• Aucun résultat trouvé

HIGH TRANSVERSE MOMENTUM PROCESSES

N/A
N/A
Protected

Academic year: 2021

Partager "HIGH TRANSVERSE MOMENTUM PROCESSES"

Copied!
16
0
0

Texte intégral

(1)

HAL Id: jpa-00215233

https://hal.archives-ouvertes.fr/jpa-00215233

Submitted on 1 Jan 1973

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

HIGH TRANSVERSE MOMENTUM PROCESSES

J. Bjorken

To cite this version:

J. Bjorken. HIGH TRANSVERSE MOMENTUM PROCESSES. Journal de Physique Colloques, 1973, 34 (C1), pp.C1-385-C1-399. �10.1051/jphyscol:1973153�. �jpa-00215233�

(2)

JOURNAL DE PHYSIQUE Colloque Cl, suppl6ment au nOIO, Tome 34, Octobre 1973, pageC1-385

HIGH TRANSVERSE MOMENTUM PROCESSES J.D. BJORKEN

S t a n f o r d L i n e a r A c c e l e r a t o r C e n t e r

The most common s t r o n g - i n t e r a c t i o n and even e l e c - trornagnetic phenomena a r e c h a r a c t e r i z e d by low mean t r a n s v e r s e momentum ((PL) <

*

GeV) f o r t h e secon-

A P I

d a r y hadrons. Yet most of t h e a v a i l a b l e phase-space i s found elsewhere. F i g u r e 1 shows two d i f f e r e n t maps o f t h e phase-space a p p r o p r i a t e t o 30+30 GeV ISR

Fig.1 a ) Peyrou p l o t f o r 3 0 + 3 0 GeV explored. b) The same, w i t h pl and r a p i d i t y y pp c o l l i s i o n s a t t h e x l o g t a n I R , w i t h a n i n d i c a t i o n of t h e t e r r i t o r y t h u s f a r

- 8

chosen a s v a r i a b l e s . 2

c o n d i t i o n s , along w i t h a rough s k e t c h of t h e t e r r i - t o r y now explored. These e x p l o r a t i o n s , a l o n g w i t h o t h e r s c a r r i e d out a t NAL , a r e q u i t e new, and extremely i n t e r e s t i n g . T h i s review w i l l emphasize t h e t h e o r e t i c a l p e r s p e c t i v e s , inasmuch a s t h e summary of t h e p a r a l l e l s e s s i o n s c o v e r s w e l l t h e experimen- t a l s i d e [1,2]. T h i s should not obscure t h e f a c t t h a t t h e r e a l news i s e x p e r i m e n t a l r e s u l t s not theo- r e t i c a l s p e c u l a t i o n . I w i l l cover t h e f o l l o w i n g to- p i c s :

1.- S i n g l e - p a r t i c l e i n c l u s i v e hadron s p e c t r a a t high p

1 '

2

.-

S t r u c t u r e of hlgh-pL h a d r o n i c e v e n t s . 3 . - T h e o r e t i c a l models and i n t e r p r e t a t i o n s . 4.- I n c l u s i v e p r o d u c t i o n of high-pl l e p t o n s and

l e p t o n p a i r s , along with l i m i t s on production of 'W , Z O , and o t h e r massive o b j e c t s . 5.- M u l t i p l e c o r e s and high-p phenomena a t s t i l l

I h i g h e r e n e r g i e s .

1.- INCLUSIVE HADRON SPECTRA.

1.1.- SCALING BEHAVIOR.- The observed spectrum of x o ' s a t eY- 90° , a s measured [ I ] by t h e CERN- Columbia-Rockefeller group a t 53 GeV a t t h e ISR, p r o v i d e s t h e highest-energy, highest-pl hadron spec- trum i n e x i s t e n c e . The o b s e r v a t i o n s show immediately:

(1) The y i e l d i s much l a r g e r t h a n a n e x t r a p o l a - t i o n based on t h e Hagedorn s t a t i s t i c a l model ;

( 2 ) The y i e l d i s much l a r g e r (about 10 4 ) t h a n what i s expected from photon exchange ( F i g u r e 2 )

Fig.2

-

Photon-exchange diagram l e a d i n g t o produc- t i o n of h i g h pl hadrons.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1973153

(3)

C1-386 J. D. BJORKEN

d e s p i t e t h e f a c t t h a t t h e photon-exchange c o n t r i b u - I ~ : . ~ . d 3 0 / d d tgon o n l y f a l l s a s a power of

pl , roughly p;4

.

10 - 27

T h i s s t r o n g l y s u g g e s t s t h a t t h e o r i g i n of t h e pheno- menon i s hadronic i n nature.

The expected behaviour o f t h e hadron i n c l u s i v e d i s -

t r i b u t i o n produced by t h e photon exchange mechanism 10 - 28

i s g i v e n [21 by dimensional a n a l y s i s :

where F i s o f o r d e r a 2

.

I t was n a t u r a l [3] t o r e - p l a c e t h e photon exchange by a J=1 gluon exchange and s p e c u l a t e t h a t t h e same form would work f o r t h e s t r o n g p r o d u c t i o n [2,4,5]. But t h e e v i d e n c e i s now q u i t e convincing t h a t t h i s i d e a i s wrong. A t 8 2

CM 90° , t h e experiments show t h a t t h e exponent 4 should b e r e p l a c e d approximately by 8 , a s suggested theo-

r e t i c a l l y by Blankenbecler, Brodsky and Gunion [61. . 2 .4 -6 2 ~ ~ 1 6

T h i s i s shown by t h e CCR group i n t h e i r c o n t r i b u - t i o n . The b e s t t e s t s of any s c a l i n g behaviour a r e a t t h e h i g h e s t e n e r g i e s and pL , i n o r d e r t h a t any low pL o r low s backgrounds a r e not p r e s e n t , and t h e r e f o r e t h e CCR d a t a p r o v i d e s t h e b e s t t e s t . Their e s t i m a t e d e r r o r on t h e power of

p I i s s m a l l , ,< 1 and e q u a t i o n (1.1) a p p e a r s untenable. L e t u s assume t h e exponent 8 , and t h e n p l o t t h e f u n c t i o n

f o r 8 % g o o v e r s u s 2pI/& =

-

Pm, CM

i n o r d e r t o b e t t e r i n t e r p r e t t h e n a t u r e of t h i s sca- l i n g ( F i g u r e 3).

