e t q u i s o n t l a d e t e r m i n a t i o n e x p e r i m e n t a l e des p r o p r i & t & s dynamiques, l e developpement des e q u a t i o n s c o n s t i t u t i v e s e t l a p r o p a g a t i o n des ondes. Les recherches r G a l i s 6 e s dans ces domaines s o n t r6sum@es, d i s c u t e e s e t c o r r e l e e s en i n s i s - t a n t p a r t i c u l i Prement s u r l e s e q u a t i o n s c o n s t i t u t i ves e t 1

'

i n f l u e n c e de l a v i t e s s e de d 6 f o r m a t i o n s u r l e comportement dynamique.

A b s t r a c t

-

This paper i s a s t a t e - o f - t h e - a r t r e p o r t on t h e b e h a v i o r o f c o n c r e t e m a t e r i a l s under dynamic 1 oading, t h a t i s impact o r i m p u l s i v e loads. Three i n t e r a c t i n g events a r e discussed and reviewed. They a r e d e t e r m i n a t i o n o f dynamic p r o p e r t i e s t h r o u g h experiments, development o f c o n s t i t u t i v e e q u a t i o n s and p r o p a g a t i o n o f waves. Research done i n t h e s e areas i s summarized, reviewed and c o r r e l a t e d w i t h p a r t i c u l a r a t t e n t i o n t o c o n s t i t u t i v e r e l a t i o n s and t h e i n f l u e n c e o f m a t e r i a l s t r a i n r a t e on t h e dynamic behavior.

INTRODUCTION

The s u b j e c t o f p r e d i c t i n g and e v a l u a t i n g t h e i n f l u e n c e o f dynamic e f f e c t s i n m a t e r i a l s appears t o be a s u b j e c t o f i n c r e a s i n g awareness and importance t o t h e s c i e n t i f i c community. I n c i v i l e n g i n e e r i n g t e c h n o l o g y t h i s problem i s c o n s i d e r e d as a most i m p o r t a n t and t i m e l y t o p i c p a r t i c u l a r l y as i t r e l a t e s t o t h e e s t a b l i s h m e n t o f a p p r o p r i a t e d e s i g n methodology a s s o c i a t e d w i t h masonry and c o n c r e t e b u i l d i n g s t r u c t u r e s o f b o t h t h e r e i n f o r c e d and n o n - r e i n f o r c e d types. Dynamic e f f e c t s a r e produced by i n t r o d u c i n g r a p i d l y a p p l i e d l o a d s o f s h o r t d u r a t i o n i n t o s t r u c t u r a l elements. Therefore, by impact o r i m p u l s i v e 1 oading i s imp1 i e d t h e i n t e r a c t i o n s o c c u r r i n g between i m p a c t i n g bodies and s t r u c t u r e s , and t h e c o r r e s p o n d i n g f o r c e s a c t i n g a t t h e c o n t a c t i n g s u r f a c e s o f t h e s e s t r u c t u r e s . The l o a d i n g s o f s t r u c t u r e s s u b j e c t e d t o t h e s e t y p e s o f events a r e t h u s g e n e r a l l y c l a s s i f i e d as i m p a c t / i m p u l s i v e Loads. Of p r i n c i p a l i n t e r e s t t o engineers i s t h e mechanical b e h a v i o r of t h e s t r u c t u r a l m a t e r i a l s , as exposed t o t h e s e r a p i d l y a p p l i e d loads. A q u a n t i f i c a t i o n o f t h e s e events can g e n e r a l l y be c a t e g o r i z e d e i t h e r by t h e t i m e response o f t h e imposed l o a d r e l a t i v e t o t h e n a t u r a l p e r i o d o f t h e s t r u c t u r e , o r a l t e r n a t i v e l y by an. e s t a b l i s h e d s t r a i n r a t e . Summary t a b l e s i d e n t i f y i n g t h e s e c h a r a c t e r i s t i c s have been n o t e d i n Tables 1 and 2. One o f t h e more s i g n i f i c a n t c h a r a c t e r i s t i c s o f impact o r i m p u l s i v e t y p e l o a d s i n t h e regime where m a t e r i a l c o n s t i t u t i v e laws a r e a p p l i c a b l e i s t h e c o m p l i c a t e d m a t e r i a1 responses observed i n c l u d i n g a1 so modes o f d e f o r m a t i o n and f r a c t u r e mechanisms. G e n e r a l l y , t h e s e responses can be b r o a d l y c l a s s i f i e d as near f i e l d and f a r f i e l d e f f e c t s . The near f i e l d response can be c h a r a c t e r i z e d by t h e geometry, r i g i d i t y , and mass o f t h e t a r g e t media as w e l l as t h e i n t e n s i t y , mass, and v e l o c i t y o f t h e d e f i n e d i m p a c t / i m p u l s i v e load. The f a r f i e l d response i s c o n t r o l l e d p r i m a r i l y by t h e s t r e s s wave propagation, bond s t r e n g t h between a g g r e g a t e / r e i n f o r c e m e n t , m a t e r i a l c o n s t i t u t i v e e q u a t i o n s and f a i 1 u r e c r i t e r i a o f t h e c o n s t i t u e n t m a t e r i a l s .

In

a d d i t i o n , t h e v e l o c i t y / i n t e n s i t y o f t h e l o a d i n g i n f l u e n c e s t h e s t r a i n r a t e which has an e f f e c t on t h e s t r e s s wave p r o p a g a t i o n and t h e c o r r e s p o n d i n g f a i l u r e mechanisms o c c u r r i n g i n t h e s t r u c t u r e .

