• Aucun résultat trouvé

LASER AND ELECTRON BEAM ENHANCED CRYSTALLIZATION OF Si AND Ge

N/A
N/A
Protected

Academic year: 2021

Partager "LASER AND ELECTRON BEAM ENHANCED CRYSTALLIZATION OF Si AND Ge"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: jpa-00223111

https://hal.archives-ouvertes.fr/jpa-00223111

Submitted on 1 Jan 1983

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

LASER AND ELECTRON BEAM ENHANCED CRYSTALLIZATION OF Si AND Ge

R. Andrew, M. Wautelet

To cite this version:

R. Andrew, M. Wautelet. LASER AND ELECTRON BEAM ENHANCED CRYSTALLIZA- TION OF Si AND Ge. Journal de Physique Colloques, 1983, 44 (C5), pp.C5-171-C5-174.

�10.1051/jphyscol:1983526�. �jpa-00223111�

(2)

JOURNAL DE PHYSIQUE

Colloque C5, suppl6ment au nOIO, Tome 44, octobre 1983 page C5-171

LASER AND ELECTRON BEAM ENHANCED CRYSTALLIZATION OF Si AND Ge

R. Andrew and M. Wautelet

IRIS Mons, Faculte's des Sciences, Universite' de Z'Etat, Av. Maistriau 23, 7000 Mons, Belgium

RSsumd - On montre que l e taux de n u c l 6 a t i o n e t l a v i t e s s e de c r o i s s a n c e c r i s - t a l l i n e s o n t t r s s fortement a c c r u s sous i r r a d i a t i o n s l a s e r e t S l e c t r o n i q u e . Ceci e s t i n t e r p r S t b comme r s s u l t a n t d'une s o m e d ' e f f e t s thermiques e t a t h e r - miques, q u i modifient l e s paramstres de l a d i f f u s i o n d e s v e c t e u r s de l a t r a n s - formation amorphe-cristal, 2 s a v o i r l e s l i a i s o n s pendantes.

A b s t r a c t - It i s shown t h a t l a s e r and e l e c t r o n beam i r r a d i a t i o n of amorphous Ge and S i f i l m s r e s u l t s i n much l a r g e r n u c l e a t i o n r a t e and growth v e l o c i t y than under thermal annealing c o n d i t i o n s . This i s i n t e r p r e t e d a s due t o a com- b i n a t i o n of thermal plus non-thermal mechanisms which modify t h e parameters involved i n t h e d i f f u s i o n of t h e v e c t o r of t h e amorphous t o c r y s t a l t r a n s f o r - mation, i . e . t h e dangling bonds.

INTRODUCTION

We s t u d y h e r e l a s e r and e l e c t r o n beam enhanced amorphous t o c r y s t a l l i n e t r a n s i t i o n s i n which no i n t e r m e d i a t e m e l t i n g i s involved. Under t h e s e c o n d i t i o n s c r y s t a l growth v e l o c i t i e s can be many o r d e r s of magnitude g r e a t e r t h a n i n conventional thermal annea- l i n g . Moreover, s i n c e t h e enhancement of growth r a t e i s n o t accompanied t o t h e same degree by a corresponding i n c r e a s e i n n u c l e a t i o n r a t e , t h e dimensions of t h e c r y s t a l s produced a r e t y p i c a l l y g r e a t e r than would o t h e r w i s e be t h e c a s e .

Whatever t h e c r y s t a l l i z a t i o n p r o c e s s , however, it presumes a s t a g e of n u c l e a t i o n o r formation of c r y s t a l s e e d s which n e c e s s a r i l y precedes t h e i r growth, and n u c l e a t i o n r a t e s , i . e . s i t e s cm3 s e c , have been measured f o r both S i and Ge by many a u t h o r s . I t i s t h e purpose of t h i s paper t o d e s c r i b e some v e r y simple l a s e r and e l e c t r o n beam annealing experiments from which we can deduce n u c l e a t i o n r a t e s which a r e s e v e r a l o r d e r s of magnitude g r e a t e r t h a n any v a l u e s ever r e p o r t e d f o r thermal a n n e a l i n g , and which a r e t h u s l e s s than wholly c o n s i s t e n t w i t h a p u r e l y thermal model of such beam induced e f f e c t s .