We s e e t h a t below Elab -J 100 GeV, t h e spectrum i s i n q u a l i t a t i v e accord with a n a b s o l u t e Feynman s c a l i n g i n pl ; t h e only change i s a h o r i z o n t a l compression of t h e d i s t r i b u t i o n a s a consequence of

%he c h o i c e of h o r i z o n t a l s c a l e 2pl / $;

.

Above

Elab

-

100 GeV, t h e approximate s c a l i n g behaviour s e t s i n , i n f a c t , q u i t e a b r u p t l y . T h i s o b s e r v a t i o n was made by t h e NAL-NIU group d e t e c t i n g high-pl Y-rays i n t h e i n t e r n a l t a r g e t a r e a ( a l t h o u g h they u s e a q u i t e d i f f e r e n t p a r a m e t r i z a t i o n t h a n h e r e ) . By t h e time & = 53 GeV, t h e s c a l i n g occurs f o r p I >,, 3 GeV

.

I t n e e d s s c a r c e l y be s a i d t h a t t h e evidence presen- t e d does n o t i n i t s e l f prove t h e r e l e v a n c e o f t h i s p a r a m e t r i z a t i o n . However, I s h a l l h e r e i g n o r e a l l o t h e r s . There a r e a t t r a c t i v e t h e o r e t i c a l p r o p e r t i e s f o r t h i s form which should be f a m i l i a r t o anyone who h a s e v e r looked a t cosmic-ray p h y s i c s . Glennys F a r r a r and I c a l l i t t h e p a r e n t - c h i l d r e l a t i o n [7] :

Suppose we produce some p a r e n t ( p a r t o n , i s o b a r , e t c . of momentum p a c c o r d i n g t o a n i n c l u s i v e

s- 23.5 GeV

t'J--

\/;= 52.7 GeV

0 61 44 GeV

F= 53 Gel!

F i g . 3 - P l o t o f p8 E

-

do- v e r s u s t h e s c a l e v a r i a b l e d3P

7 2p* %

.

( a ) NAL-NIU d a t a a t 50, 180, P m x

and 400 GeV ; C P d a t a a t 300 GeV, ( b ) CCR, BS, and SS ISR d a t a .

d i s t r i b u t i o n

E -do- N

-

f

(

,

) .

(1.1)

d3p P:

(4)

HIGH TRANSVERSE MOMENTUM PROCESSES C 1-387

Suppose t h e p a r e n t P decays i n t o a hadron c h i l d c o f momentum p' = xpp ( w i t h l i m i t e d pL r e l a t i v e

I '

t o t h e d i r e c t i o n of t h e p a r e n t ) according t o a Feyn- man s c a l i n g h y p o t h e s i s

( T h i s i s c e r t a i n l y t r u e f o r i s o b a r decays).

Then t h e i n c l u s i v e d i s t r i b u t i o n h a s t h e same form a s e q u a t i o n (1.2), w i t h a d i f f e r e n t f u n c t i o n f ' (which i s a c o n v o l u t i o n of f with g ) .

There i s a l s o a c o r o l l a r y . I f a local-exponent ap- proximation i s v a l i d ( i . e. f o r some range of pL we may r e p l a c e f by a c o n s t a n t and n by a n e f f e c t i v e exponent t h e n ( a t t h e same pl)

Thus t h e r e i s a u n i v e r s a l i t y of t h e s c a l i n g law, (Eq.1.2), much l i k e t h e u n i v e r s a l i t y of t h e c e n t r a l p l a t e a u - r e g i o n i n o r d i n a r y p r o c e s s e s (we mean, e.g.

i f dN/dy^, c o n s t . ( o r e a Y ) f o r a p a r e n t (such a s P,A) d ~ / d y a l s o i s c o n s t a n t ( o r e R Y ) f o r i t s

c h i l d r e n ) .

Notice a l s o t h a t i n the cascade p r o c e s s , t h e cms.

a n g l e (and t h e r e f o r e the r a p i d i t y Y l o g t a n 8/2) i s a2proximately conserved. T h e r e f o r e t h e s e considera- t i o n s a l s o s u g g e s t t h e u s e f u l n e s s of BCM o r y a s a v a r i a b l e of c h o i c e i n high-pL phenomena. Likewise p/pmax ( a t a g i v e n 9) i s a l s o a n a t u r a l v a r i a b l e . Feynman's x v a r i a b l e , x = 2 p / 6 , i s e a good

//

c h o i c e . Also 2p / & i s only a good v a r i a b l e a t

eCM = 90° ; i t should be c l e a r t h e r e c a n be no sca- I

l i n g of t h e i n v a r i a n t c r o s s s e c t i o n i n p /& over a I

r a n g e o f cms a n g l e s !

Before l e a v i n g t h e s e g e n e r a l i t i e s , we n o t e a g a i n t h a t dimensional a n a l y s i s would have p r e d i c t e d t h e exponent i n Eq.(1.2) t o be 4. To go from 4 t o 8 i m - p l i e s t h a t t h e b a s i c matrix-element f o r t h e p r o c e s s be p r o p o r t i o n a l t o m 2 , w i t h m a small ( ? ) mass ; m , < 1 GeV. (?). The o r i g i n of t h i s damping f a c t o r be-

comes a c e n t r a l t h e o r e t i c a l q u e s t i o n , t o which we r e t u r n i n s e c t i o n 3.

1.2.- PARTICLE RATIOS.-

The most important f e a t u r e of t h e d a t a on p a r t i c l e

+

-

r a t i o s i s t h a t heavy p a r t i c l e s (Km,p,p) comprise a l a r g e r f r a c t i o n of the t o t a l y i e l d . At t h e ISR, i t i s N 35% a t pI

-

3 GeV a s c o n t r a s t e d w i t h -10%

a t low PL

.

And a t NAL , t h e p/x+ r a t i o hovers around 100% and K+/x+ around 50% .

The i n t e r p r e t a t i o n of t h e s e l a r g e r a t i o s depends upon what one assumes a s t h e u l t i m a t e p a r e n t of t h e hadrons we observe. I t can be e i t h e r a p a r t o n , which

"qragmentsw a s i t i s supposed t o d o i n deep-inelas- t i c lepton-induced p r o c e s s e s [ 8 ] , o r a n o r d i n a r y hadron o r i s o b a r (of l i m i t e d mass), o r perhaps a

" f i r e b a l l " [9 1

.