(3)

JOURNAL DE PHYSIQUE

(Const~tutive Equation)

F i g u r e 1

A key f e a t u r e associated w i t h dynamic loadings i s thus t h e i n t e r a c t i v e n a t u r e o f t h e events which occur. This i s g r a p h i c a l l y represented i n Figure 1. This f i g u r e d i s p l a y s t h e i n t e r a c t i v e r o l e of t h e important events necessary t o understand and model t h e behavior of m a t e r i a l s subjected t o impact/impulsive loads. That i s , i n o r d e r t o determine dynamic p r o p e r t i e s necessary as modeling parameters f o r dynamic events one must have knowledge o f wave propagation e f f e c t s as w e l l as knowledge o f t h e m a t e r i a l c o n s t i t u t i v e equations. However, t o understand wave propagation events t h e very same dynamic p r o p e r t i e s which are being sought must be known a p r i o r i as i n p u t t o t h e c o n s t i t u t i v e equations which are t o be determined. Thus i n p u t from a l l t h r e e events must be synthesized i n order t o understand and q u a n t i f y dynamic e f f e c t s . These t o p i c s a r e s e l e c t i v e l y high1 i g h t e d i n t h e accompanying paragraphs i n order t o review t h e c u r r e n t ongoing work i n these areas as w e l l as f o r p o t e n t i a l l y r e c o g n i z i n g where f u r t h e r work and d e f i c i e n c i e s i n our e x i s t i n g data base i s necessary.

Table 1 LON CLASSIFICATION

*

Load C l a s s i f i c a t i o n T I T Type o f Load

Q u a s i - S t a t i c

>4

Conventional t e s t i n g o f concrete

Quasi -Impact

Impul s i ve and Impact

-1 Transient 1 oading on s t r u c t u r e s

(0.25 K i n e t i c Energy, b l a s t loads

Shock Loads High energy expl o s i ves

*

T I T i s t h e r a t i o o f l o a d d u r a t i o n ( 7 ) t o c h a r a c t e r i s t i c response t i m e (T).

Table 2 STRAIN RATE REGIMES

Load C l a s s i f i c a t i o n S t r a i n Rate M a t e r i a l C h a r a c t e r i z a t i o n Ouasi-Static

l o 4

-

1 o 1 / e c C o n s t i t u t i v e Equation

-- - -- - - -

Intermediate 1 0

-

lol/sec C o n s t i t u t i v e Equation High

l o 2

-

104/sec C o n s t i t u t i v e Equation

(4)

DYNAMIC

PROPERTIES

While i t i s important t o recognize t h a t a number o f dynamic p r o p e r t i e s c o u l d be examined t h e f o l l o w i n g remarks w i l l be l i m i t e d t o t h e i n f l u e n c e o f m a t e r i a l s t r a i n r a t e as i t e f f e c t s dynamic p r o p e r t i e s . To develop an understanding o f s t r a i n r a t e e f f e c t s i n m a t e r i a l s recourse i s g e n e r a l l y made t o observations using a p p r o p r i a t e l y designed experimental devices. E a r l y r a t e e f f e c t s t u d i e s on t h e behavior i n concrete were i n v e s t i g a t e d using c o n t r o l l e d r a t e o f l o a d i n g t e s t s i n what we now c a l l conventional t e s t i n g machines. Only impact types t e s t s , however, achieve r a t e s comparable t o those i n t h e impact/impulsive l o a d i n g regime. Table 2 d i s p l a y s a c l a s s i f i c a t i o n schedule f o r i d e n t i f y i n g t h e various and important s t r a i n r a t e regimes.

At t h e h i g h end o f t h e q u a s i - s t a t i c l o a d spectrum and f o r measuring dynamic events, a dynamometer placed i n tandem w i t h t h e specimen i n t e s t i n g machines provides an i n d i c a t o r o f t h e impact force. At s t r a i n r a t e s above approximately 10 sec'l wave propagation e f f e c t s i n specimen and dynamometer complicate t h e s t r e s s determination and must be taken i n t o account. This has l e d t o t h e development o f s p e c i f i c t e s t i n g devices f o r various h i g h r a t e regimes, For i n t e r m e d i a t e s t r a i n rates, drop t e s t s u s i n g instrumented s t r i k e r weights have been used t o o b t a i n s t r a i n r a t e data. Pol important element i n v o l v e d w i t h a n a l y s i s o f data using t h i s t y p e o f

t e s t equipment i s t h e requirement f o r a c c o u n t a b i l i t y o f i n e r t i a e f f e c t s . For h i g h e r s t r a i n rates, a u s e f u l experimental apparatus i s t h e s p l i t Hopkinson pressure bar system which h ~ s been used e x t e n s i v e l y f o r dynam$c t e s t s o f metals. The l o n g t r a n s m i t t e r bar used w i t h t h i s system serves as a dynamometer measuring t h e force, and hence t h e average s t r e s s over t h e cross section, a t t h e specimen face i n contact w i t h t h e pressure

Mr.

For very h i g h s t r a i n rates, t h a t I s above

l o 3

sec", f l y e r p l a t e impact tests//'have been used as an experimental procedure. Gas guns a r e g e n e r a l l y used as ' t h e p r o p e l l i n g d e v i ces f o r t h e f l y e r p l a t e s w i t h s t r e s s e s generated ranging up t o t h e v i c i n i t y o f

l o 3

kbars.

