• Aucun résultat trouvé

Disponible à / Available at permalink :

N/A
N/A
Protected

Academic year: 2021

Partager "Disponible à / Available at permalink :"

Copied!
96
0
0

Texte intégral

(1)

- - -

- - -

Dépôt Institutionnel de l’Université libre de Bruxelles / Université libre de Bruxelles Institutional Repository

Thèse de doctorat/ PhD Thesis Citation APA:

Heistercamp, M. (2011). The Weinstein conjecture with multiplicities on spherizations (Unpublished doctoral dissertation). Université libre de Bruxelles, Faculté des Sciences – Mathématiques, Bruxelles.

Disponible à / Available at permalink : https://dipot.ulb.ac.be/dspace/bitstream/2013/209882/4/86d6018e-71a3-488e-9506-e3eb3cfd7b4a.txt

(English version below)

Cette thèse de doctorat a été numérisée par l’Université libre de Bruxelles. L’auteur qui s’opposerait à sa mise en ligne dans DI-fusion est invité à prendre contact avec l’Université (di-fusion@ulb.be).

Dans le cas où une version électronique native de la thèse existe, l’Université ne peut garantir que la présente version numérisée soit identique à la version électronique native, ni qu’elle soit la version officielle définitive de la thèse.

DI-fusion, le Dépôt Institutionnel de l’Université libre de Bruxelles, recueille la production scientifique de l’Université, mise à disposition en libre accès autant que possible. Les œuvres accessibles dans DI-fusion sont protégées par la législation belge relative aux droits d'auteur et aux droits voisins. Toute personne peut, sans avoir à demander l’autorisation de l’auteur ou de l’ayant-droit, à des fins d’usage privé ou à des fins d’illustration de l’enseignement ou de recherche scientifique, dans la mesure justifiée par le but non lucratif poursuivi, lire, télécharger ou reproduire sur papier ou sur tout autre support, les articles ou des fragments d’autres œuvres, disponibles dans DI-fusion, pour autant que :

Le nom des auteurs, le titre et la référence bibliographique complète soient cités;

L’identifiant unique attribué aux métadonnées dans DI-fusion (permalink) soit indiqué;

Le contenu ne soit pas modifié.

L’œuvre ne peut être stockée dans une autre base de données dans le but d’y donner accès ; l’identifiant unique (permalink) indiqué ci-dessus doit toujours être utilisé pour donner accès à l’œuvre. Toute autre utilisation non mentionnée ci-dessus nécessite l’autorisation de l’auteur de l’œuvre ou de l’ayant droit.

--- English Version ---

This Ph.D. thesis has been digitized by Université libre de Bruxelles. The author who would disagree on its online availability in DI-fusion is invited to contact the University (di-fusion@ulb.be).

If a native electronic version of the thesis exists, the University can guarantee neither that the present digitized version is identical to the native electronic version, nor that it is the definitive official version of the thesis.

DI-fusion is the Institutional Repository of Université libre de Bruxelles; it collects the research output of the University, available on open access as much as possible. The works included in DI-fusion are protected by the Belgian legislation relating to authors’ rights and neighbouring rights.

Any user may, without prior permission from the authors or copyright owners, for private usage or for educational or scientific research purposes, to the extent justified by the non-profit activity, read, download or reproduce on paper or on any other media, the articles or fragments of other works, available in DI-fusion, provided:

The authors, title and full bibliographic details are credited in any copy;

The unique identifier (permalink) for the original metadata page in DI-fusion is indicated;

The content is not changed in any way.

It is not permitted to store the work in another database in order to provide access to it; the unique identifier (permalink) indicated above must always be used to provide access to the work. Any other use not mentioned above requires the authors’ or copyright owners’ permission.

(2)

D 0 3 8 1 9

U L B

U N I V E R S I TÉ L I B R E

DE B R U X E L L E S

m i i e

UNIVERSITÉ DE NEUCHâTEL

T h e W e i n s t e i n c o n j e c t u r e w i t h m u l t i p H c i t i e s o n s p h e r i z a t i o n s

T h è s e présentée en v u e de l'obtention d u grade d e D o c t e u r en Sciences

p a r

Muriel HEISTERCAMP

D i r e c t e u r s d e t hè s e :

Prof. F. Schlenk, Université de Neuchâtel Prof. F. Bourgeois, Université Libre de Bruxelles C o m p o s i t i o n d u j u r y :

Président: Prof. A. Valette, Université de Neuchâtel Secrétaire: Prof. S. G u t t , Université Libre de Bruxelles Examinateurs: Prof. A. Abbondandolo, Uiiiversità di Pisa

Prof. M. Bertelson, Université Libre de Bruxelles

Année académique 2010-2011

U n i v e r s i t é L i b r e d e B r u x e l l e s

Y

(3)

U L B LIBRE

DE B R U X E L L E S

m i

UNIVERSITÉ DE NEUCHâTEL

T h e W e i n s t e i n c o n j e c t u r e w i t h m u l t i p l i c i t i e s o n s p h e r i z a t i o n s

T h è s e présentée e n v u e d e l ' o b t e n t i o n d u g r a d e d e D o c t e u r e n Sciences

p a r

Muriel HEISTERCAMP

D i r e c t e u r s d e t h è s e :

Prof. F. Schlenk, Université de Neuchâtel Prof. F. Bourgeois, Université Libre de Bruxelles C o m p o s i t i o n d u j u r y :

Président: Prof A. Valette, Université de Neuchâtel Secrétaire: Prof. S. G u t t , Université Libre de Bruxelles Examinateurs: Prof. A. Abbondandolo, Université di Pisa

Prof. M. Bertelson, Université Libre de Bruxelles

Année académique 2010-2011

(4)

À Nelle.

(5)

A b s t r a c t i

A c k n o w l e g m e n t s iii I n t r o d u c t i o n V 1 D é f i n i t i o n s a n d T o o l s 1

1.1 T h e free loop s p a c e 1

1.1.1 G r o w t h c o m i n g f r o m C{M) 3 1.1.2 Energy h y p e r b o l i c m a n i f o l d s 4 1.1.3 E x a m p l e s 5

1.2 C o t a n g e n t b u n d l e s 9

1.2.1 Fiberwise s t a r s h a p e d h y p e r s u r f a c e s 10

1.2.2 D y n a m i c s on fiberwise s t a r s h a p e d h y p e r s u r f a c e s 12 1.2.3 Spherization of a c o t a n g e n t b u n d l e 14

1.3 Maslov index 15

1.3.1 Maslov i n d e x for s y m p l e c t i c p a t h 16 1.3.2 T h e Maslov i n d e x for L a g r a n g i a n p a t h s 17 1.3.3 Maslov i n d e x for periodic o r b i t s 17 2 C o n v e x t o S t a r s h a p e d 1 9

2.1 Relevant H a m i l t o n i a n s 19 2.2 A c t i o n spectra 22

2.2.1 T h e Non-crossing l e m m a 26

2 . 3 F l o e r Homology for H a m i l t o n i a n s convex a t infinity 29 2.3.1 Définition of i f F f ( / / ; Fp) 29