We show t h a t a combination of thermal and non-thermal e f f e c t s i s r e q u i r e d t o i n t e r - p r e t t h e d a t a and advance a model where t h e r o l e of t h e dangling bonds i n t h e amor- p h o u s - c r y s t a l l i n e t r a n s i t i o n i s taken i n t o account. The observed enhancement of t h e n u c l e a t i o n p r o c e s s i s l i n k e d t o v a r i a t i o n s of bond l e n g t h and a n g l e s around t h e D.B.

which a r e caused by e l e c t r o n i c e x c i t a t i o n of t h e l a t t e r , l e a d i n g t o a n i n c r e a s e i n t h e i r entropy of m i g r a t i o n .

EXPERIMENTAL Film p r e p a r a t i o n .

--- ---

1000 t h i c k Ge and 2400 A t h i c k S i f i l m s were condensed onto f r e s h l y cleaved NaCl c r y s t a l s maintained around room temperature, by thermal (Ge) o r E-gun ( S i ) evapora- t i o n of hligh p u r i t y Ge o r S i i n 10-6 - 10-8 t o r r vacuum. Films were f l o a t e d o f f onto Cu TEM g r i d s w i t h 80y h o l e s i z e .

Laser i r r a d i a t i o n .

Exposure of t h e f i l m s t o pulsed l a s e r i r r a d i a t i o n above a c e r t a i n energy t h r e s h o l d r e s u l t s i n t h e appearance of c r y s t a l l i z e d zones. The form of t h e zones, which have been observed by many a u t h o r s , s u g g e s t r a p i d outward growth from a c e n t r a l p o i n t . Since h e r e we wish t o c o n s i d e r only t h e n u c l e a t i o n p r o c e s s we can s e t a lower l i m i t t o t h e n u c l e a t i o n r a t e by simple counting t h e number of c r y s t a l l i z e d zones w i t h i n

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1983526

(3)

C5-172 JOURNAL DE PHYSIQUE

a g i v e n f i l m volume and i n t r o d u c i n g t h e p u l s e d u r a t i o n o r , i n o r d e r t o c o n s i d e r t h e r - mal e f f e c t s , t h e time f o r which t h e s e l a t t e r w i l l p e r s i s t . Using both chopped ~ r + and p u l s e d dye l a s e r s we have measured t h e t h r e s h o l d energy f o r t h e f o r m a t i o n of c r y s t a l l i z e d z o n e s a s a f u n c t i o n o f l a s e r p u l s e d u r a t i o n . F o r p u l s e d u r a t i o n small compa- r e d t o t h e time over which s i g n i f i c a n t thermal l o s s e s can occur t h e t h r e s h o l d energy i s c o n s t a n t , whereas f o r long p u l s e d u r a t i o n thermal e q u i l i b r i u m i s e s t a b l i s h e d d u r i n g t h e l a s e r p u l s e and t h e t h r e s h o l d power i s c o n s t a n t . The t r a n s i t i o n b e t - ween t h e s e two regimes i s shown t o be - 2 x 10-5 s f o r Ge and 4 x 10-5 f o r S i , i n good agreement with h e a t flow c a l c u l a t i o n which assume t h e Cu g r i d b a r s t o a c t a s an e f f i c i e n t h e a t s i n k .

The maximum temperature a t t a i n e d can be c a l c u l a t e d r a t h e r p r e c i s e l y f o r t h e c o n s t a n t energy regime by measuring t h e t h r e s h o l d energy c o r r e c t e d f o r r e f l e c t i o n t r a n s m i s s i o n , and i n t r o d u c i n g t h e s p e c i f i c h e a t . We f i n d Tmax i n t h e range 400 - 500" C f o r both Ge and S i , a temperature which w i l l b e maintained f o r approximately t h e t r a n s i t i o n times noted above.