Atchley and Furr ( 1 ) used

a

drop t e s t e r w i t h drop h e i g h t s up t o 20 ft and found dynamic s t r e n g t h s up t o more than

1.6

times t h e s t a t i c strengths. Seabold ( 2 ) s t u d i e d r a t e e f f e c t s . r e l a t e d t o t h e unconfined compressive s t r e n g t h i n concrete up t o s t r a i n r a t e s o f about 5 sec-I and i n t r o d u c e d e m p i r i c a l formula c o n t a i n i n g both a l i n e a r term and a l o g a r i t h m i c term i n t h e s t r a i n r a t e . By u s i n g , s i m p l e bar-wave t h e o r y and a drop t e s t e r , Hughes and Gregory ( 3 ) were able t o estimate t h e t r a n s i e n t stresses o c c u r r i n g and concluded t h a t impact s t r e n g t h s averaged about 1.92 times t h e s t a t i c compressive s t r e n g t h o f t h e m a t e r i a l . They found i n some o f t h e i r s t r o n g concretes values g r e a t e r than 37,000 psi. Hughes and Watson ( 4 ) used a s i m i l a r t e s t technique and observed t h a t t h e i n c r e a s e i n compressive s t r e n g t h i n dynamic t e s t s over t h e s t a t i c s t r e n g t h was g r e a t e r f o r low-strength concrete than f o r t h e corresponding h i g h - s t r e n g t h concrete.

Dynamic e l a s t i c p r o p e r t i e s o f concrete b a r specimens have a1 so been s t u d i e d u s i n g wave propagation t e s t s by Goldsmith et. al. (5, 6, 7, 8). Analyzing one dimensional wave propagation induced by impacting a l o n g bar w ~ t h a s t e e l sphere, t h e wave speeds, f r a c t u r e s t r a i n s , and energy r e q u i r e d t o f r a c t u r e g e o l o g i c a l and cementious m a t e r i a l s have been studied. The dynamic t e n s i l e s t r e n g t h and s t r a i n energy r e q u i r e d t o f a i l concrete specimens have been measured i n s i m i l a r l o n g i t u d i n a l impacts using various scaled p r o j e c t i l e s by Bi rkimer and Lindemann ( 9 ) , by G r i n e r ( 9 ) and Sierakowski et. a l .

(11).

Results obtained from these t e s t s showed t h a t dynamic compressive s t r e n g t h s around 26,400 p s i c o u l d be reached u s i n g 3/4-inch-diameter specimens. This was found t o be 1.93 times t h e s t a t i c compressive s t r e n g t h o f 13,690 psi.

h o n g t h e very few o t h e r a p p l i c a t i o n s o f s p l i t Hopkinson bar technology t o concrete i s t h a t made by Korrneling et. al. (12), f o r t h e case o f dynamic t e n s i l e t e s t s . I n these t e s t s , t h e r e p o r t e d dynamic t e n s i l e s t r e n g t h s were more than twice.

(5)

C5-84 JOURNAL DE PHYSIQUE t h e s t a t i c v a l u e a t s t r a i n r a t e s o f a p p r o x i m a t e l y 0.75 sec-l. Noteworthy . i s t h e f a c t t h a t t h e s e i n v e s t i g a t o r s as w e l l as o t h e r s have f o u n d s i g n i f i c a n t i n c r e a s e s i n t h e impact t e n s i l e s t r e n g t h i n f i b e r - r e i n f o r c e d c o n c r e t e o v e r t h a t o f p l a i n c o n c r e t e ( 1 3 ) . WAVE PROPAGATION I n o r d e r t o i n v e s t i g a t e dynamic e f f e c t s i n c o n c r e t e m a t e r i a l s o v e r i m p a c t / i m p u l s i ve 1 o a d i ng ranges where c o n s t i t u t i v e e q u a t i o n s model 1 i ng r e t a i n s i m p o r t a n c e s t u d i e s a s s o c i a t e d w i t h wave p r o p a g a t i o n events a r e u s e f u l . h o n g t h e more i m p o r t a n t parameters f o r s t u d y a r e p u l s e speed, a t t e n u a t i o n , g e o m e t r i c / m a t e r i a l d i s p e r s i o n e f f e c t s , as we1 1 as f r a c t u r e c h a r a c t e r i z a t i o n . Comprehensive s t u d i e s c o n c e r n i n g wave p r o p a g a t i o n i n c e r t a i n c l a s s e s o f rock and c o n c r e t e were performed by G o l d s m i t h e t . a l . (5, 6). R e s u l t s o f t h e s e t e s t s i n d i c a t e d t h a t t h e p u l s e propagates w i t h o u t d i s p e r s i o n and w i t h an a t t e n u a t i o n p r o p o r t i o n a l t o some power o f t h e r a t i o o f t h e d i s t a n c e t r a v e r s e d t o b a r d i a m e t e r f o r i n i t i a l wave passage. The f a c t o r s which most i n f l u e n c e d t h e dynamic b e h a v i o r o f t h e igneous r o c k t y p e s were found t o be g r a i n s i z e , g r a i n bond s t r e n g t h , and t h e e f f e c t o f r e p e a t e d shocks.

F o l l owing t h e s e s t u d i e s on r o c k specimens, Go1 dsmi t h and co-workers ( 7 ) conducted a s i m i l a r s e r i e s o f t e s t s on l a b o r a t o r y prepared specimens o f concrete. The specimens were a g a i n 0.75 i n c h e s i n d i a m e t e r and 24 i n c h e s i n l e n g t h . The wave p r o p a g a t i o n speed was found t o be s i m i l a r t o t h a t o f t h e coarse g r a i n e d igneous r o c k s and was a p p r o x i m a t e l y 144,000 i n c h e s p e r second.