I f t h e p a r e n t i s a low mass hadron, one does n o t have t o go f a r t o q u a l i t a t i v e l y understand t h e f a c t t h a t t h e heavy p a r t i c l e s a r e more dominant. While i s o b a r and resonance decays t e n d t o p o p u l a t e t h e c e n t r a l p l a t e a u , w i t h a n e x c e s s of p i o n s , t h i s me- chanism is g r e a t l y diminished i n importance a t h i g h pl because of t h e s t e e p l y f a l l i n g spectrum. Glennys F a r r a r and I c a r r i e d o u t a simple c a l c u l a t i o n t o i l l u s t r a t e t h i s e f f e c t 171

.

We f i r s t assumed SU(3)- symmetric production of 3 3 and 2 mesons and baryons, i n the r a t i o 2/1 and according t o t h e i r s t a t i s t i c a l weight. The i s o b a r d e c a y s provide con- s i d e r a b l e b u t not q u i t e enough SU(3) v i o l a t i o n . We g e t , f o r example,

However, i f we make t h e corresponding assumption a t high pl , e.g. a l l members of t h e 3 5 and 52 a r e produced with a p-8 I spectrum, a g a i n a c c o r d i n g t o s t a t i s t i c a l weight, and a g a i n with 3 5 / E = 2/1, we g e t

Again, anyone who h a s f a m i l i a r i t y w i t h cosmic r a y p h y s i c s should understand t h i s . For those who do n o t , i t i s a simple e x e r c i s e u t i l i z i n g Eq. (1.4) : i s o b a r s have a n o n t r i v i a l g ( x ) , while f o r t h e s t a b l e components g ( x ) = ~ ( I - x ) and the? a r e erhanced.

Those who u s e t h e h y p o t h e s i s t h a t t h e u l t i m a t e p a r e n t s ( o r g r a n d p a r e n t s ) of t h e hadron s p e c t r a t h a t we o b s e r v e a r e p a r t o n s , i n p a r t i c u l a r quarks,should a l s o f i n d t h e q u a l i t a t i v e t r e n d s , w i t h i n c r e a s i n g p 1 which a r e observed a t t h e ISR reasonable. When 2p /& i s l a r g e , i t i s r e a s o n a b l e t o suppose t h e

I

p a r t o n s a r e v a l e n c e p a r t o n s , predominantly u-quarks.

These u-quarks ( a l o n g with same d ) p r e f e r e n t i a l l y

- -

fragment i n t o p and K , not p and K

.

The u

quark p r e f e r e n t i a l l y fragments i n t o x+ a s w e l l ; t h u s a xi/ x - r a t i o g r e a t e r t h a n u n i t y i s a l s o r e a s o n a b l e ( t h i s l a t t e r phenomenon i s observed i n

(5)

C1-388 J.D. BJORKEN

d e e p - i n e l a s t i c e l e c t r o p r o d u c t i o n ) . However i f t h i s e x i s t i n g t h e o r e t i c a l i d e a s a r e s u r e t o be r e f i n e d , i s t h e r i g h t i n t e r p r e t a t i o n , we a r e a l s o f o r c e d t o

conclude t h a t t h e r a t h e r l a r g e p/%+ r a t i o .W 30%

and K+/ % + r a t i o .u 35% observed a t t h e ISR f o r pI >z 3 GeV i m p l i e s s i m i l a r l y l a r g e r a t i o s i n e+e- c o l l i d i n g beams, which ( a c c o r d i n g t o t h e parton- model i d e a s ) produce predominantly a mono-energetic beam of u and u

-

quarks. A cms energy w 8 GeV should s u f f i c e f o r a t e s t .

The problem o f i n t e r p r e t a t i o n becomes much more a c u t e when t h e NAL d a t a of t h e Chicago-Princeton group i s taken i n t o account. A t such l a r g e v a l u e s of p/p- , i t becomes e v e r more probable t h a t t h e p a r t o n i s a u-quark, and t h u s a l a r g e K+/%- r a t i o i s expected. I t i s not observed ( 1 . 0 ,< K+/x- 6 1.2 o v e r t h e e n t i r e range of the d a t a ) . And t h e p/K+

r a t i o - 1 i m p l i e s a n e x t r a o r d i n a r y amount of baryon p r o d u c t i o n i n e+e- a n n i h i l a t i o n [lo].

1.3.- ANGULAR DISTRIBUTION OF INCLUSIVE SPECTRA.- From t h e phase-space p l o t s i n f i g u r e 1 , we s e e t h a t

t h e r e i s a g r e a t d e a l of t e r r i t o r y from e .-100mrad.

CM t o eCM N 45O which, a t t h e ISR, y i e l d h i g h pl s e c o n d a r i e s but which i s n o t y e t explored. F o r lGeV

< PI < 3 GeV , t h e d a t a of t h e British-Scandinavian group show no d i s c e r n i b l e d i f f e r e n c e i n t h e i n v a r i a n t c r o s s - s e c t i o n , a s f u n c t i o n of pl , f o r eCM = 60°

and eCM = 90°

.

T h e o r e t i c a l models a r e c a p a b l e of d e s c r i b i n g t h e a n g u l a r dependence, which i s expected t o be q u i t e s o f t , once t h e f a c t o r -8

pI h a s been e x t r a c t e d . I s h a l l not review t h e s e , inasmuch a s

modified, o r g e n e r a l i z e d c o n s i d e r a b l y by t h e time any such d a t a w i l l appear.

2.- STRUCTURE I N PHASE-SPACE OF HIGH-p EVENTS.- 1

- 2.1.- THE GEOGRAPHY OF THE FINAL-STATE HADRON POPULATIONS.- Of c l e a r i n t e r e s t and importance i s

t h e d e t e r m i n a t i o n of what i s produced i n a s s o c i a - t i o n w i t h a high-p secondary. We hzve a l r e a d y in-

1

d i c a t e d t h a t i f t h e secondary i s t h e decay product of a p a r e n t , both p a r e n t and secondary p o s s e s s ap- proximately t h e same l a b o r a t o r y a n g l e [ l l ] . ( T h i s . i s , by t h e way, a L o r e n t z corrariant s t a t e m e n t f o r a l l L o r e n t z b o o s t s e x c e p t t h o s e which make one of t h e s e c o n d a r i e s wee). I n o t h e r words a j e t may be formed. D e f i n e a j e t - a x i s by t h e d i r e c t i o n of t h e momentum o f t h e highest-pl hadron e m i t t e d i n a high- pI event. Then a n a t u r a l h y p o t h e s i s i s t h e following

( 1 ) P a r t i c l e s of h i g h p e m i t t e d i n t h e same I

hemisphere a s t h e h i g h e s t p hadron emerge i n t h e I

same d i r e c t i o n , w i t h a n g u l a r f l u c t u a t i o n A e .$ 0 . 5 / ~ ~ i n t h e c o l l i n e a r Lorentz frame i n which t h e j e t emerges a t 90° - t o t h e beam d i r e c t i o n .

