• Aucun résultat trouvé

STABILITY AND ELECTRONIC PROPERTIES OF VACUUM-EVAPORATED AMORPHOUS METALLIC Au-Ge ALLOY FILMS

N/A
N/A
Protected

Academic year: 2021

Partager "STABILITY AND ELECTRONIC PROPERTIES OF VACUUM-EVAPORATED AMORPHOUS METALLIC Au-Ge ALLOY FILMS"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: jpa-00220219

https://hal.archives-ouvertes.fr/jpa-00220219

Submitted on 1 Jan 1980

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

STABILITY AND ELECTRONIC PROPERTIES OF VACUUM-EVAPORATED AMORPHOUS METALLIC

Au-Ge ALLOY FILMS

V. Nguyen Van, M. Thèye, Serge Fisson

To cite this version:

V. Nguyen Van, M. Thèye, Serge Fisson. STABILITY AND ELECTRONIC PROPERTIES OF

VACUUM-EVAPORATED AMORPHOUS METALLIC Au-Ge ALLOY FILMS. Journal de Physique

Colloques, 1980, 41 (C8), pp.C8-489-C8-492. �10.1051/jphyscol:19808122�. �jpa-00220219�

(2)

JOURNAL DE PHYSIQUE CoZZoque C8, suppZdment au n 0 8 , Tome 41, aoct 1980, page C8-489

STABILITY AND ELECTRONIC PROPERTIES OF VACUUM-EVAPORATED AMORPHOUS METALLIC Au-Ge

ALLOY FILMS

V. Nguyen Van, M.L. ThSye and S. F i s s o n

Laboratoire d l @ t i q u e des SoZides i-

,

Universite' Pierre e t Marie Curie, 4 , place Jussieu, 75230 Paris Ce'dex 05, fiance.

RQsum6.

-

On d i s c u t e l e s c o n d i t i o n s d ' e x i s t e n c e e t l a s t a b i l i t 6 d ' a l l i a g e s m d t a l l i q u e s amorphes Au-Ge prSpar6s p a r co-dvaporation s o u s u l t r a - v i d e . Leurs p r o p r i 6 t b s o p t i q u e s s o n t a n a l y s c e s en c o n t r i b u t i o n de Drude e t c o n t r i b u t i o n i n t e r b a n d e . On e n d g d u i t l a p r 6 s e n c e d ' h y b r i d a t i o n sp-d dans c e s a l l i a g e s .

A b s t r a c t .

-

The e x i s t e n c e and s t a b i l i t y o f amorphous m e t a l l i c Au-Ge a l l o y s p r e p a r e d by c o - e v a p o r a t i o n under u l t r a - h i g h vacuum a r e d i s c u s s e d . T h e i r o p t i c a l p r o p e r t i e s a r e a n a l y s e d i n terms o f a Drude and a n i n t e r b a n d c o n t r i b u t i o n . 0 c c u r r e n c e o f sp-d h y b r i d i z a t i o n i s i n f e r r e d .

1 . I n t r o d u c t i o n . - Amorphous m e t a l l i c a l l o y s b e t - ween a n o b l e m e t a l and S i o r Se have been o b t a i n e d by d i f f e r e n t methods (1-5). T h e i r main i n t e r e s t l i e s i n t h e r e l a t i v e s i m n l i c i t y o f t h e e l e c t r o n i c s t r u c t u r e o f e i t h e r component. The complex d i e l e c - t r i c c o n s t a n t o f pure n o b l e m e t a l s f o l l o w s a f r e e - e l e c t r o n b e h s v i o r up t o 2-4 eV, where a s t r o n p i n - t e r b a n d c o n t r i b u t i o n , due e s s e n t i a l l y t o t r a n s i - - t i o n s between t h e f i l l e d d-band and t h e Fermi l e v e l , s e t s i n . These p r o p e r t i e s a r e l i t t l e modified i n t h e l i q u i d s t a t e ( 6 ) . S i and Ge a r e c o v a l e n t i n t h e i r s o l i d ( c r y s t a l l i n e and amorphous) s t a t e , due t o sp3 h y b r i d i z a t i o n , b u t m e t a l l i c i n t h e i r l i q u i d s t a t e , w i t h a b o u t f o u r c o n d u c t i o n e l e c t r o n s p e r atom. These a l l o y s a r e t h e r e f o r e good c a n d i d a t e s f o r t e s t i n g t h e v a l i d i t y o f a r i g i d - b a n d model, i n which S i o r Ge i m p u r i t i e s would j u s t a d d t h e i r f o u r v a l e n c e e l e c t r o n s t o t h e h o s t c o n d u c t i o n band. The o p t i c a l p r o p e r t i e s o f s p u t t e r e d amorphous Au-Si a l l o y s f o r S i c o n c e n t r a t i o n s between 13 and 50 a t . X have r e c e n t l y been i n t e r p r e t e d a s c o n f i r m i n e such a model ( 7 ) . However, t h e s i t u a t i o n m a y n o t b e s o sim- p l e , b e c a u s e o f t h e s t r o n g i n t e r a c t i o n which can b e e x p e c t e d between t h e i m p u r i t y s-p s t a t e s and t h e h o s t d s t a t e s ( 8 ) . Moreover, t h e type o f bonding i s l i k e l y t o change, a t l e a s t l o c a l l y , when i n c r e a s i n ~ t h e S i o r Ge c o n c e n t r a t i o n , which w i l l a l t e r t h e m e t a l l i c c h a r a c t e r o f t h e a l l o y s .