F u r t h e r s t u d i e s on c o n c r e t e b a r s were performed by Goldsmith e t . a l . (8). Concrete composed o f a l i g h t w e i g h t aggregate was a l s o s t u d i e d and compared w i t h t h e dynami c p r o p e r t i e s o f c o n v e n t i o n a l c o n c r e t e . For t h e c o n c r e t e composed o f 1 i g h t w e i g h t aggregate t h e r e s u l t i n g d a t a i n d i c a t e d t h a t t h e wave speed was 123,000 i n c h e s p e r second and t h e r a t i o o f t h e dynamic Young's modulus t o t h e s t a t i c v a l u e was 1.2. For c o n v e n t i o n a l c o n c r e t e t h e wave speed n o t e d was found t o be 144,000 i n c h e s p e r second. For t h e s e m a t e r i a l s p u l s e a t t e n u a t i o n was found t o i n c r e a s e w i t h i n c r e a s e i n t h e s t r a i n l e v e l . It was f u r t h e r concluded t h a t f o r some r o c k s a t h r e s h o l d s t r a i n l e v e l was reached whereupon any f u r t h e r i n c r e a s e i n t h e impact generated by t h e s t r i k e r r e s u l t e d o n l y i n g r e a t e r comminution o f t h e impact end. Placement o f a m e t a l l i c cap on t h e impact end reduced t h i s e f f e c t and r e s u l t e d i n a 100 p e r c e n t i n c r e a s e i n t h e s t r a i n l e v e l reached w i t h i n t h e bar. Also, s i g n i f i c a n t d i f f e r e n c e s i n d a t a were n o t e d f o r s t r a i n gages p l a c e d on p i e c e s o f aggregate as d i s t i n c t f r o m r e s u l t s o b t a i n e d w i t h gages l o c a t e d on t h e cement proper.

More r e c e n t s t u d i e s conducted by G r i n e r e t . a l . ( 1 4 ) and Sierakowski e t . a l . ( 1 1 ) examined wave p r o p a g a t i o n d a t a a t v e l o c i t i e s i n t h e v i c i n i t y o f t h e t h r e s h o l d l e v e l f o r p r o d u c i n g f i r s t t e n s i l e f r a c t u r e i n c o n c r e t e b a r specimens o f 314" and 1- 1/2" d i a m e t e r by 36" long. The e f f e c t s o f i m p a c t o r l e n g t h on wave shape, a t t e n u a t i o n , and p u l s e speed f o r s e v e r a l c o n t r o l l e d cement aggregate specimens have been considered. Also e v a l u a t e d was t h e i n f l u e n c e o f end p r o t e c t i v e caps and epoxy r e b o n d i n g as e f f e c t i n g t h e p u l s e passage a l o n g t h e bars. Some o f t h e e f f e c t s n o t e d i n t h e s e s t u d i e s were t h a t compressive p u l s e speeds were changed by up t o 10% i n s h i f t i n g f r o m medium t o c o a r s e g r a i n aggregates and t h a t c u r e t i m e was s i m i l a r l y i n f l u e n c e d . I n a d d i t i o n , compressive p u l s e speeds were found t o i n c r e a s e w h i l e t e n s i 1 e p u l s e speeds decreased.

CONSTITUTIVE EQUATIONS

A p p r o p r i a t e m a t e r i a l m o d e l i n g as d e l i n e a t e d by c o n s t i t u t i v e e q u a t i o n s p l a y s an i m p o r t a n t r o l e o v e r t h e s t r a i n r a t e range e x t e n d i n g f r o m sec" up t o

l o 4

s e c - l . Beyond t h i s l a t t e r range, t h a t i s i n t h e shock wave regime, t h e m a t e r i a l can be c o n s i d e r e d as a f l u i d medium f o r response purposes w i t h s t r e n g t h c o n s i d e r e d as a p r i n c i p a l d e f i n i n g parameter. I n t h e f o l l o w i n g paragraphs a r e v i e w o f s e l e c t i v e areas i n t h e c o n s t i t u t i v e e q u a t i o n m o d e l l i n g o f c o n c r e t e i s presented.

(6)

Linear/Nonl i n e a r E l a s t i c Models

The observed n o n l i n e a r behavior o f c e r t a i n r e i n f o r c e d concrete s t r u c t u r a l elements, f o r which t h e s t r e s s s t a t e can be b a s i c a l l y i d e a l i z e d a.s of t h e compression-tension type, i s mainly due t o t e n s i l e c r a c k i n g o f t h e concrete and t h e r e s u l t i n g r e d u c t i o n i n concrete s t i f f n e s s . To model t h i s observed behavior, a number o f researchers have developed and employed l i n e a r e l a s t i c f r a c t u r e models as f o r example Ngo and Scordelis (15) and P h i l l i p s and Zienkiewicz (16). I n these models, t h e s t r e s s - s t r a i n r e l a t i o n s f o r uncracked concrete have been developed based upon a l i n e a r theory o f e l a s t i c i t y and defined completely by young's modulus E, Poisson's r a t i o v

, o r b u l k modulus

K = E/3(1-2v) and t h e corresponding shear modulus G = E / 2 ( 1 + ~ ) . Expressions i n v o l v i n g t h e v o l u m e t r i c s t r a i n , E ~ mean ~ , normal s t r e s s p = ukk/3, d e v i a t o r i c s t r e s s Si = oij

-

akkaij/3, and shear deformation d e f i n e d by eij = cij

-

E~~ 6. T j

/3

have been developed. The same type o f 1 in e a r e l a s t i c c o n s t i t u t i v e r e l a t i o n s has been used f o r cracked concrete. However, t h e instantaneous tangent modulus has been m o d i f i e d i n such a manner t h a t t h e stresses i n t h e d i r e c t i o n perpendicular t o t h e crack are zero. This model does not t a k e i n t o account t h e sudden Stress release due t o propagation o f t h e crack which may induce f u r t h e r cracking. Attempts have been made t o modify t h i s model by i n c o r p o r a t i n g t h e sudden release o f f r a c t u r e stresses i n a global manner o r by i n c l u d i n g p r o v i s i o n s f o r a d d i t i o n a l crack generation by t h e opening o r c l o s i n g o f e x i s t i n g cracks. These c r i t e r i a have been introduced by Chen and Suzuki (17) and by Chen and Ting (18).