2.3.2 C o n t i n u a t i o n h o m o m o r p h i s m s 32

2.4 F r o m Floer h o m o l o g y t o t h e h o m o l o g y of t h e free loop space 34 2.4.1 C o n t i n u a t i o n h o m o m o r p h i s m s 34

2.4.2 To the h o m o l o g y of t h e free loop space 37

(6)

v i C o n t e n t s

3 M o r s e - B o t t h o m o l o g y 4 1 3.1 A M o r s e - B o t t s i t u a t i o n 41 3.2 A n a d d i t i o n a l p e r t u r b a t i o n 42 3.3 M o r s e - B o t t homology 44

4 P r o o f s o f t h e o r e m A a n d t h e o r e m B 4 9 4.1 P r o o f of t h e o r e m A 49

4.2 P r o o f of t h e o r e m B 52

4.2.1 T h e simply c o n n e c t e d case: generalizing B a l l m a n n - Z i l l e r . . . 59 5 E v a l u a t i o n 6 3

5.1 Lie g r o u p s 63

5.2 TTi(M) finite: t h e case of t h e s p h è r e 64 5 . 3 N é g a t i v e c u r v a t u r e 67

A C o n v e x i t y 6 9

B L e g e n d r e t r a n s f o r m 7 3 C G r o m o v ' s t h e o r e m 7 5

B i b l i o g r a p h y 7 9

(7)

Abstract

L e t M b e a s m o o t h closed m a n i f o l d a n d T*M its c o t a n g e n t b u n d l e endowed w i t h t h e u s u a l symplectic s t r u c t u r e ui = d\, where A is t h e Liouville f o r m . A h y p e r s u r f a c e E C T * M is said to be fiberwise starshaped if for each point q £ M t h e intersection E , : = S n T * M of E w i t h t h e fiber a t q is t h e s m o o t h b o u n d a r y of a d o m a i n in T*M w h i c h is s t a r s h a p e d w i t h r e s p e c t t o t h e origin 0 , eT*M.

In t h i s thesis we give lower b o u n d s on t h e g r o w t h r a t e of t h e n u m b e r of closed R e e b o r b i t s o n a fiberwise starshaped hypersurface in t e r m s of t h e t o p o l o g y of t h e free

l o o p s p a c e of M. We d i s t i n g u i s h t h e t w o cases t h a t t h e f u n d a m e n t a l g r o u p of t h e

b a s e s p a c e M h a s an e x p o n e n t i a l g r o w t h of c o n j u g a c y classes or n o t . If t h e base

s p a c e M is s i m p l y connected we generalize t h e t h e o r e m of B a l l m a n n a n d ZiUer o n

t h e g r o w t h of closed geodesics t o R e e b flows.

(8)

Acknowlegments

I w o u l d like t o t h a n k m y advisor Félix Schlenk for his s u p p o r t t r o u g h o u t t h i s work a n d t h e o p p o r t u n i t y t o c o m p l è t e t h i s p r o j e c t . E v e n w h e n a b r o a d , h e never failed t o a n s w e r m y questions a n d prevent m e t o follow w r o n g ideas. D u r i n g ail t h è s e years I e n j o y e d om t h e never e n d i n g m a t h discussions in t r a i n s or over cofïee breaks.

F u t h e r m o r e I t h a n k Frédéric Bourgeois, U r s F r a u e n f e l d e r a n d A l e x a n d r u O a n c e a f o r v a l u a b l e discussions. I also t h a n k Will M e r r y a n d Gabriel P a t e r n a i n for h a v i n g p o i n t e d o u t t o m e t h a t t h e m e t h o d s used in t h e proof of T h e o r e m s A a n d B can a l s o b e used t o prove T h e o r e m C.

J ' a i m e r a i s remercier Agnes Gaxibled p o u r avoir t r o u v e r les p e t i t e s e r r e u r s a u milieu d e m e s interminables exposés et A l e x a n d r e G i r o u a r d p o u r ses conseils d e r é d a c t i o n . J e v o u s n o m m e marraine et p a r r a i n d e c e t t e thèse.

C e t t e t h è s e m ' a u r a fait d é m é n a g e r d e l ' U L B à l'Unine. J ' a i eu la chance d e travailler d e s d e u x côtés entourée d e gens d i s p o n i b l e s et t o u j o u r s p r ê t s à se r e t r o u v e r a u t o u r d ' u n dessert o u d'un a p é r o . P o u r Bruxelles merci à Céline, M a u d e , M a t h i e u , Seb, J u l i e , Nicolas, Michael, A n n et J o ë l . L e d é p a r t n e f u t p a s si facile, o n r e t o u r n e c h e z C a p o u e q u a n d vous voulez. P o u r N e u c h â t e l merci à D o r o t h é e , Olivier, G r e g , B é a t r i c e D., David G., M a r i a , D a v i d F . , R a p h a ë l , Denis et Alain, l'accueil f u t im- p e c c a b l e .

Lise e t Kola, chacun à v o t r e m a n i è r e v o u s m ' a u r e z a p p o r t e r ce s o u t i e n et c e t t e s é r é n i t é quotidienne qui fait q u ' o n est h e u r e u x de rentrer chez soi. J e v o u s e n re- m e r c i e , v o u s faites partie d e la famille m a i n t e n a n t .

M e r c i à t o u s ceux cher à m o n c o e u r q u i m ' o n t suivit, à d é f a u t d u b o u t d u m o n d e ,

j u s q u ' e n Suisse, Sylvie, A r i a n e , M a g a l i , M a ï t é , Vanessa, D a p h n é , M a t h i e u , Virginie,

F a b i a n , Audrey, Marine, Olivier, M a r i e , Marie, D j u , Viri, Florence, Coralie et les

p o m m e s . Vous m'avez bien aidée à g a r d e r u n pied en Belgique et la t ê t e en Suisse.

(9)

Merci à B é a t r i c e H. p o u r avoir organisé le p r e m i e r voyage d a n s l ' a u t r e sens, j ' e s p è r e qu'il y e n a u r a d ' a u t r e s !

Régis t u a s réussi à r e n d r e le l u n d i m o n j o u r préféré d e la semaine! Merci p o u r t o n soutien et t a présence qui o n t bien a d o u c i la p é r i o d e d e r é d a c t i o n .

F i n a l e m e n t merci à mes p a r e n t s , j e vous dois é n o r m é m e n t . Merci p o u r v o t r e s o u t i e n

s a n s faille, v o t r e présence, vos conseils. J e n ' y serais p a s arriver s a n s vous.