We p r e s e n t h e r e t h e r e s u l t s o f o p t i c a l measure- ments on amorphous Au-Ge a l l o y s w i t h Ge c o n c e n t r a -

t i o n s between 20 and 40 a t . % . These a l l o y s were p r e p a r e d by co-evaporation under u l t r a - h i g h vacuum

i n o r d e r t o a v o i d s p u r i o u s e f f e c t s due t o b u i l t - i n gazeous i m p u r i t i e s . T h e i r s t r u c t u r e was c o n t r o l l e d by e l e c t r i c a l r e s i s t a n c e measurements and e l e c t r o n microscope i n v e s t i g a t i o n s . We d i s c u s s b r i e f l y t h e

e x i s t e n c e and s t a b i l i t y of amorphous m e t a l l i c a l l o y s and we a n a l y s e t h e i r o p t i c a l p r o p e r t i e s i n r e l a t i o n w i t h d i f f e r e n t models f o r t h e i r e l e c t r o n i c s t r u c t u r e

2. E x ~ e r i m e n t . - The samples a r e t h i n (200-400 8 ) s e m i - t r a n s p a r e n t f i l m s d e p o s i t e d by co-evaporation under u l t r a - h i g h vacuum o n t o g l a s s s u b s t r a t e s main- t a i n e d a t low t e m p e r a t u r e (15-20 K ) . The d e p o s i t c o m p o s i t i o n and t h i c k n e s s a r e monitored by two ca- l i b r a t e d q u a r t z m i c r o b a l a n c e s . The f i l m r e f l e c t a n c e and t r a n s m i t t a n c e a r e measured i n s i t u j u s t a f t e r d e p o s i t i o n , between 0.6 and 4.5 eV, w i t h a s p e c i a l - l y b u i l t s p e c t r o m e t e r ( 9 ) . E l e c t r i c a l d . c . r e s i s - t a n c e measurements performed i n s i t u by a f o u r - probe t e c h n i q u e a s a f u n c t i o n o f t e m p e r a t u r e a l l o w t o c h a r a c t e r i z e t h e a s - d e p o s i t e d sample, t o d e t e r - mine i t s s t a b i l i t y range and t o f o l l o w p o s s i b l e s t r u c t u r a l changes on a n n e a l i n g . O p t i c a l measure- ments a r e r e n e a t e d i n s i t u a t any d e s i r e d a n n e a l i n g s t a g e . A t room t e m n e r a t u r e , t h e y a r e performed b o t h under vacuum and i n a i r w i t h a Cary 14 s p e c t r o m e t e r , a s a check of t h e o p t i c a l d a t a a c c u r a c y . The s t r u c - t u r e o f t h e a s - d e p o s i t e d f i l m and i t s changes upon a n n e a l i n g a r e t r a c e d back from room t e m p e r a t u r e e l e c t r o n - d i f f r a c t i o n and e l e c t r o n microscopy r e s u l t s , sunplemented by a d e t a i l e d a n a l y s i s o f t h e a n n e a l i n g c u r v e . The f i l m t h i c k n e s s i s determined by a n X-ray i n t e r f e r e n c e method ( l o ) , i t s composi-

t i o n bv a n e l e c t r o n microprobe t e c h n i q u e (11).

f' Equipe de Recherche Associde a u CNRS n o 462

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:19808122

(3)

JOURNAL DE PHYSIQUE

C8-490

3 . Existence and s t a b i l i t y of amorphous a l l o y s .