The minimum n u c l e a t i o n r a t e i n t h i s regime can a l s o be e a s i l y c a l c u l a t e d by assuming j u s t one ( g e n e r a l l y t h e r e a r e 2-5) c r y s t a l l i z e d zone p e r g r i d square t o be produced i n t h i s time. We o b t a i n R = 1014 - 1015 cm-3 s e c , which should be compared t o t h e r - mal ( s t e a d y s t a t e v a l u e s near 400°C of R = 105 - cm-3 s-1 f o r S i [ 1] o r

R = 107 s-I f o r Ge [ 2 ] o r with t h e maximum of R v s T i . e . R = 1011 cmA3 s-l n e a r 800°C f o r S i [ 31 .

It i s e v i d e n t t h a t while t h e r e i s a thermal e f f e c t p r e s e n t , o t h e r mechanisms f o r t h e observed n u c l e a t i o n r a t e enhancement must a l s o be c o n s i d e r e d .

Ele_c_tr_on-b_eam-

Grid mounted specimens of Ge 350 were looded i n t o t h e t r a n s m i s s i o n e l e c t r o n micros- cope. I n i t i a l l y amorphous, and s t a b l e under normal viewing c o n d i t i o n s , such speci- mens could be r e a d i l v c r y s t a l l i z e d by b r i e f l y boosting t h e beam power t o a much h i g h e r l e v e l . The c r y s t a l l i t e s s o formed were t y p i c a l l y 200 d i a ( r a t h e r l a r g e r f o r a more gradual i n c r e a s e i n beam power towards t h r e s h o l d ) , could be formed i n a time d i f f i c u l t t o e s t i m a t e p r e c i s e l y b u t <<ls, and were a p p a r e n t l y formed i n a uniform f a s h i o n w i t h i n t h e i r r a d i a t e d a r e a r a t h e r t h a n by growth of a m i c r o s c r y s t a l l i z e d zone i n t o t h e amorphous m a t e r i a l . The whole c r y s t a l l i z e d zone had e x a c t l y t h e geometry and s i z e of t h e beam spot, i e normally c i r c u l a r , even when performed a t t h e very edge of t h e f i l m near t o a g r i d b a r . Though t h e r e w i l l be a s i g n i f i c a n t h e a t i n g e f f e c t under t h e beam s p o t t h e s e o b s e r v a t i o n s do n o t suggest a simple thermal e x p l a n a t i o n and, a s b e f o r e , we may r e a d i l y c a l c u l a t e R i n t h i s c a s e >_ 1017 cm-3 s-1.

DISCUSSION

The experiments d e s c r i b e d show t h a t , phenomenologically speaking a t l e a s t , t h e nuclea- t i o n r a t e s which can be obtained i n beam i r r a d i a t e d amorphous Ge and S i simply do n o t f i t t h e a v a i l a b l e d a t a f o r t h e r m a l l y induced n u c l e a t i o n . We may n o t e h e r e t h a t f a c - t o r s such a s t h e h e a t of c r y s t a l l i z a t i o n which can produce explosive-type c r y s t a l l i - z a t i o n i n Ge and o t h e r m a t e r i a l s should n o t i n t e r v e n e h e r e , s i n c e we a r e concerned only with t h e n u c l e a t i o n event coming b e f o r e , b u t evidenced by, c r y s t a l growth.

I n o r d e r t o i n t e r p r e t t h e s e r e s u l t s we d e v i a t e a l i t t l e way i n t o t h e fundamental n a t u r e of t h e n u c l e a t i o n e v e n t .