(10)

Introduction

Let M b e a s m o o t h closed m a n i f o l d a n d d é n o t e b y T*M t h e c o t a n g e n t b u n d l e over M e n d o w e d w i t h its usual s y m p l e c t i c s t r u c t u r e us = d\ where X = pdq = Y^^i Pi is t h e Liouville form. A h y p e r s u r f a c e S C T*M is said t o b e fiherwise starshaped if for e a c h p o i n t q £ M t h e intersection S , : = E n T*M of S w i t h t h e fiber a t q is t h e s m o o t h b o u n d a r y of a d o m a i n s t a r s h a p e d w i t h respect t o t h e origin 0 , G T*M.

T h e r e is a flow naturally a s s o c i a t e d t o E , g e n e r a t e d b y t h e u n i q u e vector field R a l o n g E defined by

dX{R,-)=0, \{R) = l.

T h e v e c t o r field R is called t h e Reeb vector field o n E a n d its flow is called t h e Reeb flow. T h e m a i n resuit of t h i s thesis is t o prove t h a t t h e topological s t r u c t u r e of M forces, for ail fiberwise s t a r s h a p e d h y p e r s u r f a c e s E, t h e existence of m a n y closed o r b i t s of t h e R e e b flow o n E . M o r e precisely, we shall give a lower b o u n d of t h e g r o w t h r a t e w i t h respect t o t h e p e r i o d s of t h e n u m b e r of closed R e e b - o r b i t s in t e r m s of t h e t o p o l o g y of the m a n i f o l d .

T h e e x i s t e n c e of one closed o r b i t w a s c o n j e c t u r e d by Weinstein in 1978 in a m o r e gênerai s e t t i n g .

W e i n s t e i n c o n j e c t u r e . A hypersurface E of contact type and satisfying H^{11) = 0 carries a closed characteristic.

I n d e p e n d e n t l y , Weinstein [49] a n d R a b i n o w i t z [38] established t h e existence of a closed o r b i t o n star-like h y p e r s u r f a c e s in IR^". In our s e t t i n g t h e W e i n s t e i n conjec- t u r e w i t h o u t t h e a s s u m p t i o n i ï H ^ ) = 0 was proved in 1988 by Hofer a n d V i t e r b o , [26]. T h e existence of m a n y closed o r b i t s h a s already b e e n well s t u d i e d in t h e spé- cial case of the géodésie flow, for e x a m p l e by G r o m o v [24], P a t e r n a i n [34, 35] a n d P a t e r n a i n - P e t e a n [37]. In t h i s thesis we will generalize their results.

T h e p r o b l e m a t h a n d c a n b e considered in two équivalent ways. F i r s t , let H: T*M ^

IR b e a s m o o t h H a m i l t o n i a n f u n c t i o n s u c h t h a t E is a regular level of H. T h e n t h e

H a m i l t o n i a n flow ifn of H is o r b i t - e q u i v a l e n t t o t h e R e e b flow. T h e r e f o r e , t h e

(11)

g r o w t h of closed o r b i t s of ipn equals t h e g r o w t h of closed o r b i t s of t h e R e e b fiow.

Secondly, let SM b e t h e oosphère b u n d l e w i t h respect t o a choosen R i e m a n n i a n m e t r i c over M endowed w i t h its canonical c o n t a c t s t r u c t u r e ^ = ker A. T h e c o n t a c t manifold (SM,^) is called t h e s p h e r i z a t i o n of M. O u r m a i n results are équivalent t o saying t h a t for any c o n t a c t f o r m a for ^, i.e. ^ = ker a , t h e g r o w t h r a t e of t h e n u m b e r of closed o r b i t s of t h e R e e b fiow of a in t e r m s of their p e r i o d d é p e n d s only on M a n d is b o u n d e d f r o m below by homological d a t a of M.

T h e f r e e l o o p s p a c e

In t h e following we use t h e définitions a n c o n c e p t s of [31] i n t r o d u c e d t o s t u d y t h e oomplexity of t h e based loop s p a c e a n d a d a p t t h e m t o t h e free loop space. T h e complexity of t h e R e e b fiow o n E C T*M cornes f r o m t h e oomplexity of t h e free loop s p a c e of t h e b a s e manifold M. Let ( M , g) b e a C ° ° - s m o o t h , closed, oonnected R i e m a n n i a n m a n i f o l d . Let A M b e t h e free loop s p a c e of M, i.e. t h e set of loops q : M oî Sobolcv class W^''^. T h i s s p a c e h a s a canonical Hilbert m a n i f o l d s t r u c t u r e , see [28]. T h e energy f u n c t i o n a l £ = £g : KM ^ IR is defined by

w h e r e |g(^)|^ = 9q{t){Q{t),q{t)). For a > 0 we oonsider t h e sublevel sets A" : = {qeAM\ £{q) < a}.

Now let Po b e t h e set of p r i m e n u m b e r s a n d w r i t e P : = PQ U {0}. For each p r i m e n u m b e r p d é n o t e by Fp t h e field Z / p Z , a n d w r i t e FQ : = Q . T h r o u g h o u t , Ht will d é n o t e singular homology a n d

t f c : H f c ( A ' ' ; F p ) ^ H f c ( A M ; F p )

t h e h o m o m o r p h i s m induced by t h e inclusion A " M ^ A M . Following [20] we m a k e t h e

D é f i n i t i o n . The Riemannian manifold {M, g) is energy hyperbolic if

C(M,g) : = s u p l i m i n f - l o g V d i m t f c / f f c ( A 5 " ' ; F p ) > 0.

Remark. T h e choice of t h e sublevel sets in t h e définition m i g h t seems not n a t u r a l for t h e r e a d e r . It is induced by t h e fact t h a t for geodesics H a m i t o n i a n flows, n - p e r i o d i c s o r b i t s c o r r e p o n d s t o loops of energy ^n"^.

Since M is closed, t h e p r o p e r t y energy hyperbolic d o e s n o t d é p e n d on g while, of

course, C{M,g) d o e s d é p e n d on g. W e say t h a t t h e closed manifold M is energy

(12)

I n t r o d u c t i o n v i i hyperbolic if {M, g) is e n e r g y h y p e r b o l i c for s o m e a n d hence for a n y R i e m a n n i a n

m e t r i c g o n M . For ail o > 0 we h a v e C{M,ag) = -^C{M,g).

W e also consider t h e polynomial growth of t h e h o m o l o g y given by

c{M,g) : = s u p l i m i n f - ^ l o g V d i m i f c F f c ( A ^ " ' ; F p ) . pgp n^co l o g n ^

D é n o t e by A ^ M t h e c o n n e c t e d c o m p o n e n t of a loop a in A M a n d by A i M t h e c o m p o n e n t of contractible loops. T h e c o m p o n e n t s of t h e loop space AM a r e in b i j e c t i o n w i t h t h e set C ( M ) of c o n j u g a c y classes in t h e f u n d a m e n t a l g r o u p 7ri(M), w e c a n t h u s d é n o t e by Ac t h e c o n n e c t e d c o m p o n e n t of t h e é l é m e n t s of t h e class c i.e.