-

Only t h e main r e s u l t s a r e given h e r e . The d e t a i l s of e l e c t r i c a l r e s i s t a n c e measurements and s t r u c t u r e i n v e s t i g a t i o n s w i l l b e r e p o r t e d elsewhere ( 12,)

.

-

For small Ge c o n c e n t r a t i o n s ( 5 , 11 a t . % ) t h e f i l m s always c o n s i s t i n a mixture of pure Au and pure Ge c r y s t a l l i t e s .

- For Ge c o n c e n t r a t i o n s c l o s e r t o the e u t e c t i c , 27 a t . % Ge (13) (24, 28, 30 a t . l ) , we o b t a i n e d amorphous a l l o y s whose s t r u c t u r e i s c h a r a c t e r i z e d by two u n s p l i t broad d i f f r a c t i o n r i n g s c e n t r e d a t s = sinB/X = 0.217 and 0.380 r e s p e c t i v e l y . This d i f f r a c t i o n p a t t e r n i s very s i m i l a r t o t h e one re- p o r t e d f o r a l i q u i d Au 75Ge25 a l l o y (14) and i n d i c a -

t e s a simple

,

close-packed s t r u c t u r e w i t h no Ge-Ge bond. These amorphous a l l o y s have i n i t i a l r e s i s t i - v i t i e s between 124 and 138 pSlcm, w i t h very small n e g a t i v e temperature c o e f f i c i e n t s : -4 t o -7 x

C r y s t a l l i z a t i o n s t a r t s above 250 K with t h e ~ r e c i - p i t a t i o n of pure Au m i c r o c r y s t a l l i t e s and, i n some c a s e s , t h e formation of a m e t a s t a b l e complex c r y s - t a l l i n e a l l o y phase.

-

For h i p h e r Ce c o n c e n t r a t i o n s (34 a t . ? ) , we s t i l l o b t a i n e d amorphous a l l o y s , b u t w i t h a d i f f e r e n t s t r u c t u r e . Their d i f f r a c t i o n diagrams p r e s e n t an a d d i t i o n a l broad r i n g c e n t r e d a t s = 0.155 A-I r e m i n i s c e n t of t h e f i r s t d i f f r a c t i o n r i n g of pure amorphous Ge (15). These amorphous a l l o y s have s l i g h t l y h i g h e r r e s i s t i v i t i e s , w i t h more n e g a t i v e temperature c o e f f i c i e n t s , of t h e o r d e r of -5 x 10 -4

.

A m e t a s t a b l e complex c r y s t a l l i n e a l l o y phase, d i f - f e r e n t from the previous one, appears a b r u ~ t l y j u s t bklow room temperature.

4. Analysis of o p t i c a l d a t a .

-

Yeasuring b o t h the r e f l e c t a n c e R and t h e t r a n s m i t t a n c e T of a t h i n f i l m with known t h i c k n e s s allows t o determine t h e complex d i e l e c t r i c c o n s t a n t E" = + i c 2 a c c u r a t e l y a t each frequency (16). Unfortunately, i n t h e pre- s e n t c a s e , t h e computed E" v a l u e s a r e extremely s e n s i t i v e t o even very small experimental uncer- t a i n t i e s on R and T, which, b e s i d e s , vary very l i t t l e w i t h frequency, e s p e c i a l l y i n the n e a r i n f r a - r e d .