Nonlinear e l a s t i c c o n s t i t u t i v e r e l a t i o n s have a1 so been developed i n terms o f t h e s t r e s s r a t e and s t r a i n rate. That i s ,

I n these equations, Kt = Kt (aii) represents t h e tangent bulk modulus which i s a f u n c t i o n o f the f 4 r s t s t r e s s i-n-variant w h i l e Gt = Gt(Sij bii/2) ) i s t h e shear modulus which i s a f u n c t i o n o f t h e second s t r e s s invariant.-P Using t h e c u r r e n t values o f t h e tangent moduli, s i m i l a r m o d i f i c a t i o n s have been used f o r t h e i n c l u s i o n o f t h e cracks i n t h e model as i n t h e l i n e a r e l a s t i c f r a c t u r e model.

P l a s t i c Models

Such models take i n t o account t h e l i m i t e d p l a s t i c f l o w observed i n t h e s t r e s s - s t r a i n behavior o f concrete before crushing. The simp1 e s t model c o n s t r u c t e d i s based upon t h e p e r f e c t l y p l a s t i c model. The r e s u l t i n g c o n s t i t u t i v e r e l a t i o n i s d i v i d e d i n t o t h r e e p a r t s , t h e f i r s t o f these regimes being before p l a s t i c f l o w occurs, t h e second d u r i n g p l a s t i c flow, and t h e t h i r d a f t e r f r a c t u r e . Included i n such r e l a t i o n s are i n h e r e n t y i e l d and f r a c t u r e c r i t e r i a (e.g., Von Mises c r i t e r i o n , Drucker/Prager c r i t e r i o n , o r Coulomb c r i t e r i o n ) . For such models, t h e incremental p l a s t i c f l o w law which expresses t h e n o r m a l i t y o f the p l a s t i c deformation r a t e v e c t o r t o t h e y i e l d s u r f a c e can be w r i t t e n as,

where d~:.~ i s the incremental p l a s t i c s t r a i n tensor, oii i s t h e s t r e s s tensor, g i s t h e y i e i d f u n c t i o n , and A i s a p o s i t i v e p r o p o r t i o n a l i ~ y fa c t o r . This model has been argued as not meeting c e r t a i n requirements o f continuum mechanics when appl t ed t o b r i t t l e concrete m a t e r i a l s , as discussed f o r example by Chen and Ting (18).

To modify t h e p e r f e c t l y p l a s t i c model and remove some o f these d e f i c i e n c i e s , an e l a s t i c s t r a i n hardening p l a s t i c model has been introduced by Chen and Chen (19).

(7)

C5-86 JOURNAL DE PHYSIQUE

Using t h e n o r m a l i t y c o n d i t i o n o f t h e incremental t h e o r y o f p l a s t i c i t y , i t i s p o s s i b l e t o o b t a i n t h e f o l l o w i n g f l o w r u l e :

Here t h e f u n c t i o n f ( ) ~= 9(6..), h = d f / d ~

P 1

J

P' and E P

=/dEPJ

.

M a t r i x

c o n s t i t u t i v e equations based on t h i s model have been presented by Chen and Chen (19)

To describe t h e dynamic behavior o f concrete, as w e l l as t h e n o n - l i n e a r e f f e c t s o c c u r r i n g i n e l a s t i c - v i s c o p l a s t i c f r a c t u r e models a n a l y t i c a l methods have heen developed by N i l s s o n (20). I n t h i s model a r a t e hardening parameter, Hr, i s introduced i n order t o t a k e i n t o account t h e e f f e c t o f s t r a i n r a t e on t h e d u c t i l e y i e l d and b r i t t l e f r a c t u r e surfaces.

Where Eef i s t h e e f f e c t i v e s t r a i n r a t e expressed i n terms o f the octahedral normal and shear s t r a i n s , go and :o, r e s p e c t i v e l y .

Here t h e q u a n t i t i e s wl and w2 a r e weight c o e f f i c i e n t s i n t r o d u c e d t o t a k e i n t o account d i f f e r e n t m i c r o f a i l u r e mechanisms. The parameters cl, c2, and c3 a r e determined by f i t t i n g o f t h e data from dynamic compression t e s t s o f concrete.

Using a m o d i f i c a t i o n o f Perzyna's theory o f e l a s t i c - v i s c o p l a s t i c i t y (21), Bicanic and Zienkiewicz (22) have developed a r a t e and h i s t o r y dependent model f o r p l a i n concrete. The m a t e r i a l behavior i n t h i s model i s described using two surfaces i n t h e p r i n c i p a l s t r e s s space, these being, t h e d i s c o n t i n u i t y surface d e f i n i n g t h e departure from e l a s t i c i t y , and t h e s t r e n g t h l i m i t surface which monitors t h e i n i t i a t i o n o f t h e s o f t e n i n g regime.