A M = ]J A c M .

c e C ( M )

F o r e a c h é l é m e n t c e C{M) d é n o t e by e(c) t h e i n f i m u m of t h e energy of a closed cmve r e p r e s e n t i n g c. Let C ° ( M ) : = {c € C{M) \ e(c) < a}, a n d define

E{M) •- l i m i n f - l o g # C ° ( M ) , a—>oo a

e ( M ) : = l i m i n f - ^ l o g # C " ( M ) . a->oo log a

N o t e t h a t E{M) has t h e s a m e d e p e n d e n c e on t h e m e t r i c g as t h e one of C{M,g), moieovev C {M, g) > E{M).

F i b e r w i s e s t a r s h a p e d h y p e r s u r f a c e s i n T*M

T h e foUowing définition cornes f r o m [31]. Let S b e a s m o o t h c o n n e c t e d h y p e r s u r f a c e i n T*M. W e s a y t h a t S is fiberwise starshaped if for each point q E M t h e set

: = E n T * M is t h e s m o o t h b o u n d a r y of a d o m a i n in T*M w h i c h is s t r i c t l y s t a r s h a p e d w i t h respect t o t h e origin 0 , € T*M. T h i s m e a n s t h a t t h e r a d i a l vector field YliPi transverse t o each E , . W e a s s u m e t h r o u g h o u t t h a t d i m M > 2.

T h e n T * M \ E h a s two c o m p o n e n t s , t h e b o u n d e d inner p a r t -D(E) c o n t a i n i n g t h e z é r o section a n d t h e u n b o u n d e d o u t e r p a r t D'^ÇS) = T*M \ -D(E), w h e r e D(E)

d é n o t e s t h e closure of D{Y,).

F o r m u l a t i o n o f t h e r e s u l t s

L e t E C T*M b e as above a n d d é n o t e b y ( f R t h e R e e b flow on S . A closed o r b i t 7

of t h e R e e b flow will b e said simple if it is geometrically différent f r o m ail t h e o t h e r

o r b i t s , i.e. if 7 7^ 7 * for ail 7 ' closed R e e b o r b i t , /c e N. For r > 0 let ORÇT) b e t h e

s e t of simple closed o r b i t s of (p^ w i t h p e r i o d < T. W e m e a s u r e t h e g r o w t h of t h e

n u m b e r of é l é m e n t s in OJI{T) by

(13)

NR : = l i m i n f - l o g ( # C » H ( T ) ) , T—^OO T

UR : = l i m i n f - ^ l o g ( # O H ( r ) ) . T-KX> l O g T

T h e n u m b e r NR is t h e exponential growth rate of closed o r b i t s , while TIR is t h e polynomial growth rate. T h e foUowing t h r e e t h e o r e m s a r e t h e m a i n r e s u i t of t h i s thesis.

T h e o r e m A . Let M be a closed, connected, orientable, smooth manifold and let E C T*M be a fiberwise starshaped hypersurface. Let ( f R be the Reeb flow on E , and let NR, UR, E{M) and e ( M ) he defined as above. Then

(i) NR > E { M ) ; (a) UR > e{M) - 1.

W e will say t h a t E is generic if e a c h closed R e e b o r b i t is t r a n s v e r s a l l y n o n d e g e n e r a t e , i.e.

d e t ( / - d ^ ^ ( 7 ( 0 ) ) | ç ) ^ 0 . T h e o r e m B . Let M be a closed, connected, orientable smooth manifold and let E C T'M be a generic fiberwise starshaped hypersurface. Let ( f R be the Reeb flow on E , and let NR, UR, C{M, g) and c{M, g) be defined as above. Then

(i) NR>C{M,g).

(ii) UR > c{M,g) - 1.

T h e h y p o t h e s l s of genericity of E allow u s t o achieve a M o r s e - B o t t s i t u a t i o n in t h e foUowing way: t h e H a m i l t o n i a n f u n c t i o n t h a t we will consider a r e a u t o n o m o u s . T h i s implies t h a t t h e closed o r b i t s of t h e i r H a m i l t o n i a n flow a r e d e g e n e r a t e d a t least in t h e d i r e c t i o n of E , i.e. 1 is a n eigenvalue of t h e t i m e - l - r e t u r n m a p of t h e flow. W e t h u s a s k t h i s d i r e c t i o n t o b e t h e o n l y one.

T h e i d e a of t h e p r o o f s is a s foUows. L e t E c T*M b e a fiberwise s t a r s h a p e d h y p e r s u r f a c e . If E is t h e level set of a H a m i l t o n i a n f u n c t i o n F : T'M —> H , t h e n t h e R e e b flow of A is a r e p a r a m e t r i z a t i o n of t h e H a m i l t o n i a n flow. W e c a n d e f i n e such a H a m i l t o n i a n b y t h e two c o n d i t i o n s

F\^ = l , F{q,sp) = s^F{q,p), s > 0 smd {q,p) e T*M. (1)

T h i s H a m i l t o n i a n is n o t s m o o t h n e a r t h e zéro s e c t i o n , we t h u s d e f i n e a cut-off f u n c - tion / t o o b t a i n a s m o o t h f u n c t i o n f o F. W e t h e n use t h e i d e a of s a n d w i c h i n g

(14)

I n t r o d u c t i o n î x

d e v e l o p e d in P r a u e n f e l d e r - S c h l e n k [19] a n d M a c a r i n i - S c h l e n k [31]. B y s a n d w l c h - i n g t h e set S between t h e levai s e t s of a géodésie H a m i l t o n i a n , a n d b y using t h e H a m i l t o n i a n F l o e r homology a n d its i s o m o r p h i s m t o t h e h o m o l o g y of t h e free loop s p a c e of M, w e shall s h o w t h a t t h e n u m b e r of l - p e r i o d i c o r b i t s of F of a c t i o n < a is b o u n d e d b e l o w by t h e r a n k of t h e h o m o m o r p h i s m

t f c : i / f c ( A " ' ; F p ) - > i f f c ( A M ; F p ) i n d u c e d by t h e inclusion A"'M ^ KM.

S i n c e F is a u t o n o m o u s , ail i t s p e r i o d i c o r b i t s a r e d e g e n e r a t e in a t least o n e d i r e c t i o n . W e t h u s n e e d t o consider s m a l l t i m e - d e p e n d a n t p e r t u b a t i o n s of F. In t h e proof of T h e o r e m A, we will a d d t o F s m a l l p o t e n t i a l s of t h e f o r m Vi{t,q). A s s u m i n g

||Vi(f,9)||c«> —>• 0 for / —>^ oo, we will s h o w t h e e x i s t e n c e of a p e r i o d i c o r b i t of F i n e v e r y non-trivial c o n j u g a c y class a s t h e limit of p e r i o d i c o r b i t s of F + VJ.