-

For Ge compositions between 20 and 3C a t . % the E~ and E~ curves f o r t h e as-deposited a ~ o r p h o u s a l l o y s a r e s i g n i f i c a n t l y d i f f e r e n t from those f o r pure Au ( f i g u r e 1 ) . A m e t a l l i c behavior i s s t i l l observed a t low e n e r g i e s b u t t h e o p t i c a l a b s o r p t i o n i s considerably enhanced; an a b s o r p t i o n edge

Figure 1. - O p t i c a l a b s o r p t i o n E / A f o r a Au70ce30 a l l o y : amorphous (a) and p a r t i a l ? y c r y s t a l l i z e d (b)

,

and f o r pure Au ( c ) .

reminiscent of t h e o n s e t of i n t e r b a n d t r a n s i t i o n s i n pure Au i s d i f f i c u l t t o d e t e c t a t h i g h e r ener- g i e s (such a n edge shows up immediately when pure Au c r y s t a l l i t e s appear on annealing, a s shown by

curve (b) i n f i g u r e 1 ) .

We t e n t a t i v e l y analysed t h e low energy d a t a i n terms of a Drude model which, even i n a d i s o r d e r e d system, should r e p r e s e n t a f i r s t approximation t o the o o t i c a l p r o p e r t i e s a s s o c i a t e d w i t h conduction e l e c t r o n s :

? = l - w / i o ( w + i / ~ ) 2 + z C

P 1

2 1/2

where w = (4rNeffe /mo) (Neff t h e e f f e c t i v e P

number of e l e c t r o n s per u n i t volume and m t h e o p t i c a l e f f e c t i v e mass) i s t h e plasma frequency and T t h e o p t i c a l r e l a x a t i o n time of t h e conduc- t i o n e l e c t r o n s ; t h e c o n s t a n t r e a l term zC accounts

1 f o r i n t e r b a n d t r a n s i t i o n s o c c u r r i n g a t h i g h e r e n e r g i e s . Computer-fitting procedures on ( E l Y &2) o r d i r e c t l y on (R, T), a s w e l l a s g r a p h i c a l methods, were used t o determine w T and &:. Reasonable

P ' 0

agreement w i t h a simple Drude model was found from 0.6 uo t o 2.5 eV. Allowing t h e r e l a x a t i o n time t o b e frequency-de~endent did n o t improve t h e f i t s i g n i f i c a n t l y . We found f o r xGe = 30 a t . ? (with

2.5): fiio = 14.20 eV; E/T = 2.85 eV.

P

Above 2.5 eV, t h e r e i s an a d d i t i o n a l contribu- t i o n t o the o p t i c a l a b s o r p t i o n which can b e a t t r i - buted t o i n t e r b a n d t r a n s i t i o n s ( f i g u r e 2 ) . I t i s much s m a l l e r than i n pure Au and p r e s e n t s a very smooth edge, which makes a n y , o n s e t energy very d i f f i c u l t t o determine.

(4)

F i g u r e 2. - Decomposition o f E / A f o r an amorphous A u ~ ~ G ~ 30 a l l o y ( a ) i n t o a Drude term (b) and a n 2 i n t e r b a n d term ( c ) .

-

For l a r g e r Ge c o n c e n t r a t i o n s , t h e o p t i c a l s p e c t r a c o r r e s p o n d i n g t o t h e a s - d e p o s i t e d amorohous a l l o y s a r e c o m p l e t e l y d i f f e r e n t from t h e p r e v i o u s ones ( f i g u r e 3)

.

There i s a s t r o n g a b s o r o t i o n maxi- mum i n t h e v i s i b l e , c e n t r e d a t a b o u t 2.4 eV, and no m e t a l l i c b e h a v i o r can b e d e t e c t e d o v e r t h e i n v e s - t i g a t e d s p e c t r a l r a n g e . L i t t l e change i s observed through c r y s t a l l i z a t i o n .

F i g u r e 3 . Au Ge taPPiz2Ld

. -

O p t i c a l a b s o r p t i o n E / A f o r a

a l l o y : amorqhous ( a ) i n 3 p a r t i a l l y c r y s - i n t o a complex c r y s t a l l i n e phase

(y-AuGe) (b)

.

5 . D i s c u s s i o n .