T h i s h y p o t h e s i s is a n e c e s s a r y consequence of par- ton-model orthodoxy [ l o ] , b u t has a g e n e r a l i t y t h a t extends beyond it. The r e g i o n of phase space occu- pied by members of a j e t i s shown i n f i g u r e 4. We s e e t h a t t h e d i s t r i b u t i o n i n r a p i d i t y of a s s o c i a t e d hadrons should be peaked, w i t h width l e s s t h a n 2

l n i t s of r a p i d i t y .

F i g . 4

-

Regions of phase space which may be populated a c c o r d i n g t o t h e j e t h y p o t h e s i s ; i . e . t h e r e g i o n o u t - s i d e t h e shad& r e g i o n i s expected t o b e not populated by high-pL hadrons ( a ) Peyrou p l o t ; ( b ) pL -y p l o t . What about t h e o p p o s i t e hemisphere ? E v i d e n t l y one would have t o p r o d u c e ~ 2 0 - 3 0 hadrons, each c a r - t h e h i g h p r.lust be balanced. Unless t h e m l t i p l i -

I r y i n g p.,.,0.3 GeV t o avoid t h i s c o n c l u s i o n ) . Con-

I

c i t y of a s s o c i a t e d hadrons on t h e o t h e r s i d e i s li- s i d e r t h e hadron of l a r g e s t pl. Following t h e pre- n e a r i n

p, , t h e r e w i l l be a t l e a s t one high-p

I ceding argument, we would be l e d t o e x p e c t a j e t i n

A -

hadron i n t h i s o p p o s i t e hemisphere ( a t pl >210GdV,

(6)

HIGH TRANSVERSE MOMENTUM PROCESSES C1-389

t h e o p p o s i t e hemisphere a s w e l l . T h i s has a l r e a d y been i l l u s t r a t e d i n Fig.4. The two j e t s need not emerge i n o p p o s i t e d i r e c t i o n s , i . e . w i t h A e ~ i 8 0 0 : E s t i m a t e s of t h e i r c o r r e l a t i o n e a s i l y a l l o w f o r f l u c - t u a t i o n s i n t h e i r r e l a t i v e r a p i d i t y Ay of two u n i t s . T h i s p i c t u r e i s summarized i n t h e next two hypotheses.

( 2 ) Event by e v e n t a p l a n e may be d e f i n e d by t h e beam momenta and t h e momentum of t h e hadron posse- s s i n g t h e h i g h e s t p

.

The d i s t r i b u t i o n of seconda-

1

r y hadron momentum normal t o t h i s p l a n e pN i s a s t e e p l y f a l l i n g f u n c t i o n a s pN i n c r e a s e s .

(3) Event b) e v e n t , t h e p o p u l a t i o n of secondary hadrons i s c o n f i n e d t o t h e u s u a l low-pl r e g i o n a l o n g the beam d i r e c t i o n s and t o a t most two approximately c o p l a n a r j e t r e g i o n s , a s shown i n f i g u r e 4 , which a r e d e f i n e d by t h e h i g h e s t pL p a r t i c l e s i n o p p o s i t e hemispheres. I t i s very improbable t o f i n d hadrons l a r g e d i s t a n c e s o u t s i d e t h e s e j e t r e g i o n s o r o u t s i d e t h e u s u a l low-pl fragmentation r e g i o n s and c e n t r a l p l a t e a u .

We d o n o t mean t o imply by t h e s e hypotheses t h a t a l l shaded r e g i o n s i n f i g u r e 4 a r e w e l l populated i n a t y p i c a l high-pL event. Some j e t s may b e almost empty s e t s . D i f f e r e n t models s a y d i f f e r e n t t h l n g s . But most models of which I am aware a r e n o t i n con-

f l i c t w i t h t h e above hypotheses, and t h e hypotheses a r e t h e r e f o r e very important t o t e s t . I n f a c t , t h e only models I know t h a t a r e i n c o n f l i c t a r e s 9 a t i s - t i c a l "nova" models [12,131 f o r which t h e m u l t i p l i - c i t y i s assumed t o grow l e s s r a p i d l y t h a n l i n e a r w i t h f i r e b a l l mass. These v i o l a t e t h e c o p l a n a r i t y hypothesis ( 2 ) .

The c o p l a n a r i t y h y p o t h e s i s h a s n o t y e t been exami- ned e x p e r i m e n t a l l y . The CCR d a t a on 2 - p a r t i c l e c o r r e l a t i o n s a r e a t l e a s t q u a l i t a t i v e l y i n agreement w i t h h y p o t h e s i s ( 3 ) . I f a p a r t i c l e i s observed i n c o i n c i d e n c e w i t h t h e high pL no and i n t h e same hemisphere, i t s r a p i d i t y i s s h a r p l y c o r r e l a t e d with

t h e 2

.

I n t h e o p p o s i t e hemisphere t h e c o r r e l a t i o n i s absent.

Before d e s c r i b i n g what i n g e n e r a l t h e models s a y , i t i s u s e f u l t o f u r t h e r d i s s e c t t h e r e g i o n of par- t i c l e p r o d u c t i o n which we have describerr i n t o frag- m e n t a t i o n r e g i o n s and " p l a t e a u " i n o r d e r t o o r g a n i z e o u r t h i n k i n g about t h e q u i t e complicated kinematics.

I f i n d i t h e l p f u l t o f i r s t c o n s i d e r t h e photon- exchange process. A l l t h e d i f f e r e n t r e g i o n s a l r e a d y a p p e a r i n t h a t p r o c e s s and c a n be g e n e r a l i z e d over t o t h e h a d r o n i c c a s e w i t h o u t a n overcommitment t o s p e c i f i c models. Consider f i r s t e l e c t r o n - p r o t o n deep-

i n e l a s t i c s c a t t e r i n g i n t h e e l e c t r o n - p r o t o n c e n t e r of mass frame. An i n e l a s t i c c o l l i s i o n a t l a r g e w p o p u l a t e s phase space a s shown i n f i g u r e 5. Deep-

Fig.5

-

P o p u l a t i o n i n phase space f o r a n e l e c t r o n - p r o t o n d e e p - i n e l a s t i c c o l l i s i o n a t l a r g e w

.