The amorphous-crystalline t r a n s i t i o n , when i t t a k e s p l a c e i n t h e s o l i d phase, i m p l i e s t h e r e l o c a t i o n of some of t h e c o v a l e n t bonds, and t h i s l a t t e r most e a s i l y occurs v i a t h e i n t e r m e d i a r y of a m i g r a t i n g dangling bond. The b a s i c s t e p h e r e i s t o break a bond nearby and t o t i e up t h e o r i g i n a l d a n g l i n g bond w i t h one h a l f of t h e broken bond, whose remaining h a l f now becomes t h e d . b . , but i n a new p o s i t i o n . I t i s n o t d i f f i - c u l t t o s e e t h a t t h e m a t e r i a l can be r e s t r u c t u r e d i n t h i s way but i t i s r a t h e r l e s s easy t o s e e why we should g e t a c r y s t a l a s r e s u l t , a t l e a s t i n terms of bond r e l o c a - t i o n . P a r t of t h e problem i s t h e l a c k of a good d e s c r i p t i o n of t h e s t r u c t u r e surroun- ding a d . b . , and indeed t h e l a c k of a t o l e r a b l y f i n i t e d e s c r i p t i o n of t h e whole amor- phous s t r u c t u r e i t s e l f . I n a model t o b e d e s c r i b e d i n more d e t a i l elsewhere we have found i t u s e f u l t o i n t r o d u c e t h e concept of t o p o l o g i c a l l y "good" and "bad" r e g i o n s of c r y s t a l . The former we d e f i n e a s any assembly of atoms which a r e bonded t o g e t h e r i n a manner t o p o l o g i c a l l y e q u i v a l e n t t o normal good c r y s t a l ( i . e . t h e assembly could, w i t h no i n t e r n a l bond r e l o c a t i o n , b e i n c o r p o r a t e d p e r f e c t l y i n t o a s u i t a b l y s i z e d h o l e i n a p e r f e c t c r y s t a l ) , even though t h e atom c o r e p o s i t i o n s may n o t correspond a t a l l t o t h o s e i n a c r y s t a l owing t o bond s t r e t c h i n g , bending and t w i s t i n g . Note t h a t t h e a d d i t i o n of one wrongly connected atom t o our r e g i o n of "good" c r y s t a l

(4)

r e n d e r s t h e whole l o t "bad", and t h a t t h e r e f o r e t h e c l a s s i f i c a t i o n of a r e g i o n of s t r u c t u r e depends very much on where we make t h e c u t s ; any r e g i o n of "bad" w i l l in- c l u d e s m a l l e r sub-regions of "good". We p o s t u l a t e t h a t t h e l i m i t s t o bond deforma- t i o n r e s t r i c t t h e s i z e of ''bad" c r y s t a l t h a t can be b u i l t without i n t r o d u c i n g d . b P s , and we d e s c r i b e t h e amorphous s t r u c t u r e a s c o n s i s t i n g of interwoven r e g i o n s of "good"

and "bad" c r y s t a l p l u s d . b g s . Now i t i s n o t d i f f i c u l t t o show t h a t with t h e s e d e f i - n i t i o n s t h e f o l l o w i n g a r e consequences :

a ) a l l d . b g s a r e connected t o "bad1' c r y s t a l i n some d i r e c t i o n , and t o "good" i n some o t h e r .

b) It i s i m p o s s i b l e t o embed a s i n g l e d.b. and i t s a s s o c i a t e d "bad" c r y s t a l i n t o

"good" c r y s t a l without i n t r o d u c i n g a n o t h e r ( o r any odd number o f ) d .b . on t h e j o i n i n g s u r f ace.

i . e .

c ) A l l d . b l s a r e connected t o o t h e r s by t h e i r "bad" c r y s t a l .