-

By c o - e v a p o r a t i o n under u l t r a - h i g h vacuum, amorphous m e t a l l i c Au-Ge a l l o y s c o u l d b e o b t a i n e d o v e r a s m a l l composition range o n l y and t h e i r s t a b i l i t y was v e r y l i m i t e d . For h i g h e r Ge c o n t e n t s , a l t h o u g h t h e f i l m s were s t i l l amorphous, l o c a l changes i n bonding, p e r h a p s f a v o u r e d by com- p o s i t i o n f l u c t u a t i o n s , m o d i f i e d t h e e l e c t r o n i c p r o p e r t i e s o f t h e a l l o y s ; o p t i c a l l y t h e y w e r e no more

m e t a l l i c . D i f f e r e n t r e s u l t s were o b t a i n e d on s p u t - t e r e d amorphous Au-Si a l l o y s which, i n s p i t e o f a s t r u c t u r e change above 4C a t . Z S i (5), had a metal- l i c o p t i c a l b e h a v i o r up t o 50 at.8, S i ( 7 ) . --

The ~ ~ t i c a l ~ r o - o e r t i e s o f t h e amorphous m e t a l l i c Au-Ge a l l o y s a r e n e v e r t h e l e s s v e r y s i m i l a r t o t h o s e o f amorphous ( 7 ) and l i q u i d (17) m e t a l l i c A u - S i a l l o y s . A l l d a t a f o l l o w a Drude law i n t h e n e a r i n f r a - r e d , w i t h comparable v a l u e s o f t h e p a r a m e t e r s c h a r a c t e r i z i n g t h e c o n d u c t i o n e l e c t r o n s b e h a v i o r . Extremely s h o r t r e l a x a t i o n times T a r e deduced, about a n o r d e r o f magnitude s m a l l e r t h a n i n p u r e l i q u i d n o b l e m e t a l s (6) b u t o f t h e same o r d e r of magnitude a s

i n

p u r e l i q u i d Ge ( 1 8 ) . The e f f e c t i v e number o f c o n d u c t i o n e l e c t r o n s which c a n b e deduced from w assuming t h a t t h e o n t i c a l mass i s e q u a l t o

P '

t h e f r e e - e l e c t r o n mass, i s q u i t e h i g h : a b o u t 2.5 e l e c t r o n p e r atom on a v e r a g e f o r x = 30 a t .% i f

Ge

we t a k e t h e same a t o m i c d e n s i t y a s i n p u r e Au ( 1 9 ) . T h i s v a l u e i s much l a r g e r t h a n t h e one computed i n a r i g i d band model, about 1.9. I n a l l c a s e s , t h e r e i s a n a d d i t i o n a l c o n t r i b u t i o n t o t h e o p t i c a l absorp- t i o n a t e n e r g i e s where i n t e r b a n d t r a n s i t i o n s from t h e d hand o c c u r i n p u r e Au, b u t i t i s c o n s i d e r a b l y smoothed o u t .

A l l t h e s e r e s u l t s s u g g e s t t h a t a s i m p l e r i g i d band model cannot b e a p p l i e d , and t h a t t h e Au c o n d u c t i o n band and d band a r e s i g n i f i c a n t l y a l - t e r e d when a l l o y i n g w i t h Ge ( S i ) . I t h a s been shown t h e o r e t i c a l l y (8) t h a t t h e e l e c t r o n i c s t r u c - t u r e o f a S i i m p u r i t y i n a Cu m a t r i x i s d e e u l y m o d i f i e d by sp-d h y b r i d i z a t i o n . T h i s t h e o r y e x p l a i n s

t h e c h a r a c t e r i s t i c a n t i - r e s o n a n t s t r u c t u r e obserwed i n t h e p - p a r t i a l d e n s i t y o f s t a t e s around S i atoms i n d i l u t e Cu-Si a l l o y s by s o f t X-ray e m i s s i o n ( 2 0 ) . A c o n d u c t i o n band b e i n g f a r from f r e e - e l e c t r o n - l i k e i s t h e r e f o r e e x p e c t e d i n t h e a l l o y s . T h i s c o n c l u s i o n , which was a l s o i n f e r r e d from magnetic s u s c e ? t i b i l i t y measurements on l i q u i d Au 81Si19 a l l o y ( 2 1 ) , i s more c o m p a t i b l e w i t h t h e v a l u e s of t h e p a r a m e t e r s c h a r a c t e r i z i n g t h e c o n d u c t i o n e l e c - t r o n b e h a v i o r deduced from t h e o p t i c a l d a t a . The sp-d h y b r i d i z a t i o n i s a l s o l i k e l y t o modify t h e d - p a r t i a l d e n s i t y o f s t a t e s . A s h i f t o f t h e upper peak o f t h e Au d band towards lower e n e r g i e s , accompanied by a smoothing o f t h e upper edge, h a s been o b s e r v e d f o r e v a p o r a t e d amorphous Au-Ge a l l o y s (20 and 40 a t . % G e ) by p h o t o e m i s s i o n ( 3 ) . Such a n e f f e c t would e x p l a i n , b e t t e r t h a n d i s o r d e r a l o n e , t h e e x p e r i m e n t a l r e d u c t i o n o f t h e i n t e r b a n d

(5)

JOURNAL DE PHYSIQUE

a b s o r p t i o n .