Axiomatic Model s

I n t h e c l a s s i c a l incremental f l o w theory o f p l a s t i c i t y , a y i e l d c r i t e r i o n i s p o s t u l a t e d and a hardening r u l e i s s p e c i f i e d f o r t h e subsequent y i e l d surfaces. Any

c o n s t i t u t i v e law based upon such e l a s t o p l a s t i c behavior i s considered a d i s c o n t i nuous model c o n s i s t i n g o f separate stages f o r loading, unloading, and reloading. Experimental evidence i n d i c a t e s t h a t separation o f t h e e l a s t i c deformation from p l a s t i c deformation i s a mathematical i d e a l i z a t i o n o f t h e complicated a c t u a l phenomena. I n order t o circumvent some o f t h e d i f f i c u l t i e s associated w i t h t h e c l a s s i c a l t h e o r i e s o f p l a s t i c i t y , t h a t i s , p o s t u l a t i o n o f a y i e l d surface and i t s motion i n s t r e s s space, hardening r u l e s , and unloading c r i t e r i a , several i n v e s t i g a t o r s have attempted t o present continuous models. Among these axiomatic models, t h e endochronic t h e o r y presented by Valanis (23) has found considerable appl i c a t i o n s .

I n i t s basic format endochronic theory can be considered as a g e n e r a l i z a t i o n o f t h e c l a s s i c a l theory o f v i s c o p l a s t i c i t y which i s both h i s t o r y dependent and s t r a i n

(8)

r a t e dependent. Using i r r e v e r s i b l e thermodynamics, V a l a n i s ( 2 3 ) i n t r o d u c e d t h e n o t i o n o f a pseudo-time scale, t h e s o - c a l l e d i n t r i n s i c t i m e , and p r e s e n t e d a c o n s t i t u t i v e re1 a t i o n i n i n t e g r a l / d i f f e r e n t i a l f o r m and i n terms o f an i n t r i n s i c tinie. Such a c o n s t i t u t i v e model can d e s c r i b e d i f f e r e n t c h a r a c t e r i s t i c s o f m a t e r i a l b e h a v i o r i n c l u d i n g s t r a i n hardening, unloading, re1 oadi ng, c r o s s hardening, and c o n t i n u e d c y c l i c s t r a i n i n g . Bazant (24,25) extended and a p p l i e d t h e endochronic t h e o r y t o d i f f e r e n t t y p e s o f m a t e r i a l s i n c l u d i n g sand, rock, p l a i n c o n c r e t e , and r e i n f o r c e d concrete.

The s i m p l e endochronic t h e o r y r e s u l t s i n an u n l o a d i n g response which i s n o t e l a s t i c a t t h e b e g i n n i n g o f unloading. Consequently, i n f i n i t e s i m a l h y s t e r e s i s 1 oops i n t h e f i r s t quadrant o f t h e s t r e s s - s t r a i n space a r e n o t c l o s e d which i s i n c o n t r a s t t o e x p e r i m e n t a l evidence a v a i l a b l e on t h e b e h a v i o r o f metals. I n a r e c e n t paper, V a l a n i s and Lee (26) p r e s e n t e d a m o d i f i e d endochronic model based on a new i n t r i n s i c t i m e s c a l e which i s a measure o f l e n g t h i n t h e p l a s t i c s t r a i n space. T h i s model l e a d s t o t h e c l o s u r e o f t h e s e i n f i n i t e s i m a l h y s t e r e s i s loops.

Empi r i c a l Models ( E q u i v a l e n t u n i a x i a l Model )

The m a j o r i t y o f c u r r e n t a n a l y s i s t e c h n i q u e s uses an e q u i v a l e n t u n i a x i a l c o n s t i t u t i v e model f o r a n a l y z i n g two-dimensional problems such as beams, p l a t e s , and t h i n s h e l l s . I n t h i s model, t h e b i a x i a l s t r e s s - s t r a i n b e h a v i o r o f c o n c r e t e i s t r e a t e d by a s i n g l e e q u i v a l e n t s t r e s s - s t r a i n r e l a t i o n s h i p . Many e x p r e s s i o n s have been proposed i n t h e l i t e r a t u r e . The f o l l o w i n g e x p r e s s i o n o f a model o f t h i s t y p e can be c i t e d , as f o r example, t h e model p r e s e n t e d by Popovics ( 2 7 ) and Buyukozturk and Tseng (28) where,

Here a i s t h e p r i n c i p a l s t r e s s , a i s t h e maximum p r i n c i p a l s t r e s s , E i s t h e

P P

c o r r e s p o n d i n g e q u i v a l e n t s t r a i n , E i s t h e e q u i v a l e n t s t r a i n , and n i s t h e shape e

f a c t o r which i s g i v e n by

The q u a n t i t y Eo i s t h e i n i t i a l s l o p e o f t h e o-E curve. By d i f f e r e n t i a t i n g Eq. e ( I ) , t h e s l o p e a t a p o i n t w i t h e q u i v a l e n t s t r a i n ee i s found t o be 1

-

( )

]

n ( n - 1 ) E = [n-1

+($)

n ] Due t o s i g n i f i c a n t i n f l u e n c e o f h y d r o s t a t i c p r e s s u r e on t h e b e h a v i o r o f c o n c r e t e under t r i a x i a l states;this model cannot be a c c u r a t e l y used i n t h r e e dimensional analyses.

Rheol o g i c a l Models

These models have been developed based upon s t u d i e s o f t h e p r o p a g a t i o n o f one dimensional s t r e s s p u l s e s generated i n impact t e s t s o f l o n g b a r specimens. Several models can be c i t e d i n t h e l i t e r a t u r e . The s o l i d f r i c t i o n c o n s t i t u t i v e model

(9)

C5-88 JOURNAL

DE

PHYSIQUE

developed by Goldsmith e t a1 ( 6 ) and Pozzo ( 2 9 ) seems t o d e s c r i b e t h e d i s s i p a t i o n mechanism i n c o n c r e t e b e t t e r t h a n o t h e r models. The s t r e s s - s t r a i n r e l a t i o n f o r a s o l i d f r i c t i o n model can be r e p r e s e n t e d i n t h e f o l l o w i n g f o r m :

Here IA i s t h e n a t u r a l frequency and $ i s a damping c o n s t a n t .