We can a l s o show t h a t most d . b l s a r e a s s o c i a t e d w i t h a vacancy o r , t o be more p r e c i s e , w i t h h a l f a vacancy, e x c e p t t h a t t h e i n t e r a t o m i c space r e p r e s e n t e d by t h i s h a l f va- cancy i s n o t c o n c e n t r a t e d a t t h e d.b. i t s e l f but i s spread o u t over t h e a d j a c e n t "bad"

c r y s t a l . I n o t h e r words, t h e "bad" c r y s t a l a d j o i n i n g a d.b. i s l e s s dense t h a n t h e

"good". Note t h a t t h i s i s a p a r t of t h e reason why t h e a-phase i s o v e r a l l l e s s dense t h a n t h e c r y s t a l l i n e one, b u t it i s n o t he whole s t o r y s i n c e , depending on t h e method of p r e p a r a t i o n , t h e amorphous v e r s i o n of v a c a n c i e s , u n a s s o c i a t e d w i t h d . b g s , o r even small v o i d s tend t o be i n c o r p o r a t e d i n t o t h e s t r u c t u r e . We now suppose, q u i t e s i m - p l y , t h a t t h e p r e f e r r e d (though not n e c e s s a r i l y r e s u l t a n t ) d i r e c t i o n of motion of a m i g r a t i n g d.b. w i l l be down t h e d e n s i t y g r a d i e n t .

Since we know t h a t t h e j o i n between "good" and "bad" c r y s t a l i n t h i s r e g i o n must con- t a i n a ( i . e , *) d.b. t h e n it n e c e s s a r i l y f o l l o w s t h a t when t h e d.b. moves i n t o i t s '

"bad" c r y s t a l t h e n i t must l e a v e "good" c r y s t a l behind i t , and a s t h e volume of "good"

c r y s t a l i n c r e a s e s so t h e bonds s t a r t t o r e l a x towards t h e i r normal l e n g t h s and o r i e n - t a t i o n s , t h e atoms t a k e up p o s i t i o n s corresponding t o t h o s e i n t h e c r y s t a l , and t h e

"good" c r y s t a l becomes c r y s t a l . We can e a s i l y envisage a c r i t i c a l s i z e of c r y s - t a l l i n e zone c r e a t e d i n t h i s way which becomes e f f e c t i v e l y i n v i o l a t e t o d i s r u p t i o n by o t h e r wandering d . b 7 s and a s such corresponds t o t h e a c t b i r t h , o r n u c l e a t i o n . The n u c l e a t i o n e v e n t , then, i s dependent on t h e a b i l i t y of t h e DBs t o m i g r a t e , which i n t u r n depends on t h e l o c a l bond d i s t o r t i o n and a v a i l a b l e pathways f o r e n e r g e t i c a l l y

~ o s s i b l e bond r e l o c a t i o n . Thermodynamically, t h e m i g r a t i o n p r o b a b i l i t y i s r e l a t e d w i t h t h e energy of m i g r a t i o n : E, = H,,, - T.Sm, where H, and S,,, a r e t h e corresponding e n t h a l p y and e n t r o p y , r e s p e c t i v e l y . Hm i s r e l a t e d t o t h e energy n e c e s s a r y t o break bonds d u r i n g t h e m i g r a t i o n e v e n t [ 4 ] , while Sm i s a f u n c t i o n of t h e i n t e r a t o m i c f o r c e c o n s t a n t s between t h e d e f e c t atom and i t s n e a r e s t neighbours [ 5 ] . I t t u r n s o u t t h a t a s o f t e n i n g of t h e f o r c e c o n s t a n t s (by e l o n g a t i o n of t h e bonds) l e a d s t o an i n c r e a s e of S,.