T h i s s t r a t e g y cannot b e a p p l i e d for T h e o r e m B. W e t h u s use t h e a s s u m p t i o n of g e n e r i c i t y t o achieve a M o r s e - B o t t s i t u a t i o n following P r a u e n f e l d e r [18, A p p e n d i x A] a n d B o u r g e o i s - O a n c e a [7] a n d u s e t h e Correspondence Theorem b e t w e e n M o r s e h o m o l o g y a n d Floer h o m o l o g y d u e t o B o u r g e o i s - O a n c e a , [7], t o o b t a i n o u r r e s u i t . Remark. A p r o o f of rough versions of T h e o r e m s A a n d B is o u t l i n e d in Section 4 a of S e i d e l ' s s u r v e y [44]. M e a n w h i l e , a d i f f é r e n t ( a n d difiicult) proof of t h è s e t h e o r e m s , w i t h coefficients in Z2 only, w a s given by M a c a r i n i - M e r r y - P a t e r n a i n in [30], w h e r e a v e r s i o n of R a b i n o w i t z - F l o e r h o m o l o g y is c o n t r u c t e d t o give lower b o u n d s for t h e g r o w t h r a t e of leaf-wise i n t e r s e c t i o n s .

S p h e r i z a t i o n o f a c o t c i n g e n t b u n d i e

T h e h y p e r p l a n e field = ker <z T S is a c o n t a c t s t r u c t u r e o n E . If E ' is a n o t h e r f i b e r w i s e s t a r s h a p e d h y p e r s u r f a c e , t h e n ( E , ^ e ) a n d {T,',^^i) a r e c o n t a c t o m o r p h i c . I n f a c t t h e difïerential of t h e d i f î e o m o r p h i s m o b t a i n e d by t h e r a d i a l p r o j e c t i o n m a p s

^s'- T h e équivalence class of t h è s e c o n t a c t m a n i f o l d s is called t h e spherization {SM,^) of t h e cotangent b u n d i e (T'MJLJ). T h e o r e m A a n d T h e o r e m B gives lower b o u n d s of t h e growth r a t e of closed o r b i t s for any Reeb flow on the spherization SM ofT*M.

S p é c i a l e x a m p l e s of fiberwise s t a r s h a p e d h y p e r s u r f a c e s a r e u n i t c o s p h e r e b u n d l e s Si M (g) a s s o c i a t e d to a R i e m m a n i a n m e t r i c g,

SiMig) := {{q,p)eT*M\\p\ = l}.

T h e R e e b flow is then t h e géodésie flow. In t h i s case, T h e o r e m A is a direct con- s é q u e n c e of t h e existence of o n e closed géodésie in every c o n j u g a c y classe. If M is

(15)

simply connected, T h e o r e m B for géodésie flows follows from t h e foUowing resuit by G r o m o v [24]

T h e o r e m ( G r o m o v ) . Let M be a œmpact and simply connected manifold. Let g be a bumpy Riemannian metric on M. Then there exist constants a = a{g) > 0 and P = p{g) > 0 such that there are at least

0t

i = l

t

periodic geodesics of length less than t, for ail t sufficiently large.

T h e a s s u m p t i o n on t h e R i e m a n n i a n m e t r i c t o b e bumpy c o r r e s p o n d s t o o u r gener- icity a s s u m p t i o n . G e n e r a l i z a t i o n s t o géodésie flows of larger classes of R i e m a n n i a n manifolds were proved in P a t e r n a i n [34, 35] a n d P a t e r n a i n - P e t e a n [37|.

In [31], M a c a r i n i a n d Schlenk s t u d y t h e e x p o n e n t i a l g r o w t h of t h e n u m b e r of R e e b chords in spherizations. T h e y prove T h e o r e m A for R e e b c h o r d s in t e r m of t h e topology of t h e based loop space. R e s u l t s o n e x p o n e n t i a l g r o w t h r a t e of t h e n u m b e r of closed o r b i t s for certain R e e b flows on a large class of closed c o n t a c t 3 - m a n i f o l d s are proved in [10].

T h e s i m p l y c o n n e c t e d c a s e

In [3] B a l l m a n a n d Ziller improved G r o m o v ' s t h e o r e m in t h e case of simply c o n n e c t e d R i e m a n n i a n manifolds w i t h b u m p y metrics. T h e y showed t h a t t h e n u m b e r Ng{T) of closed geodesics of length less t h a n or e q u a l t o T is b o u n d e d below by t h e m a x i m u m of t h e kth b e t t i n u m b e r of t h e free loop s p a c e fc < T , u p t o s o m e c o n s t a n t d e p e n d i n g only o n t h e metric. FoUowing t h e i r idea we shall prove t h e foUowing

T h e o r e m C . Suppose that M is a compact and simply connected m-dimensional manifold. Let T, be a generic fiberwise starshaped hypersurface of T''M and R its associated Reeb vector field. Then there exist constants a = a{R) > 0 and p = PiR) > 0 such that

#OR{T) > a m a x bi{KM)

l<i<0r for ail T sufficiently large.

T w o q u e s t i o n s

I. W e a s s u m e t h e h y p e r s u r f a c e E t o b e fiberwise s t a r s h a p e d with respect to the

origin. C a n this a s s u m p t i o n b e o m i t t e d ? In t h e case of R e e b chords it c a n n o t ,

see [31].

(16)

I n t r o d u c t i o n x i II. T h e a s s u m p t i o n on E t o b e fiberwise s t a r s h a p e d is équivalent t o t h e a s s u m p -

t i o n t h a t S is of r e s t r i c t e d c o n t a c t t y p e w i t h respect t o t h e Liouville vector field Y = pdp. A r e T h e o r e m A a n d T h e o r e m B t r u e for a n y h y p e r s u r f a c e E C r * M of restricted c o n t a c t t y p e ?

T h e t h e s i s is organized as follows: In C h a p t e r 1 we i n t r o d u c e t h e définitions a n d tools t h a t we will use t h r o u g h o u t t h i s work. C h a p t e r 2 provides t h e tool of s a n d w i c h i n g u s e d h e r e t o compare t h c g r o w t h of closed R e e b o r b i t s w i t h t h e g r o w t h of closed geodesics. In C h a p t e r 3 we recall t h e définition of M o r s e - B o t t h o m o l o g y which is u s e d in t h e proof of T h e o r e m B . In C h a p t e r 4 we prove T h e o r e m A, T h e o r e m B a n d T h e o r e m C. In C h a p t e r 5 we shall e v a l u a t e o u r results on several e x a m p l e s i n t r o d u c e d in C h a p t e r 1.

In A p p e n d i x A we review s o m e t o o l s t o prove t h e c o m p a c t n e s s of m o d u l i spaces

i n t r o d u c e d in section 2.3.1. In A p p e n d i x B we recall t h e définition of t h e L e g e n d r e

t r a n s f o r m . In Appendix C we give a proof of t h e existence of G r o m o v ' s c o n s t a n t ,

see T h e o r e m 5.