CONCLUDING REMARKS AND RECOMMENDATIONS

The p r o p a g a t i o n o f s t r e s s waves r e p r e s e n t s a key f e a t u r e i n p r o d u c i n g t h e e f f e c t s which r e s u l t i n and c o n t r o l t h e f a i l u r e / f r a c t u r e mechanisms as w e l l as i n d e v e l o p i n g e x p e r i m e n t a l procedures f o r d e t e r m i n i n g dynamic p r o p e r t i e s and c o n s t i t u t i v e equations. Some o f t h e i m p o r t a n t parameters t h a t need t o be determined f rom wave s t u d i e s f o r c o n c r e t e , u s i n g a n a l y t i c a l o r e x p e r i m e n t a l procedures, i n c l u d e d a t a on t e n s i o n / c o m p r e s s i o n a l wave v e l o c i t i e s , e f f e c t s o f m i c r o v o i d s and m i c r o c r a c k s on wave p r o g r e s s i o n , e f f e c t o f aggregate s i z e and r e i n f o r c e m e n t on p u l s e a t t e n u a t i o n , g e o m e t r i c and m a t e r i a l p u l s e d i s p e r s i o n , damping, e f f e c t o f m a t e r i a l aging, s i z e e f f e c t s , and s c a l i n g parameters.

It would be i d e a l i f i n d e v e l o p i n g models f o r c o n s t i t u t i v e e q u a t i o n s s u b j e c t e d t o i m p a c t / i m p u l s i v e l o a d s a u n i v e r s a l l y a p p l i c a b l e methodology c o u l d be developed t o s y n t h e s i z e a l l l o a d i n g modes. For t h e p r e s e n t , when c o n s i d e r i n g t h e development o f c o n s t i t u t i v e e q u a t i o n s f o r use i n dynamic l o a d i n g o f c o n c r e t e , a number o f i m p o r t a n t i s s u e s a r e i n need o f f u r t h e r study. P r i n c i p a l among t h e s e i s t h e t e s t i n g o f a number o f t h e models c u r r e n t l y a v a i l a b l e beyond t h e one dimensional s t r e s s s t a t e t o m u l t i a x i a l s t r e s s s t a t e s . The i n c o r p o r a t i o n o f p r e v i o u s s t r a i n h i s t o r y , t h a t i s , t h e number o f p r i o r i m p a c t / i m p u l s i v e l o a d i n g s s h o u l d be known i n o r d e r t o expand p r e d i c t i v e model l i n g c a p a b i l i t y . I n a d d i t i o n , t h e r e c o g n i z e d r a t e s e n s i t i v i t y as i t r e l a t e s t o d i f f e r e n t l o a d i n g modes s h o u l d be i n c o r p o r a t e d i n any model development. Also i m p o r t a n t a r e t h e s i z e o f t h e components b e i n g t e s t e d . That i s , t h e response o f c o n c r e t e and s i m i l a r s t r u c t u r a l m a t e r i a l s i s dependent on t h e s i z e o f t h e geometric element as w e l l as t h e d i s t r i b u t i o n o f d e f e c t s such as developed m i c r o c r a c k s and i n h e r e n t m i c r o v o i d s w i t h i n t h e m a t e r i a l s . A d d i t i o n a l r e s e a r c h t h r u s t s a r e a l s o necessary t o develop a more complete u n d e r s t a n d i n g o f e m p i r i c a l and semi-empi r i c a l c o n s t i t u t i v e laws. C o n s i d e r a b l e p h y s i c a l e v i d e n c e f o r model 1 in g purposes may be gleaned by examining t h e m i c r o s t r u c t u r a l response regime o f c o n c r e t e as w e l l as t h e m a c r o s t r u c t u r a l regimes.

REFERENCES

1. Atchley, B.L., and Furr, H.L. " S t r e n g t h and Energy A b s o r p t i o n C a p a b i l i t i e s o f P l a i n Concrete Under Dynamic and S t a t i c Loading", ACI J o u r n a l , November 1967 pp. 745-756.

2. Seabold, R.H., "Dynamic Shear S t r e n g t h o f R e i n f o r c e d Concrete Beams

-

P a r t 111", Tech. Report R-695 Naval C i v i l E n g i n e e r i n g Lab., P o r t Hueneme, C a l i f . September 1970.

3. Hughes, B.P. and Gregory, R., "Concrete Subjected t o High Rates o f Loading i n Compression", Magazine of Concrete Research, Vol. 24, 1972, pp. 25-36.

4. Hughes, B.P. and Watson, A.J., Compressive S t r e n g t h and U l t i m a t e S t r a i n o f Concrete Under Impact Loading", Magazine o f Concrete Research, Vol. 30, 1978, pp. 189-199.

5. Goldsmith, W.. and Austin, C.F., "Some Dynamic C h a r a c t e r i s t i c s o f Rocks", S t r e s s

'

Waves i n A n e l a s t i c S o l i d s , Springer, B e r l i n , Germany, 1964, p. 277.

6. Goldsmith, W., A u s t i n , C.F., Wang, C.C. and Finnegan, S., " S t r e s s Waves i n Igneous Rocks", J o u r n a l o f Geophysical Research, Vol. 71, No. 8, 1966, p. 2055.

(10)

Experimental Mechanics, February 1966, pp. 65-79.

Goldsmith, W., Kenner, V.H. and R i c k e t t s , E.E., , "Dynamic Loading o f Several

Concrete-Li ke M i x t u r e s " , ASCE, Journal S t r u c t u r a l D i v i s i o n , Vol

.

94, ST7 1968, PP. 1803-1827.