O p t i c a l e x c i t a t i o n of amorphous S i and Ge f i l m s l e a d s t o t h e appearance of v e r y long- l i v e d m e t a s t a b l e s t a t e s [ 6 ] , due t o t h e presence of o p t i c a l l y e x c i t e d DB s t a t e s i n t h e form e i t h e r of p a i r s of charged DB's (DB' - DB-) ( s e l f - t r a p p e d e x c i t o n s [ 71 ), o r dehybridized sp2 - pz DBs [ 8 ] . The c o n f i g u r a t i o n a l p r o p e r t i e s of t h e s e e x c i t e d s t a t e s a r e d i f f e r e n t from t h o s e of t h e fundamental s t a t e s , so t h a t t h e i r m i g r a t i o n p r o p e r t i e s a r e d i f f e r e n t [ 4 ] . I n p a r t i c u l a r , DB- s i t e s and sp2 - pz ones have l a r g e r m i g r a t i o n e n t r o p i e s t h a n DB and DB+ s i t e s , i . e . t h e i r m i g r a t i o n i s enhanced [ 4 ] . Another mechanism i s a l s o p o s s i b l e , r e l a t e d t o t h e recombination process a t t h e DB s i t e . J u s t a f t e r o p t i c a l e x c i t a t i o n , t h e DB s i t e and i t s surrounding decays r a p i d l y v i a emission of phonons. The same i s t r u e during t h e d e - e x c i t a t i o n of t h e m e t a s t a b l e s t a t e t o t h e fundamental one. I f t h e e m i t t e d phonons remain l o c a l i z e d n e a r t h e DB s i t e f o r a s u f f i c i e n t l y l o n g time (due, f o r i n s t a n c e , t o t h e l a c k of p e r i o d i c i t y ) , t h e v i b r a t i o n a l energy of t h e system would be i n c r e a s e d . Moreover, some t r a n s - f e r of movement i s p o s s i b l e t o some v i b r a t i o n a l modes p a r a l l e l t o t h e m i g r a t i o n d i r e c - t i o n , s i n c e any s h i f t of t h e atom p e r p e n d i c u l a r l y t o t h e DB o r b i t a l e f f e c t s t h e geo- metry of a l l bonds around t h e c a v i t y and, t h e r e f o r e , modifies s l i g h t l y t h e o r b i t a l o v e r l a p s and, then, t h e e n e r g y of t h e bonds. These c o n d i t i o n s a r e known t o reduce Em by a s u b s t a n t i a l amount, ER [ 9 ] . This c a l l e d recombination-enhanced d i f f u s i o n . A numerical e v a l u a t i o n of ER 1s u n f o r t u n a t e l y n o t meaningful, due t o t h e number of unknown parameters i n t h e a-phase ( f o r c e c o n s t a n t s , bond a n g l e s and l e n g t h i n t h e c a v i t y , phonon spectrum, . . .).

(5)

JOURNAL DE PHYSIQUE

CONCLUSIONS

A l t o g e t h e r , we have shown t h a t l a s e r and e l e c t r o n i r r a d i a t i o n enhance t h e p r o c e s s of n u c l e a t i o n i n S i and Ge f i l m s . T h i s i s proposed t o b e due t o a combination of t h e r - mal and non-thermal e f f e c t s a c t i n g on t h e v e c t o r s of t h e amorphous t o c r y s t a l t r a n - s i t i o n , i . e . t h e d a n g l i n g bonds.

REFERENCES

1 . Zellama K, Germain P., S q u e l a r d S., Bourgoin J . C . , and Thomas P.A., J . Appl. Phys.

50 (1979) 6986.

2 . z r m a i n P., Zellama K . , S q u e l a r d S., Bourgoin J . C . , and GZieorghiu A . , J . Appl.

Phys. 2 (1979) 6995.

3. K a s t e r U . , Phys. S t a t . S o l . ( a ) 48 (1978) 313.

4. Wautelet M., i n Cohesive p r o p e r t i e s of Semiconductors under L a s e r I r r a d i a t i o n . e d i t e d by L.D. Laude ( N i j h o f f , Den Hague) 1983, i n p r e s s .

5. Lannob M., and Bourgoin J . C . , S o l i d S t a t e Commun. 2 (1979) 913.

6. F a i l l y - L o v a t o M . , Andrew R., Laude L.D., and Wautelet M., Appl. Phys. A 2 (1982) 163.

7. A d l e r D., J. P h y s i q u e 62 (1981) C4-3.

8. Wautelet M., Laude L.D., and Andrew R., Phys. L e t t . A 2 (1980) 274.

9. Weeks J . D . , T u l l y J . C . , and Kimerling L.C., Phys. Rev. B 12 (1975) 3286.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to