• Aucun résultat trouvé

Analysis of a stabilized finite element method for fluid flows through a porous interface

N/A
N/A
Protected

Academic year: 2021

Partager "Analysis of a stabilized finite element method for fluid flows through a porous interface"

Copied!
12
0
0

Texte intégral

(1)

HAL Id: inria-00543014

https://hal.inria.fr/inria-00543014

Submitted on 5 Dec 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Analysis of a stabilized finite element method for fluid flows through a porous interface

Alfonso Caiazzo, Miguel Angel Fernández, Vincent Martin

To cite this version:

Alfonso Caiazzo, Miguel Angel Fernández, Vincent Martin. Analysis of a stabilized finite element method for fluid flows through a porous interface. Applied Mathematics Letters, Elsevier, 2011, 24 (12), pp.2124-2127. �10.1016/j.aml.2011.06.012�. �inria-00543014�

(2)

a p p o r t

d e r e c h e r c h e

ISSN0249-6399ISRNINRIA/RR--7475--FR+ENG

Thème BIO

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Analysis of a stabilized finite element method for fluid flows through a porous interface

Alfonso Caiazzo — Miguel A. Fernández — Vincent Martin

N° 7475

December 2010

(3)
(4)

Unité de recherche INRIA Rocquencourt

Domaine de Voluceau, Rocquencourt, BP 105, 78153 Le Chesnay Cedex (France)

Téléphone : +33 1 39 63 55 11 — Télécopie : +33 1 39 63 53 30

Analysis of a stabilized finite element method for fluid flows through a porous interface

Alfonso Caiazzo , Miguel A. Fern´andez , Vincent Martin

Th`eme BIO — Syst`emes biologiques Projet REO

Rapport de recherche n°7475 — December 2010 — 8 pages

Abstract: This work is devoted to the numerical simulation of an incompress- ible fluid through a porous interface, modeled as a macroscopicresistive inter- face term in the Stokes equations. We improve the results reported in [M2AN 42(6):961–990, 2008], by showing that the standard Pressure Stabilized Petrov- Galerkin (PSPG) finite element method is stable, and optimally convergent, without the need for controlling the pressure jump across the interface.

Key-words: Stokes equation, porous interface, stabilized finite element method.

INRIA, REO project-team and Weierstrass Institute,a.caiazzo@googlemail.com.

INRIA, REO project-team,Miguel.Fernandez@inria.fr.

UTC Compi`egne and INRIA, REO project-team,Vincent.Martin@utc.fr.

(5)

Analyse d’une m´ethode d’´el´ements finis stabilis´ee pour les ´ecoulements `a travers une

interface poureuse

esum´e : Ce travail concerne la simulation num´erique d’un fluide incompress- ible `a travers une interface poureuse, mod´elis´ee par un terme d’interface r´esistif macroscopique dans les ´equations de Stokes. Nous am´eliorons les r´esultats de [M2AN 42(6):961–990, 2008], en montrant que la m´ethode d’´el´ements finis sta- bilis´ee classique PSPG (Pressure Stabilized Petrov-Galerkin) est stable, et con- verge de fa¸con optimale, sans contrˆole additionnel sur le saut de pression `a l’interface.

Mots-cl´es : Equation de Stokes, interface poureuse, m´ethode d’´el´ements finis´ stabilis´ee.

(6)

Stabilized FEM for fluid flows through a porous interface 3

1 Introduction

We consider a regular domain ΩRd,d= 2 or 3, and a porous interface defined by a hyperplane domain Γ Rd−1, dividing Ω in two connected subdomains as Ω = Ω1Γ2. We denote by n1, n2 the outgoing normals from each subdomain Ωi at the interface, with n1 =n2, and we define n = n1. The fluid velocity u and pressure pare governed by the following modified Stokes equations [3]:

pµ∆u+rΓδΓu=f in Ω,

divu= 0 in Ω, (1)

with a homogeneous Dirichlet condition on∂Ω. In (1), the symbolµstands for the fluid viscosity,f for a given volume force,δΓfor the Dirac measure on Γ, and rΓ>0 is a given interface resistance, related to the permeability and porosity of the interface. Without loss of generality,rΓ is assumed to be a constant scalar.