(17)

Définitions and Tools

I n t h i s c h a p t e r we i n t r o d u c e t h e définitions a n d tools t h a t we will u s e t h r o u g h o u t t h i s work. In section 1.1 we d e s c r i b e t h e free loop space A M of a m a n i f o l d M

a n d i n t r o d u c e topological i n v a r i a n t m e a s u r i n g t h e topological c o m p l e x i t y of t h e free l o o p space. Section 1.2 gives a n overview of H a m i l t o n i a n d y n a m i c o n c o t a n g e n t b u n d l e s a n d fiberwise s t a r s h a p e d hypersurfaces. W e discuss t h e r e l a t i o n b e t w e e n R e e b o r b i t s o n a fiberwise s t a r s h a p e d h y p e r s u r f a c e a n d t h e 1-periodic o r b i t s of a H a m i l t o n i a n flow for which t h e h y p e r s u r f a c e is a n energy level. In section 1.3 we recall t h e définitions a n d p r o p e r t i e s of Maslov t y p e indexes i n t r o d u c e d by Conley a n d Z e h n d e r in [11] and R o b b i n a n d S a l a m o n in [39].

1.1 The free loop space

L e t {M, g) b e a connected, C ° ° - s m o o t h R i e m a n n i a n manifold. L e t A M b e t h e set of l o o p s g : 5^ —> M of Sobolev class W^''^. AM is called t h e free loop space of M.

T h i s s p a c e carries a canonical s t r u c t u r e of Hilbert manifold, see [28].

T h e e n e r g y functional £ = £g : AM —> ïïl is defined as

w h e r e = gg^t){Q{t),qit)). It i n d u c e s a filtration o n AM. For a > 0, consider t h e sublevel s e t s A" c A M of l o o p s w h o s e energy is less t h a n or e q u a l t o a,

A" := {g e A M I £{q) < a}.

T h e l e n g t h functional C := Cg : AM IR is defined by

(18)

2 1 . 1 T h e free l o o p s p a c e Similarly, for a > 0 we can consider t h e sublevel sets

£" := {qeAM\ C{q) < a}.

A p p l y i n g Schwarz's i n e q u a h t y

w i t h f { t ) = 1 a n d g{t) = \q{t)\ we see t h a t

\c\q) < £{q),

w h e r e equaUty h o l d s if a n only if q is p a r a m e t r i z e d b y arc-length.

D é n o t e by A ^ M t h e connected c o m p o n e n t of a loop a in A M . T h e c o m p o n e n t s of t h e loop s p a c e A M a r e in bijection w i t h t h e set C{M) of c o n j u g a c y classes of t h e f u n d a m e n t a l g r o u p ITI{M),

A M = ]J AeM.

c e C ( M )

C o u n t i n g b y c o u n t i n g c o n j u g a c y c l a s s e s i n TTI

Let X b e a p a t h - c o n n e c t e d topological space. D é n o t e b y C{X) t h e set of c o n j u g a c y classes in 7ri(X) a n d by J^iX) t h e set of free h o m o t o p y classes in AX. Given a loop a : ( 5 ' , 0 ) —>• {X,Xo) we will d é n o t e its b a s e d h o m o t o p y class in Tri{X) by [a] a n d its free h o m o t o p y class in T { X ) by | a ] .

P r o p o s i t i o n 1 . 1 . 1 . Let X be a path-connected topological space andxo a base point.

Then

$ : C{X) ^ T { X ) : [a] ^ H

is a bijection between the set of conjugacy classes in Tri{X) and the set of free ho- motopy classes in AX.

Furthermore, if f : {X,xo) —> {Y,yo) is a continuons map between based topolog- ical spaces, we have

$ o / , = / , o $ .

Proof. Let f , g : ( S \ 0 ) —> {X,Xo) b e two c o n t i n u o u s m a p s . If / is h o m o t o p i c t o g t h e n / is also freely h o m o t o p i c t o g. T h u s we get a well defined m a p

$ : 7 r i ( X ) J - ( X )

sending a b a s e d h o m o t o p y class [7] t o its free h o m o t o p y class I7]. Let 7o,7i,<a: : ( S \ 0 ) {X,xo) such t h a t

M-yo][a]-' = [71]

(19)

which is équivalent to

[a -70 • a " ^ ] = [71].

Consider t h e homotopy F : [0, l ] x [ 0 , 1 ] X defined by F ( s , t) = a ( l - ( l - s ) ( l - i ) ) . T h e n F{0, t) = a{t) and F ( l , t) = xo, meaning t h a t F is a free h o m o t o p y of curves f r o m a to XQ- Using F, one c a n construct a free h o m o t o p y of loops between q-7o-q~^

a n d 7o. As a • 70 • a^^ is b a s e d h o m o t o p i c to 71 it follows t h a t 70 is free homotopic t o 7i a n d t h u s $([70]) = ^([7i])- T h u s $ descends to a m a p

$ : C{X) ->

N o w consider a loop 7 : 5^ —> X a n d t a k e a continuons p a t h a : [0,1] X with a{0) = 7 ( 0 ) a n d q(1) = Xo- T h e n a • 7 • is a continuoxis loop w i t h base point XQ which is freely homotopic t o 7 . T h i s impUes t h a t • 7 • a~^]) = [7] which yields t h e surjectivity of

L e t [fo] a n d [fi] be two éléments of 7ri(X,a;o) with $([/o]) = ^'([/i]) a n d H : [0, l]xS^ ^ X SL free h o m o t o p y f r o m /o t o / i . Define 5 : 5^ ->• X by g{s) := H [s, 0).

T h e n g- fo- g'^ is homotopic t o f i a n d t h u s [fo] a n d [/i] are c o n j u g a t e . T h i s proves t h e injectivity of

T h e n a t u r a l i t y follows f r o m t h e définition of $ as

«'°/.([7]) = $([/°7])

= [/°7l

= / . M

= /.*([7])-

1.1.1 Growth coming from C{M)

Consider t h e set C{M) of c o n j u g a c y classes of t h e f u n d a m e n t a l g r o u p 7ri(M). For e a c h élément c G C(M) d é n o t e by e(c) t h e infimum of t h e energy of a closed curve r e p r e s e n t i n g c. We d é n o t e by C " ( M ) t h e set of conjugacy classes whose éléments c a n b e represented by a loop of energy a t most a,

CiM) : = {c G C ( M ) I e(c) < a} .

(20)

4 1 . 1 T h e free l o o p s p a c e T h e e x p o n e n t i a l a n d p o l y n o m i a l g r o w t h of t h e n u m b e r of c o n j u g a c y classes a s a f u n c t i o n of t h e e n e r g y a r e m e a s u r e d by

E{M) : = l i m i n f - l o g # C ° ( M ) , a n d a—>oo a

e(M) : = l i m i n f - ^ log # C ° ( M ) . a-^oo log a

1.1.2 Energy hyperbolic manifolds

Recall t h a t for a > 0, A" d é n o t e s t h e subset of loops w h o s e e n e r g y is less or equal t o a ,

A" : = {g € A M I £{q) < a}.