We a r e i n t h e e l e c t r o n - p r o t o n cms. frame.

i n e l a s t i c cognoscentes w i l l r e c o g n i z e t h e parton- f r a g m e n t a t i o n r e g i o n ( c o n t a i n i n g t h e most e n e r g e t i c hadrons, f o r o r d i n a r y l a b o r a t o r y kinematics w i t h i n i t i a l p r o t o n a t r e s t ) , t a r g e t f r a g m e n t a t i o n re- g i o n , hole-fragmentation r e g i o n , and t h e two p l a t e a u r e g i o n s , hadronic p l a t e a u and c u r r e n t p l a t e a u [141.

T h i s p i c t u r e u s e s i d e a s of s h o r t - r a n g e c o r r e l a t i o n i n r a p i d i t y , which may be wrong-especially i n t h e c u r r e n t - f r a g m e n t a t i o n region. G e n e r a l l y expected i s t h a t t h e m u l t i p l i c i t y of hadrons i n t h e c u r r e n t - p l a t e a u is r e l a t e d t o t h e m u l t i p l i c i t y of hadrons i n t h e eie- a n n i h i l a t i o n p r o c e s s , inasmuch a s t h e h o l e and p a r t o n f r a g m e n t a t i o n r e g i o n s along w i t h t h e c u r r e n t p l a t e a u comprise t h e f r a g m e n t a t i o n r e - g i o n of t h e v i r t u a l photon. Now c o n s i d e r a proton- p r o t o n c o l l i s i o n proceeding v i a photon exchange, a s i n Fig.2. E v i d e n t l y we should i n v e r t the d i s t r i b u - t i o n of f i g u r e 5 about t h e o r i g i n t o o b t a i n t h e f r a g m e n t a t i o n of t h e left-mover. That would l e a v e a gap between t h e two r e g i o n s . However, t h e r e i s good reason t o b e l i e v e the gap i s f i l l e d by a n o r - d i n a r y Yradron p l a t e a u . I n a d d i t i o n t o t h e photon exchange, pomeron exchange l e a d i n g t o p a r t i c l e pro- d u c t i o n should be p r e s e n t and i m p o r t a n t inasmuch a s t h e impact parameter i n t h e c o l l i s i o n i s not l a r g e , That i s , t h e r e i s no reason t o throw away diagrams such a s f i g u r e 6.

The complete map of t h e p o s s i b l e populated r e g i o n s of phase space i s shown i n f i g u r e 7a. There a r e 15 d i s t i n c t regions. Impossible e n e r g i e s a r e r e q u i r e d t o s e e them a l l a t t h e same time. S a v i t [151 h a s

(7)

J.D. BJORKEN

Fig.6 - Proton-proton s c a t t e r i n g v i a photon exchange, w i t h Pomeron-exchange c o r r e c t i o n .

worked t h i s o u t i n t h e a c t u a l p r a c t i c a l c a s e of pl

/& n o t s n a l l . Then uany of t h e s e regions merge, and we a r e l e f t with only 9 mixed p l a t e a u x , as shown i n Fig.7b. In r e a l i s t i c conditions (pL<< lOGeV) t h e s e i s no c u r r e n t plateau or mixed plateaux and t h e r e g i o n s re- duce t o 5. Let no one be deceived t h a t t h e s i t u a t i o n i s n o t complex. A l l 15 r e g i o n s c a n be g e n e r a l l y iden- t i f i e d i n a v a r i e t y of models : they a r e not s p e c i f i c t o p a r t o n ideas. F o r example, j u s t t h e t h r e e g e n e r a l hypotheses made e a r l i e r r a t h e r n a t u r a l l y account f o r a l l t h e r e g i o n s except t h e hole-fragmentation regions.

To s e e t h a t they a l s o a r e g e n e r a l , s t a r t w i t h t h e c o n f i g u r a t i o n of Fig. 7 a (where e v i d e n t l y s >> p2)

1 and keep t h e hadron c o n f i g u r a t i o n s i n t h e j e t s cons- t a n t w h i l e lowering t h e i n c i d e n t beam momenta. F o r s u f f i c i e n t l y l a r g e s , v a r i a t i o n of p r o j e c t i l e e n e r g i e s i s n o t supposed t o a f f e c t what happens i n t h e c e n t r a l r e g i o n ( a t f i x e d p ). Thus no change i s

I

f o r c e d a s long a s hadron plateaux(Pomeron couplizigs) e x i s t a d j a c e n t t o t h e p r o j e c t i l e fragmentation re- gions - and a s long a s energy and momentum a r e con- served. We cannot d e c r e a s e t h e beam e n e r g i e s t o s o low a value t h a t the t o t a l four-momentum i n t h e i n i - t i a l s t a t e i s l e s s t h a n what e x i s t s i n t h e hadron j e t s a l o n e ! Some easy examination of t h e kinematics shows t h a t balance i s a t t a i n e d when t h e p r o j e c t i l e fragmentation r e g i o n s o v e r l a p t h e h o l e fragmentation regions. T h i s q u i t e g e n e r a l argument i n d i c a t e s t h a t t h e e x i s t e n c e of t h e h o l e fragmentation r e g i o n s i s n o t s p e c i f i c t o models, a t l e a s t i f i t i s assumed t h a t t h e p i c t u r e of short-range r a p i d i t y c o r r e l a t i o n s i n t h e p r o j e c t i l e and hadronic p l a t e a u regions i s n o t completely abandoned f o r t h i s c l a s s of events.

3.- MODELS. - Given t h i s geography of phase-space f o r high-p p r o c e s s e s we c a n compare t h e p r e d i c t i o n s

I

of the v a r i o u s t h e o r e t i c a l models a s t o how t h e va- r i o u s r e g i o n s a r e populated. Also, a s we proceed, we

Fig.7 - Fragmentation r e g i o n s and p l a t e a u x f o r a high-pL pp i n t e r a c t i o n .

( a ) General case.

( b ) Minimum-energy c o n f i g u r a t i o n ; a f i n i t e f r a c - t i o n of i n i t i a l - s t a t e energy h a s emerged i n the high-p j e t s .

( c ) Real l i f e t h e r e i s no c u r r e n t p l a t e a u u n t i l pL >> 10-20 GeV.

must remember t h a t a c e n t r a l dynamical problem i s t o d i s c o v e r t h e o r i g i n of t h e f a c t o r m 2 i n t h e matrix element ( o r , m4 i n t h e c r o s s - s e c t i o n ) which c h a r a c t e r i z e s t h e v i o l a t i o n of dimensional s c a l i n g .