Problem (1) can be reformulated equivalently as a two-domain Stokes prob- lem, complemented with the interface conditions

JuK=0, u·npnK=rΓu on Γ, (2) whereJqKdef= q1|Γq2|Γ denotes the jump across Γ andqi

def= q|i (i= 1,2).

In [3], problem (1) was discretized with an extension of the PSPG stabilized method (see [4]): an additional consistent term (based on (2)) was introduced to control the interface pressure jump. Numerical evidence showed, however, that this term did not improve noticeably the behavior of the numerical solution with respect to a standard PSPG stabilized formulation [3]. The aim of this note is to show that, indeed, stability and optimal accuracy can be derived without the need for this extra interface stabilization term (which is convenient in practice).

2 Finite element formulation

Let {Th}0<h≤1 be a regular family of quasi-uniform triangulations of Ω, con- forming with the interface Γ. The corresponding triangulation of the interface is denoted byGh and we sethdef= maxT∈ThhT, where hT is the diameter of the elementT. We introduce the spacesV def= [H01(Ω)]d, Qdef= L20(Ω), and the finite element spaces of degreek1,Vkh and Nhk, equal order approximations ofV andQ:

Vkhdef=

vh(C0(Ω))d| vh|T (Pk)d T∈ Th V, Nhkdef=

qh|Ωi ∈ C0(Ωi), i= 1,2| qh|T Pk T ∈ Th Q.

(3)

Note that the space Nhk of discrete pressures allows discontinuity at the inter- face Γ. As underlined in [3], this is of utmost importance to get a correct approximation of the solution without excessive mesh refinement. Additionally, we introduce the spacesV0

def= {vV|v|Γ = 0}andV0,hk def= V0Vkh.

RR n°7475

(7)

4 Caiazzo, Fern´andez & Martin

Let us consider the two following bilinear forms ArδΓ xh,yhdef

= (µuh,vh)(ph,divvh) + (rΓuh,vh)Γ+ (divuh, qh) +δ X

T∈Th

h2T

µ (µ∆uh+ph,qh)T, BδrΓ xh,yhdef

= ArδΓ xh,yh

δ X

E∈Gh

hE

µ (Jµuh·nphnK+rΓuh,JqhnK)E for allxh= (uh, ph) andyh= (vh, qh) inVkh×Nhk andδ >0 is a stabilization parameter. The discrete formulation proposed and analyzed in [3] is based on BrδΓ. In this note, we consider the numerical analysis of the standard PSPG formulation

ArδΓ xh,yh

= (f,vh) yhVkh×Nhk. (4)

3 Stability analysis

Let us consider the mesh-dependent energy norm

|||(uh, ph)|||2hdef= µkuhk20,Ω+rΓkuhk20,Γ+δ X

T∈Th

h2T

µ kphk20,T +1

µkphk20,Ω.

Note that, unlike in [3], this norm provides no control on the interface pressure jump. We address now the stability of (4) in the||| · |||h norm.

By applying the inverse inequality (see [1])

k∆vhk0,T ch−1kvhk0,T, vhVkh, and the Schwarz and Young inequalities to the term P

T∈Thh2T(∆uh,ph)T, we get the following coercivity estimate.

Proposition 3.1 Let δbe such that0< δc21. Then ArδΓ(xh,xh) µ

2kuhk20,Ω+rΓkuhk20,Γ+ξ2 2 1

2

|||(uh, ph)|||2h 1

µkphk20,Ω

(5) for allxh= (uh, ph)Vkh×Qkh, withξ2 def= δP

T∈Th

h2T

µ kphk20,T.

The stability and the optimal convergence are stated in the following result.