Let Po b e t h e set of p r i m e n u m b e r s , a n d write P : = PQ U {0}. For each p r i m e n u m b e r p d é n o t e b y Fp t h e field Z / p Z , a n d a b b r e v i a t e FQ : = <Q. T h r o u g h o u t , H, d é n o t e s singular homology. L e t

t f c : i f f c ( A " ; F p ) ^ / / f c ( A M ; F p )

b e t h e h o m o m o r p h i s m induced by t h e inclusion A ^ M ^ AM. It is well-known t h a t for each a t h e h o m o l o g y g r o u p s Hk{A'^M;¥p) vanish for ail large e n o u g h fc, see [4].

T h e r e f o r e , t h e s u m s in t h e foUowing définition a r e finite. FoUowing [20] we m a k e t h e

D é f i n i t i o n 1 . 1 . 1 . The Riemannian manifold {M, g) is energy hyperbolic if C(M,g) : = s u p l i m i n f - log d i m t ^ i / f c ( A ^ " ' ; Fp) > 0

Since M is closed, t h e p r o p e r t y energy hyperbolic d o e s n o t d é p e n d o n g while, of course, C{M,g) d o e s d é p e n d on g. W e say t h a t t h e closed m a n i f o l d M is energy hyperbolic if {M, g) is energy hyperbolic for s o m e a n d hence for a n y R i e m a n n i a n m e t r i c g o n M. For ail a > 0 we have C{M,ag) = '^C{M,g).

W e will also consider t h e polynomial growth of t h e h o m o l o g y given by c(M,g) : = s u p lim inf l o g y ^ d i m i f c H f c ( A 5 " ^ ; F p ) .

p6P "-•oo l o g n ^ F i x a R i e m a n n i a n m e t r i c g a n d p G P . It holds t h a t

d i m t o i / o ( A ^ ' ' ; F p ) = # c i ' ' ( M ) .

T h u s E{M), respectively e ( M ) , is a lower b o u n d for C{M,g), respectively c{M,g).

(21)

1.1.3 Examples

I n h i s w o r k , G r o m o v c o n j e c t u r e d t h a t " a l m o s t ail" m a n i f o l d a r e e n e r g y h y p e r b o l i c . I n d i m e n s i o n 4, P a t e r n a i n s h o w e d in [35] t h e s i m p l y c o n n e c t e d m a n i f o l d w h i c h a r e n o t e n e r g y hyperbolic u p t o h o m e o m o r p h i s m a r e

5 ^ C P ^ X 5 ^ C P ^ ^ C F ^ a n d CP^#CP^.

I n d i m e n s i o n 5, t h e simply c o n n e c t e d m a n i f o l d w h i c h a r e n o t e n e r g y h y p e r b o l i c u p t o d i f f e o m o r p h i s m axe

S\ 5 ^ X 5 ^ 52 X a n d 5 î 7 ( 3 ) / S ' 0 ( 3 ) ,

see [36]. I n his work, L a m b r e c h t s [29] s h o w e d t h a t for M i a n d M2 t w o s i m p l y c o n n e c t e d closed manifolds of t h e s a m e d i m e n s i o n a n d a field k s u c h t h a t H,{M1; k) a n d H, ( M 2 ; k) a r e not t h e c o h o m o l o g y of a s p h c r e , t h e following h o l d s

1. t h e s é q u e n c e {dimH„{A{Ml^M2); k))n>i is u n b o u n d e d ;

2. if a t least o n e of t h e c o h o m o l o g y H'f{Mi; k) is n o t a m o n o g e n i c a l g e b r a t h e n t h e s é q u e n c e {dimHn{{Ml^M2); k))n>i h a s a n e x p o n e n t i a l g r o w t h , a n d o t h e r w i s e t h i s s é q u e n c e has a l i n e a r g r o w t h .

N é g a t i v e c u r v a t u r e m a n i f o l d s

S u p p o s e o u r m a n i f o l d M c a r r i e s a R i e m a n n i a n m e t r i c of n é g a t i v e s e c t i o n a l c u r v a t u r e . P r o p o s i t i o n 1 . 1 . 2 . If M passes a Riemannian metric g of négative sectional cur-

vature, then the component of contractible loops AQM is homotopy équivalent to M, and ail other components are homotopy équivalent to .

U s i n g t h e r e s u i t of the p r e v i o u s s e c t i o n , t h i s yields C o r o U a r y 1. A M ^ M U,„„C(M) •^^

Proof. C o n s i d e r t h e e n e r g y f u n c t i o n a l £ := £g : AM —> IR w i t h r e s p e c t t o t h e m e t r i c g. I t ' s a M o r s e - B o t t f i m c t i o n a l , i.e.

crit(é:) := {g G AM I d£{q) = 0}

is a s u b m a n i f o l d of A M a n d

T , c r i t ( £ ) = k e r ( H e s s {£){q)).

M o r e o v e r i t s critical p o i n t s a r e closed geodesics. Let c b e a n o n - c o n s t a n t closed g é o d é s i e o n M. T h e n c gives rise t o a w h o l e circle of geodesics w h o s e p a r a m e t r i z a t i o n d i f ï e r b y a s h i f t t e S^. W e d é n o t e b y Se t h e set of s u c h geodesics. C o n s i d e r t h e f o l l o w i n g r e s u i t of C a r t a n [28, S e c t i o n 3.8].

(22)

6 1 . 1 T h e free l o o p s p a c e T h e o r e m 1. ( C a r t a n ) Let M be a compact manifold with strictly négative curva-

ture. Then there exists, up to parametrization, exactly one closed géodésie c in every free homotopy class which is not the class of the constant loop. c is the élément of

minimal length in its free homotopy class. AU closed geodesics on M are ofthis type.

T h u s S h a s a u n i q u e critical manifold Se in every c o m p o n e n t which is n o t t h e com- p o n e n t of t h e c o n s t a n t loops. W h i l e t h e c o m p o n e n t of t h e c o n s t a n t loop h a s as critical m a n i f o l d SQ t h e subspace of c o n s t a n t loops. Moreover ail t h e M o r s e indices axe e q u a l t o zéro. Following [23], o n e c a n résolve every critical s u b m a n i f o l d s Se into finitely m a n y n o n - d e g e n e r a t e critical p o i n t s C i , . . . , C; c o r r e s p o n d i n g t o critical p o i n t s of a M o r s e f u n c t i o n /i : Se ^ M. T h e index of a n o n - d e g e n e r a t e critical p o i n t Ci is t h e n given by t h e s u m A -I- Aj w h e r e A is t h e M o r s e index of c w i t h respect t o

€ a n d Aj t h e M o r s e index of Cj w i t h respect t o t h e M o r s e f u n c t i o n h.

Let a < 6 b e regulax values of £ a n d C i , . . . , Cfc critical p o i n t s of £ in £~^[a, b]. Let Cil,.. .Cil- b e t h e c o r r e s p o n d i n g n o n - d e g e n e r a t e critical p o i n t s of indices A j i , . . . , A^..