(8)

HIGH TRANSVERSE MOMENTUM PROCESSES C1-391

The phase-space p o p u l a t i o n s f o r 6 d i f f e r e n t models a r e shown s c h e m a t i c a l l y i n f i g u r e 8.

Unadorned

vw//// / n /d Multiperipheral

MODEL

Kindergarten Partons

PHASE-SPACE POPULATION

Constituent PI v w / / / / / v / l l

Interchange ,

I

-

Covarirrnt Furton Model

OPE

F i g . 8 - Phase-space-populations (shown shaded) f o r 6 d i f f e r e n t models of h i g h - p p r o c e s s e s I

a ) M u l t i p e r i p h e r a l model b) Kindergarten p a r t o n model C ) C o n s t i t u e n t i n t e r c h a n g e model d ) C o v a r i a n t p a r t o n model e) P a r t o n - f i r e b a l l f ) One-pion exchange

3.1.

-

THE MULTIPERIPHERAL MODEL UNADORNED [ 16 1.

-

I n such models a m u l t i p e r i p h e r a l l a d d e r f i l l s t h e hadron p l a t e a u r e g i o n s i n f i g u r e 8a u n t i l t h e hole- f r a g m e n t a t i o n r e g i o n s a r e reached. Beyond, i n t h e t r a n s i t i o n , mixed p l a t e a u , and c u r r e n t p l a t e a u re- g i o n s , a l l i s l e f t empty u n t i l t h e parton-fragmenta- t i o n r e g i o n s a r e reached. I n each such r e g i o n one p a r t i c l e i s found. Or i f i s o b a r s a r e i n c l u d e d , a f i - n i t e number o f p a r t i c l e s may be found t h e r e . The power of m2 needed i n t h e amplitude c a n i n t h i s model be provided by t a k i n g t h e members of t h e l a d d e r t o be s p i n l e s s , and t h e v e r t i c e s without form-factor.

Then t h e amplitude e s s e n t i a l l y c o n t a i n s a J = 0 par- ton-parton s c a t t e r i n g p r o p o r t i o n a l t o t h e s q u a r e of

2 2

a t r i l i n e a r c o u p l i n g c o n s t a n t g , [m ]

.

3.2. - THE KINDERGARTEN PARTON MODEL [2 , 4 , 5 1 . - I n t h i s model a l l f r a g m e n t a t i o n r e g i o n s a r e assumed t o

be f u l l , w i t h roughly t h e same d e n s i t y a s expected

i n deep i n e l a s t i c p r o c e s s e s . I n p a r t i c u l a r t h e mul- t i p l i c i t y i n t h e c u r r e n t - f r a g m e n t a t i o n r e g i o n should be t h e same a s observed f o r t h e corresponding r e g i o n i n deep i n e l a s t i c e l e c t r o p r o d u c t i o n . I f a high-p

I hadron i s observed, a s i n a n i n c l u s i v e experiment, i t c a r r i e s about 7 m of t h e energy of i t s p a r e n t p a r t o n [5,71 because of the s t e e p f a l l of t h e p r i - mary spectrum with i n c r e a s i n g pL

.

T h i s i s t r u e f o r any reasonably smooth i n c l u s i v e p a r t o n fragmen- t a t i o n f u n c t i o n g ( x ) , a s f o l l o w s from Eq.(1.4).

Thus t h e r e should be a gap o f - l - 2 u n i t s of r a p i d i t y between t h e observed hadron and t h e r e s t of t h e po- p u l a t i o n i n t h e c u r r e n t f r a g m e n t a t i o n region. I f t h e t r i g g e r i s o n t h e t o t a l hadron energy i n a j e t , a s would be t h e c a s e were t h e hadron d e t e c t o r a c a l o r i - meter, t h e n t h i s b i a s i s removed. I n such a c a s e t h e d i s t r i b u t i o n should be s i m i l a r t o what i s found i n t h e c u r r e n t - f r a g m e n t a t i o n r e g i o n i n e l e c t r o p r o d u c - t i o n . T h e r e t h e e v i d e n c e f a v o r s ( t h a n k s t o t h e r e c e n t C o r n e l l experiment [17] on m u l t i p l i c i t i e s i n t h e deep i n e l a s t i c r e g i o n : -, 2.5 GeV, 1 < Q~ < 10 GeV 2 ) a d i s t r i b u t i o n q u i t e s i m i l a r t o what i s found i n o r d i n a r y p r o c e s s e s . I n a n experiment i n which one t r i g g e r s on a high-p p a r t i c l e i n one hemisphere and

I

then o b s e r v e s t h e hadrons emerging i n t h e o p p o s i t e hemisphere they should ( i n t h i s model) a g a i n comprise a n "unbiased jet". Thus a h i g h e r a s s o c i a t e d m u l t i - p l i c i t y i s expected i n t h e hemisphere o p p o s i t e t o the high-p t r i g g e r hadron than on t h e same s i d e .

I

The d i f f e r e n c e i n m u l t i p l i c i t i e s o n t h e two s i d e s should be roughly independent of pI a t s u f f i c i e n t l y high ( i . e. impossibly h i g h ) 5

.

E l l i s and K i s s l i n g e r

[51 have c a r r i e d o u t more d e t a i l e d s t u d i e s of many of t h e s e questions.

The main d i f f i c u l t y w i t h t h e k i n d e r g a r t e n p a r t o n model i s i t s e x p e c t a t i o n of dimensional s c a l i n g f o r t h e i n c l u s i v e d i s t r i b u t i o n ( a n exponent 4 i n s t e a d of t h e observed 8-10 i n Eq.cl.4)). To o b t a i n t h e power m2 i n t h e matrix-element a p p e a r s t o r e q u i r e a g a i n J=0 p a r t o n s s c a t t e r i n g v i a J=0 exchange, while t h e d a t a ( i n p a r t i c u l a r t h e v e r y l a r g e p/K r a t i o (, 1) r e p o r t e d i n t h e NAL experiment s u g g e s t s t h a t what i s s c a t t e r e d c o n t a i n s t h e quantum numbers of t h e p r o j e c t i l e s , i n p a r t i c u l a r baryon number. W i - t h o u t major a d j u s t m e n t s , t h i s model o f hadron-hadron c o l l i s i o n s ( o r a t l e a s t t h e quark-parton-plus-gluon v e r s i o n of i t ) appears t o be simply wrong.

3.3.