Proposition 3.2 Under the assumption of Proposition 3.1 there holds:

(i)there exists a constant β=β(δ,rµΓ)independent of h, such that inf

xh∈Vkh×Qkh

sup

yh∈Vkh×Qkh

ArδΓ(xh,yh)

|||xh|||h|||yh|||h β. (6) Moreover, if δ1 we haveβ δ, andβ=O(µ/rΓ) for rΓ1;

INRIA

(8)

Stabilized FEM for fluid flows through a porous interface 5

(ii)let(uh, ph)be the solution of (4)and assume that(u, p), the solution of (1), is such that ui

Hk+1(Ωi)d

, pi Hk(Ωi), i = 1,2. The following estimate holds

|||(uuh, pph)|||hc hk X

i=1,2

kukk+1,Ωi+kpkk,Ωi

, (7)

wherec=c(rΓ, δ, µ)is a positive constant, independent ofh.

We remark that the stability and convergence results are essentially the same as the ones given in [3], but without the need for the extra stabilization term.

Theinf-supconstantβ has also the same asymptotic behavior.

Proof. For the sake of conciseness, we prove only point(i). The proof of(ii) follows [3], owing to the stability ofArδΓ. Letxh= (uh, ph)Vkh×Nhk . Given (5), the inf-sup stability ofArδΓ requires additional stability estimates needed to control the pressure.

A pressurep L20(Ω) has zero mean in Ω, but this is not true in general for its restriction to Ωi, i= 1,2. Following an argument of [2], we decompose phNhk L20(Ω) asph=p0h+ph, withp0h,iL20(Ωi) andph,idef= (ph,i,1)i(i.e., p0hhas zero mean over each subdomain and ph is constant in each subdomain).

The following relations hold:

kphk20,Ω= p0h

2

0,Ω+kphk20,Ω, ph,1|1|+ph,2|2|= 0, kphk20,Ω=p2h,1|1|+p2h,2|2|.

(8)

We show how to control separately p0h and ph. Since p0h,i L20(Ωi), i = 1,2, there exists a function v0V0, such thatv0i [H01(Ωi)]d, divv0i =p0h,i and v0

1,Ω c p0h

0,Ω. We take v0h as the Scott-Zhang interpolant of v0 into Vk0,h, defined separately on each subdomain. Using the properties of the Scott- Zhang operator [1], we also have

v0h

1,Ω c p0h

0,Ω and

v0v0h 0,Ω cπh

v0

1,Ω. Since v0i,v0i,h [H01(Ωi)]d, i = 1,2, and ph is constant on each subdomain, we have (v0v0h)|Γ = 0, (ph,divv0h) = 0 and (ph,divv0) = 0.

Hence, using the fact that ph Nhk is continuous in Ω1 and Ω2 we obtain, integrating by parts in each subdomain:

(ph,divv0h) = p0h,divv0

+ p0h,div(v0v0h)

p0h

2

0,Ωξcπcδ12µ12 p0h

0,Ω,

withξdefined in Proposition 3.1. Using Young’s inequality, this yields ArδΓ xh,(v0h,0)

≥ −cµkuhk0,Ω

p0h

0,Ωµ δ

12

cπcξ p0h

0,Ω+ p0h

2 0,Ω

1 2

p0h

2

0,Ω(c)2µ2kuhk20,Ωµ δc2πc2ξ2.

(9) To handle the constant part of the pressure, we need the following Lemma (whose proof can be found in [2] in a more complex case):

RR n°7475

(9)

6 Caiazzo, Fern´andez & Martin

Lemma 3.1 There exist two (non-constant) functions vαh V1h, α = 1,2, defined over the whole domainsuch that

kvαhk0,Ω+kvαhk0,Γc ph,α

0,Ωα, Z

Γ

vαh,1·n1= Z

Γ

vαh,2·n2=ph,α|α|.

Let vh

def= v2hv1h Vkh. Since ph,i = 0 and using (8) and Lemma 3.1, we have

(ph,divvh) = X

i=1,2

(ph,i,(v1hv2h)·ni)Γ

=p2h,1|1| −ph,1ph,2(|2|+|1|) +p2h,2|2|

= 2 p21|1|+p22|2|

= 2kphk20,Ω, and, by applying Lemma 3.1 once more, there follows

(ph,divvh) =(ph,divvh)(p0h,divvh)