Acknowledgement.

-

The r e s e a r c h r e n o r t e d h e r e i n h a s b e e n s p o n s o r e d i n p a r t by t h e European O f f i c e o f A e r o s p a c e R e s e a r c h and Development.

R e f e r e n c e s (1) KLEMENT, W., WILLENS, R.H. and DUIJEZ, P.,

N a t u r e 187 (1960) 8 6 9 .

(2) CHEN, B.S. and TURNBULL, D., J . A ~ p l . P h y s . 38 (1967) 3646.

( 3 ) FUKUSEIYA, J . , TAMJR.4, K . , ENDO, I?.

,

KISHI, K., IKEDA, S. a n d MIXOMURA, S . , J. P h y s . 35

( 1974) C4-26 1 .

( 4 ) HIXAKI, A., IWAMI, M., SHIMIZU, A . and SHUTO, K., ? d a t e r . S c i . Eng. 2 3 (1976) 289.

(5) HAUSER, J . J . and TAUC, J . , P h y s . Rev. B17 ( 1978) 3371

.

(6) HODGSON, J . N . , P h i l . Map. 5 (1960) 272.

(7) HAUSER, E., ZIRKE, R . J . , TAUC, J., HAUSER, J . J . and NAGEL, S.R., P h y s . Rev. L e t t . 40 (197P) 1733; ~ h y s . Rev. B19 (1979) 6331.

( 8 ) TERAKURA, K., J. Phys. Soc. J a p a n 4 0 (1976) 450.

( 9 ) NGUYEN VAN, V. a n d FISSON, S . , Revue P h y s . Appl. 13 (1978) 155.

( 1 0 ) KIESSIG, H., Ann. P h y s i k 10 (1931) 769;

UMRATH, W . , 2 . Angew. P h y s i k 22 ( l a 6 7 ) 406.

(11) FHILIBERT, J . , RIVORY, J.; BRYCFAERT, D. a n d TIXIER, R., J . P h y s . D: Appl. P h y s . 3 (1970) L70.

( 1 2 ) NGUYEN VAV, V., FISSON, S. and THEYE, M.L., t o b e p u b l i s h e d i n t h e P r o c e e d i n g s o f t h e 8 t h I n t . Vacuum C o n g r e s s (Cannes, F r a n c e , 1980).

(13) HAYSEN, K., C o n s t i t u t i o n o f b i n a r y a l l o y s (McGraw H i l l , New-York) 1958.

( 1 4 ) !,JAGMORNE, R.Y., RIVLIN, V.G. and WILLIUS, G . I . , 3 . P h y s . F: M e t a l P h y s . 6 (1976) 147.

(15) GAYDAIS, M., TFEYE, M.L., FISSON, S. and BOISSONADE, J . , P h y s . S t a t . S o l . ( b ) 5 8 (1973) 601.

(16) ABELES, F. and THEYE, M.L., S u r f . S c i . 5 (1966) 325.

( 1 7) ACKERMAVN

,

K

.

F

. ,

LIARD

,

Y. and GUNTHERODT

,

H . J . , t o b e p u b l i s h e d i n J. P h y s . F: M e t a l Phys

.

( 1 8 ) HODGSON, J . N . , P h i l . Map. 6 (1961) 509.

( 1 4 ) ?flAVGIN, P., MARCEAL, G., MOUREY, C. a n d JANOT, C., t o b e p u b l i s h e d i n P h y s . Rev. B.

(20) TANAKA, K . , WATSW.OT0, Y. and MARUNO, S . , A ~ p l . ? h p . L e t t . 27 (1975) 529.

( 2 1 ) . BAGLEV, B.G. and DI SALVO, F . J . , B u l l . Am.

Phys. Soc. 21 (1976) 385.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to