-

THE CONSTITUENT INTERCHANGE MODEL [6,41]

.-

Blankenbecler, Brodsky, and Gunion [6] argued t h a t whether o r not high-p hadrons may be produced v i a

1

(9)

C1-392 J.D. B

h a r d p a r t o n - p a r t o n c o l l i s i o n s , a s assumed i n t h e p r e c e d i n g model, they can be produced by a c o n s t i - t u e n t - i n t e r c h a n g e mechanism. To me t h i s l i n e o f a r - gument h a s l e d by f a r t o t h e most comprehensive and c o n s i s t e n t d e s c r i p t i o n o f high-pl i n c l u s i v e and e x c l u s i v e p r o c e s s e s i n existence.Brodsky and F a r r a r [41] have developed a very r e l a t e d ( b u t n o t i d e n t i - c a l ) l i n e of argument which v e r y e a s i l y summarizes t h e p h y s i c s involved. F i r s t of a l l ( a s d i s c u s s e d by Brodsky and F a r r a r L 4 l l and by Matveev, Muradian, and Tavkhelidze [ l g l ) , f o r e x c l u s i v e p r o c e s s e s a t f i x e d a n g l e and high e n e r g y , t h e e l a s t i c s c a t t e r i n g of a p a r t o n from a n o t h e r p a r t o n i s assumed t o pro- ceed a c c o r d i n g t o dimensional a n a l y s i s . I f a p a r t o n s c a t t e r s e l a s t i c a l l y from a meson t h e amplitude i s damped by a power of m 2 /s where m2 i s a s m a l l mass. That i s t h e p r i c e t h a t h a s t o be paid t o keep t h e mass o f t h e f i n a l qq bound system small.(Brods-

-

ky and F a r r a r have examined c l a s s e s of diagrams i n s c a l e - i n v a r i a n t t h e o r i e s t o s u p p o r t t h i s conten- t i o n ) . For each a d d i t i o n a l bound c o n s t i t u e n t , one i n c l u d e s a n o t h e r power of m 2 /s

.

Thus we g e t t h e t a b l e below

P r o c e s s Fixed-angle c r o s s - s e c t i o n

which i n f a c t i s i n good accord w i t h t h e d a t a . Given t h e r u l e , t h e s y s t e m a t i c behavior of i n c l u s i v e pro- c e s s e s made on t h e b a s i s of t h e i n t e r c h a n g e model

c a n be reduced t o dimensional a n a l y s i s ( o r automo- d e l i t y [ 1 9 ] ) . Given t h a t f o r some reason t h e qq s c a t t e r i n g term (which c o n t r o l s t h e k i n d e r g a r t e n - p a r t o n d e s c r i p t i o n ) i s a b s e n t , t h e next most impor- t a n t c o n t r i b u t i o n i s t h e s c a t t e r i n g of a meson M from a quark, e i t h e r qq -' MM o r qM + qM

.

By a

"meson" M i s meant a c o r r e l a t e d qq p a i r i n t h e protnn's wave f u n c t i o n , which p o s s e s s e s a low inva- r i a n t mass. Because of t h e f a c t o r [m212 i n t h i s c r o s s - s e c t i o n , we g e t , a g a i n u s i n g dimensional ana-

l y s i s , n = 8 i n Eq. (1.4). I n a n Mq c o l l i s i o n , t h e q and M i n t h e i n i t i a l beams r e s i d e i n t h e hole-fragmentation r e g i o n s . The c o l l i s i o n t r a n s p o r t s them t o t h e parton-fragmentation r e g i o n s . The "me- sont' M d o e s

=

fragment ( u n l e s s i t i s a n i s o b a r ) , w h i l e t h e p a r t o n fragments p r e f e r e n t i a l l y i n t o a high-mass system, l e a d i n g t o a n i n c l u s i v e spectrum which f i l l s i t s c u r r e n t - f r a g m e n t a t i o n region. Hence t h e f i l l e d r e g i o n s of phase-space a r e a s shown i n f i g u r e 8c. For a qq

-

+ M M c o l l i s i o n t h e c u r r e n t - f r a g m e n t a t i o n r e g i o n s remain empty, a s i n t h e multi- p e r i p h e r a l model. Another p i e c e of e v i d e n c e f a v o r s t h e s e i d e a s . The NAL d a t a a t 6 = 20 and 2 1 GeV show a l a r g e p / ~ ' r a t i o % 1

.

T h i s i n d i c a t e s t h a t a t those ( r e l a t i v e l y low) e n e r g i e s parton-baryon s c a t t e r i n g should n o t be ignored. The i n c l u s i v e d i s - t r i b u t i o n a s s o c i a t e d w i t h t h a t component h a s a n expo- n e n t n , i n Eq.(1.4), o f 12, n o t 8. Thus t h e expe- r i m e n t a l exponent of - 1 0 observed i n t h a t range c a n be a t l e a s t q u a l i t a t i v e l y understood a s a n average of 8 and 12. As t h e energy i n c r e a s e s , one would t h e n e x p e c t , a t f i x e d p/pmax , t h e p/"+ r a t i o t o d e c r e a s e a s 5 4 , which would make i t q u i t e s m a l l a t &,44 a t t h e ISR , i n c o n t r a d i c t i o n w i t h o b s e r v a t i o n . However t h e p r o c e s s

a p p a r e n t l y o m i t t e d by Brodsky and F a r r a r , h a s t h e same s c a l i n g behaviour ( a n exponent 8 ) a s

and consequently a t f i x e d x t h e p/"+ r a t i o would e v e n t u a l l y be expected t o tend t o a non v a n i s h i n g c o n s t a n t . With t h e v a r i e t y of mechanisms a v a i l a b l e , i t s h d l d b e p o s s i b l e t o account f o r t h e d a t a [20].

Another p o s s i b l y r e l e v a n t p i e c e of evidence comes from BNL d a t a a t 28 GeV. The BNL-VPI-Wisconsin- Purdue c o l l a b o r a t i o n u s i n g t h e ARGO s p e c t r o m e t e r [21] o b s e r v e s t h e r e a c t i o n pp -, p + hadrons, where t h e observed p h a s h i g h p

.

There appear t o be

I

no p i o n s a s s o c i a t e d w i t h f r a g m e n t a t i o n of t h e obser- ved high-pL proton. The a s s o c i a t e d m u l t i p l i c i t y a t f i x e d m i s s i n g mass i n c r e a s e s s h a r p l y a s t h e p of

I t h e t r i g g e r p r o t o n i n c r e a s e s beyond 1 GeV/c. The f i r s t o b s e r v a t i o n i s i n accord w i t h t h e i n t e r c h a n g e p i c t u r e . The r i s e i n n - i s not ; a t f i x e d m i s s i n g

mass t h e behaviour i s supposed t o be q u a l i t a t i v e l y t h e same a s i n e l e c t r o - p r o d u c t i o n , where t h e evidence f a v o r s no i n c r e a s e i n n a t f i x e d m i s s i n g mass.