2kphk20,Ω p0h

0,Ωd12

(v1hv2h) 0,Ω

2kphk20,Ωc2 p0h

2 0,Ω1

4

ph,1

0,Ω1+ ph,2

0,Ω2

2

≥ kphk20,Ωdc2 p0h

2 0,Ω,

where we recall thatddenotes the spatial dimension. Hence, ArδΓ(xh,(vh,0))≥ −2µckuhk0,Ωkphk0,Ω2rΓckuhk0,Γkphk0,Ω

+kphk20,Ωdc2 p0h

2 0,Ω

1

2kphk20,Ωdc2 p0h

2

0,Ω4c2µ2kuhk20,Ω4c2r2Γkuhk20,Γ. (10) Therefore, by takingyh= (λv0h+ (1λ)vh,0), withλdef= 2(1+dc1+2dc22) (0,1), and using (9) and (10), we obtain

ArδΓ(xh,yh) λ

2 (1λ)d¯c2

p0h

2

0,Ω+1λ 2 kphk20,Ω

µ λ(c)2+ (1λ)4c2

µkuhk20,Ω

µ

δλc2πc2ξ2(1λ)4c2rΓ2kuhk20,Γ

1

ckphk20,Ωµc2max

|||(uh, ph)|||2h1

µkphk20,Ω

,

(11)

where we have introduced ˜cdef= 1+dc2, andc2maxdef= max

c′2+4c2

,1δc2πc2,4c2rµΓ . Equation (11) provides a control on the pressure. To conclude the proof, we

INRIA

(10)

Stabilized FEM for fluid flows through a porous interface 7

take a test function zh

def= (1ω)xh+ωyh, withω def= µ+2˜c(1+2µcc 2

max) (0,1), and apply (5) and (11), to obtain

ArδΓ(xh,zh)1 2(1ω)

|||(uh, ph)|||2h1

µkphk20,Ω

+ω 1

ckphk20,Ωµc2max

|||(uh, ph)|||2h 1

µkphk20,Ω

1ω

2 ωµc2max

µkuhk20,Ω+rΓkuhk20,Γ+ξ2 + ω

ckphk20,Ω

µ

2 µ+ 2˜c(1 + 2µc2max)|||xh|||2h.

(12) Moreover, it can be shown thatzhcan be controlled byxh as

|||zh|||h(1ω)|||xh|||h+ω |||(v0h,0)|||h+|||(v1h,0)|||h+|||(v2h,0)|||h

(1ω)|||xh|||h+ωµ12c p0h

0,Ω+ω

2c(µ+rΓ)12kphk0,Ω

(1ω)|||xh|||h+ωµ

2cmax|||xh|||h

1ω+ωµ 2cmax

|||xh|||h

µ1 + 2˜ccmax(2cmax+ 2) µ+ 2˜c(1 + 2µc2max) |||xh|||h.

(13)

Combining (12) and (13) we obtain that the global inf-sup condition (6) follows with a constant

βdef= 1

2 1 + 2˜ccmax(2cmax+ 2).

The stated asymptotic behavior ofβ follows from the definition ofcmax.

References

[1] S. C. Brenner and L. R. Scott. The mathematical theory of finite element methods. Springer Verlag, 2002.

[2] Erik Burman and Peter Hansbo. A unified stabilized method for Stokes’ and Darcy’s equations. J. Comput. Appl. Math., 198(1):35–51, 2007.

[3] M. A. Fern´andez, J.-F. Gerbeau, and V. Martin. Numerical simulation of blood flows through a porous interface. Math. Model. Num. Anal. (M2AN), 42(6):961–990, 2008.

[4] T.J.R. Hughes, L.P. Franca, and M. Balestra. A new finite element for- mulation for computational fluid dynamics. V. Circumventing the Babuˇska- Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comput. Methods Appl. Mech.

Engrg., 59(1):85–99, 1986.

RR n°7475

(11)

8 Caiazzo, Fern´andez & Martin

Contents

1 Introduction 3

2 Finite element formulation 3

3 Stability analysis 4

INRIA

(12)

Unité de recherche INRIA Rocquencourt

Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes 4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique 615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France) Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France) Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Éditeur

INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr ISSN 0249-6399

Références

Documents relatifs

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France) Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France) Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France) Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France) Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France) Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France) Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France) Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France) Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334