Bi r k i m e r , D.L. and Lindemann, R., "Dynamic T e n s i l e S t r e n g t h o f Concrete M a t e r i a l s " , ACI J o u r n a l , Proc. 68, 1971, pp. 47-49 and Supplement No. 68-8., 1971.

G r i n e r , G.R., "Dynamic P r o p e r t i e s o f Concrete", M a s t e r ' s Thesis, U n i v e r s i t y o f F l o r i d a , 1974.

Sierakowski, R.L., Malvern, L.E., C o l l i n s , J.A., M i l t o n , J.E. and Ross, C.A., " P e n e t r a t o r Impact Studies o f Soi 1 /Concrete1', F i n a l Report, U. S. AFOSR Grant No. 77-3209 and AFAL TR-78-9, U n i v e r s i t y o f F l o r i d a , Gai n e s v i 1 le , F l o r i d a , November 30, 1977.

Kormeling, J.A., Z i e l i n s k i , A.J

.,

and Reinhardt, H.W., "Experiments on Concrete Under S i n g l e and Repeated Impact Loading", Report No. 5-80-3, Del f t U n i v e r s i t y o f Techno1 ogy, S t e v i n Laboratory, May 1980.

Hoff, G.C., "Selected B i b l i o g r a p h y on Fi b e r - R e i n f o r c e d Cement and Concrete", Supplement No. 2 M i s c e l l aneous paper C-76-6, U .S. Army Waterways Experiment S t a t i o n , Vicksburg, Miss. 1979.

G r i n e r , G.R., Sierakowski, R.L. and Ross, C.A., "Dynamic P r o p e r t i e s o f Concrete Under Impact Loading", Shock and V i b r a t i o n B u l l e t i n , P a r t 5, 1975, pp. 131-142.

Ngo, D. and Scordel i s , A.C., " F i n i t e Element A n a l y s i s o f R e i n f o r c e d Concrete S t r u c t u r e s " , ACI J o u r n a l , Vol. 64, No. 3, March 1967.

P h i l l i p s , D.V. and Zienkiewicz, O.C., " F i n i t e Element N o n l i n e a r A n a l y s i s o f Concrete Structures', Proceedings o f I n s t i t u t e o f C i v i l Engineers, Vol

.

61, P a r t 2, March 1976, pp. 59-88.

Chen, W.F. and Suzuki , H., " C o n s t i t u t i v e Models f o r Concrete", presented a t t h e ASCE Annual Convention and E x p o s i t i o n and C o n t i n u i n g Education Program, Chicago, I 1 1 in o i s , October 16-20, 1978.

Chen, W.F. and Ting, E.C. " C o n s t i t u t i v e Models f o r Concrete S t r u c t u r e s " , J o u r n a l of Engineering Mechanics D i v i s i o n , ASCE, Vol. 106, No. EM 1, February 1980, pp. 1-19.

Chen, A.C.T. and Chen, W.F., ' C o n s t i t u t i v e Equations and Punch-Indentation o f Concrete", J o u r n a l o f E n g i n e e r i n g Mechanics D i v i s i o n , ASCE, Vol. 101, No. EM6, December 1975, pp. 889-906.

N i l s s o n , L., "Impact Loading o f Concrete S t r u c t u r e s " , P u b l i c a t i o n No. 79 Department o f S t r u c t u r a l Mechanics, Chalmers U n i v e r s i t y o f Technology, 1979. Perzyna, P., "Fundamental Problems i n Vi s c o p l a s t i c i t y " , Advances i n Applied Mechanics, Vol

.

9, 1966, pp. 243-377.

B i c a n i c , N. and Zienkiewicz, O.C., " C o n s t i t u t i v e Model f o r Concrete Under Dynamic Loading", Earthquake Engineering and S t r u c t u r a l Dynamics, Vol. 11, 1983, pp. 689-710.

Valanis, K.C., "A Theory o f V i s c o p l a s t i c i t y Without a Y i e l d Surface, P a r t I

-

General Theory, and P a r t I 1

-

A p p l i c a t i o n t o Mechanical Behavior o f M e t a l s " , Archives o f Mechanics, Vol. 23, No. 4, 1971, pp. 517-551.

Bazant, Z.P., "Endochronic I n e l a s t i c i t y and Incremental P l a s t i c i t y " ,

I n t e r n a t i o n a l J o u r n a l o f S o l i d s and S t r u c t u r e s , Vol. 14, No. 9, September. 1978 pp. 151-165.

Bazant, Z.P. "A New Appraoch t o I n e l a s t i c i t y and F a i l u r e o f Concrete, Sand, and Rock : Endochronic Theory", Proceedings o f t h e 1 1 t h Annual Meeting, S o c i e t y o f E n g i n e e r i n g Science, G.J. Dvorak, Ed., Duke U n i v e r s i t y , Durham, N o r t h C a r o l i n a , 1974, Pp. 158-159.

V a l a n i s , K.C. and Lee, C.F., "Some Recent Development o f t h e Endochronic Theory w i t h A p p l i c a t i o n s " , Nuclear E n g i n e e r i n g and Design, Vol

.

69, 1982, pp. 327-344.

Popovics, S., "A Numerical Approach t o t h e Complete S t r e s s - S t r a i n Curve o f Concrete", Cement and Concrete Research Vol. 3, 1973, pp. 583-599.

Buynkozturk, 0. and Tseng, T.M., "Concrete i n B i a x i a l C y c l i c Compression", Journal of S t r u c t u r a l Engineering, ASCE, Vol. 110, No. 3 March 1984, pp. 461-476.

Pozzo, E., "Rheological Model o f Concrete i n t h e Dynamic F i e l d " , Mecanica June 1970, pp. 143-158.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to