-

(10)

HIGH TRANSVERSE MOMENTUM PROCESSES Cl-393

3.4.

-

THE COVARIANT PARMN MODEL [18 1.

-

Inasmuch

a s P r o f e s s o r Polkinghmne [22] h a s d e s c r i b e d t h i s viewpoint i n some d e t a i l , I s h a l l only very b r i e f l y p a r a p h r a s e h i s remarks u s i n g t h i s language.

The diagram of f i g u r e 9 a which i s d e s c r i b e d a p t l y

Fig.9

-

a ) Mueller diagram i n covariant-parton-model d e s c r i p t i o n of high-pL i n c l u s i v e d i s t r i b u t i 0 n ; t h e s t a r r e d l i n e s p o s s e s s h i g h pl. b ) A simple, p o s s i b l e d i s s e c t i o n of diagram ( a ) . c ) Pomeron-cut c o r r e c t i o n . a s "parton-parton fusion", e x h i b i t s e x p l i c i t l y only t h e one high-pl p a r t i c l e observed i n a n i n c l u s i v e experiment. The parton-proton amplitude l a b e l e d V W

2 a c c o u n t s f o r one hadron-plateau and one t a r g e t f r a g - mentation region. However high-pl i s c a r r i e d i n t o t h e black box a t t h e top by two o f f - s h e l l p a r t o n s , and c o n s i d e r a b l e f l e x i b i l i t y e x i s t s i n how t o choose t h e s t r u c t u r e of t h a t amplitude. The c h o i c e d e s c r i b e d by Fig.9b c o r r e s p o n d s , i n t h e i n t e r c h a n g e terminolo- gy, t o a qq -+ MM s c a t t e r i n g which would produce a c o n f i g u r a t i o n i n phase s p a c e s i m i l a r t o t h e una-

~ r n e d m u l t i p e r i p h e r a l model i f t h e masses of t h e :sons M were t o be l i m i t e d . However, u s i n g s p e c t r a

~f masses f o r t h e two "meso& M c a n r e s u l t i n a f i l - l i n g i n of t h e c u r r e n t f r a g m e n t a t i o n r e g i o n s and a d d i t i o n of Pomeron exchange c a n f u r t h e r p o p u l a t e t h e vacant a r e a s of phase space i n t h e low-p

1 ten- t r a l r e g i o n s ( F i g . 9 ~ ) . Hence t h e model i s c a p a b l e of a v a r i e t y of responses depending upon t h e t r e n d of t h e d a t a .

3.5. - PARTON-FIREBALL HODEL [9 1. - Berger and Bran- s o n [ 9 ] e n v i s a g e a two s t e p p r o c e s s i n which two f i r e b a l l s of high-p a r e produced by a mechanism es-

I

s e n t i a l l y amounting t o a d i r e c t p a r t o n - p a r t o n i n t e - r a c t i o n . From c o n s i d e r a t i o n s s i m i l a r t o what I des- c r i b e d a s t h e p a r e n t - c h i l d r e l a t i o n , t h e f i r e b a l l produced i n a s s o c i a t i o n with a n i n c l u s i v e t r i g g e r hadron of h i g h pl has low mass ( i n o r d e r t h a t t h e i n e l a s t i c i t y i n t h e p a r t o n -t hadron t r a n s i t i o n be low). The f i r e b a l l on t h e o t h e r s i d e has a l a r g e mass.

This p i c t u r e i s t h e r e f o r e i n l i n e with what d a t a

e x i s t s on a s s o c i a t e d m u l t i p l i c i t y . Also, t h e predo- minance o f heavy p a r t i c l e s i n t h e spectrum a l s o might be understood inasmuch a s t h e f i r e b a l l compo- n e n t s a l l have roughly t h e same Y and hence p and K have t h e h i g h e s t momentum. The a u t h o r s gues- sed a p / ~ + r a t i o of 5 f o r NAL c o n d i t i o n s of p / p m a x ~ 1 / 2 , i n s t e a d of t h e observed 1. They f u r t h e r - more expected t h e r a t i o t o be a s h a r p l y r i s i n g func- t i o n of 2p I /&

.

3.6.

-

ONE-PION EXCHANGE.- Dremin [40] c o n s i d e r s a diagram s i m i l a r t o f i g u r e 2 , w i t h a h i g h l y v i r t u a l p i o n exchanged i n s t e a d of Y

.

The v i r t u a l p i o n i s t r e a t e d s i m i l a r l y t o a v i r t u a l photon, b u t because i t h a s J=O t h e exponent 8 i s found i n s t e a d of 4.

Development of many of t h e parton-fragmentation i d e a s can be found i n t h i s paper. The p r o p e r t i e s of t h e f i n a l s t a t e s w i l l be most s i m i l a r t o t h e kindergar- t e n p a r t o n model.

3.7.- MBELLER-REGGE DIAGRAMS AND THE COLEMAN PREPA- RATA MODEL[23,24].- I n 1969, Coleman P r e p a r a t a (and i n q u i t e a s i m i l a r way, L.P. Yu) invented a p a r t b n model f o r d e e p - i n e l a s t i c s c a t t e r i n g which a c c o u n t s f o r s c a l i n g , and a l s o i s c a p a b l e of p r o v i d i n g a Muel- ler-Regge framework f o r d i s c u s s i n g i n c l u s i v e s p e c t r a , i n c l u d i n g t h e d i f f i c u l t c u r r e n t - f r a g m e n t a t i o n r e g i o n s . The diagrams a r e shown i n f i g u r e 10.

pornerons 5

"

P P

Mlxed Pornerons Reggeons

C

-- Current Pornerons

.

Reggeons

i P

Fig.10

-

Mueller-Regge diagrams i n t h e Coleman-Pre- p a r a t a model.(a) D e e p - i n e l a s t i c e l e c t r o p r o d u c t i o n . ( b ) pp s c a t t e r i n g v i a photon and Pomeron exchange, a s i n Fig.2. ( c ) General Mueller-Regge t r e e appropriate t o t h e d e s c r i p t i o n of hadron f i n a l s t a t e s i n high-p p r o c e s s e s f o r any c a s e i n which a l l allowed phase I space r e g i o n s (Fig.7) a r e f i l l e d and s h o r t - r a n g e cor- r e l a t i o n assumedi

27

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to