T h e n L e m m a 2 of [23] tells us t h a t A" is d i f ï e o m o r p h i c t o A*" w i t h a h a n d l e of index Ay a t t a c h e d for e a c h n o n - d e g e n e r a t e critical point Cij, 1 < i < k, 1 < j < ki. T h e d i f f e o m o r p h i s m c a n b e chosen t o kccp A" fixed. Using t h e m e t h o d s of Milnor in 133, Section 3], we o b t a i n t h a t t h e c o m p o n e n t of t h e c o n t r a c t i b l e loop h a s t h e h o m o t o p y t y p e of t h e s p a c e of c o n s t a n t loops while every o t h e r c o m p o n e n t h a s t h e h o m o t o p y t y p e o f S ^ •

Consider t h e c o u n t i n g f u n c t i o n CF{L) for periodic geodesics, w h e r e CF{L) = # { p e r i o d i c geodesics of l e n g t h smaller t h a n or equal t o L } .

P r o p o s i t i o n 1.1.2 tells us t h a t in t h e n é g a t i v e c u r v a t u r e case, every periodic géodésie c o r r e s p o n d t o a n élément of C{M). S e t t i n g a = \L?, we h a v e t h e following e q u a l i t y

# C ' ' ( M ) = CF{L).

A lower b o u n d for E{M) can b e d e d u c e d f r o m a resuit of Margulis.

T h e o r e m 2. (Mau-gulis 1 9 6 9 [32]) On a compact Riemannian manifold of néga- tive curvature it holds that

logCFjL) L-too L

where htop{g) is the topological entropy of the géodésie fiow. Moreover phtop{.g)L

> - 2 L -

for L large enough.

(23)

F o r a d é f i n i t i o n see [25, 5]. T h e o r e m 2 implies t h a t for L large e n o u g h ,

^C'iM) = CF{L) >

F o r e x a m p l e if M = E-^ is a n o r i e n t a b l e surface of genus 7 a n d c o n s t a n t c u r v a t u r e

— 1, t h e n htopig) = 1, see [5, Section 10.2.4.1], a n d t h u s

2L' P r o d u c t s

L e m m a 1 . 1 . 1 . Let M,N be two manifolds. Then

A ( M

X

AT) ^ A M

X

AAT.

Proof. C o n s i d e r t h e m a p </> : A ( M x N) ^ KM x AA^, sending t h e loop q : 5^ ->

M X N -.t^ {ai{t),a2{t)) o n t o ( a i , a 2 ) . •

W e will s h o w in section 5.2 t h a t t h e p r o d u c t of t w o s p h è r e s S' x S" h a s c ( M , g) > 0.

L i e g r o u p s

L e t G b e a c o m p a c t c o n n e c t e d Lie g r o u p , i.e. a c o m p a c t , c o n n e c t e d s m o o t h m a n i f o l d w i t h a g r o u p s t r u c t u r e in which t h e m u l t i p l i c a t i o n a n d inversion m a p s G x G ^ G a n d G ^ G a r e s m o o t h .

T h e f u n d a m e n t a l group 7ri(G) of a c o n n e c t e d Lie g r o u p G is a b e l i a n . In fact, c o n s i d e r i n g t h e universal cover G, t h e kernel of t h e p r o j e c t i o n p : G —> G is t h e n i s o m o r p h i c t o 7ri(G). T h i s is a discrète n o r m a l s u b g r o u p of G. Let 7 6 7ri(G).

T h e n g —>• gjg'^ is a c o n t i n u o n s m a p G —> 7ri(G). Since G is c o n n e c t e d a n d 7ri(G) d i s c r è t e , it is constant, so g'yg^^ = 7 for ail g. H e n c e 7ri(G) is c e n t r a l in G a n d in p a r t i c u l a r , it is abelian. T h i s yields

A G = ]J A ^ G .

D é n o t e b y A i M the c o m p o n e n t of t h e c o n s t a n t loop. For a > 0 we consider t h e sublevel s e t s

Al •- {q e A i M I €{q) < a}.

C h o o s e a c o n s t a n t loop 71 r e p r e s e n t i n g A i M a n d consider a n o t h e r c o m p o n e n t A j M of A G r e p r e s e n t e d by a loop 7^. Fix e G ( 0 , 1 ) . For 7 , 7 ' G A G we define

0 < i < £,

(24)

8 1 . 1 T h e free l o o p s p a c e w h e r e /i € G is s u c h t h a t /i7(0) = 7'(0). Notice t h a t ^{1) := h'y{t) is h o m o t o p i c t o 7 . T h e n t h e m a p F j : A i M —^ A j M : 7 >-> 7^ *j 7 , is a h o m o t o p y équivalence w i t h h o m o t o p y inverse A j M —> A i M : 7 i-> 7 " ^ 7. W e have

f (7 7') = -£{h^) + - ^ 5 ( 7 ' ) , for ail 7,7' e A G .

£ 1 — e

A b b r e v i a t i n g A° = A j M n A" a n d Ei = m a x { f (/17) | /i e G , 7 e A"}, we t h e r e f o r e have

F i ( A î ) c A p + ^ .

For c e 7ri(G), recall t h a t e(c) d é n o t e s t h e i n f i m u m of t h e energy of a closed c u r v e r e p r e s e n t i n g c a n d ^ ( G ) : = {c € 7ri(G) | e(c) < a } . Set £ = \- Since F^. : A i M —>

A c M is a h o m o t o p y équivalence, it follows t h a t

dimifci/fc(AÎ;Fp) < dimifc//fc(A2''+2^(^); Fp) for ail a > 0. W e c a n e s t i m a t e

d i m i i i / f c ( A ^ ; F p ) = ^ d i m t f c / f f c ( A ^ ; F p ) ceiri(G)

> ^ d i m i f c / f f c ( A f - ^ ' ^ ' ; F p )

ceîri(G)

> Y . dimtfc//fc(Aî;Fp).

ceC-(G)

W e conclude t h a t

Y,à\mLkHk{h^' j ^ ) > # C 5 " ' ( G ) • ^ d i m t f c / / f c ( A f " ' ; F p ) .

*:>0 fc>0

Considering t h e h o m o m o r p h i s m

i n d u c e d b y t h e inclusion A^ ^ A G , we c a n look a t t h e g r o w t h r a t e s Ci{G,g) : = s u p l i m i n f - l o g ^ d i m i / t i ï f c ( A f " ;Fp)

pgp n-Kx n

1 1 2

Cl (G, 5) : = s u p lim inf log d i m LkHk (Af " ; F p ) . pgp n-*oo l o g n ^ v i f /

It follows f r o m t h e définitions of E{G) a n d e ( G ) t h a t for a Lie g r o u p , CiG,g)>E{G)+C,{G,g)

a a d

c ( G , 5 ) > e ( G ) + c i ( G , 3 ) .

(25)

1.2 Cotangent bundles

L e t M b e a s m o o t h , c l o s e d m a n i f o l d of d i m e n s i o n m. L e t T*M b e t h e corre- s p o n d i n g c o t a n g e n t b u n d l e , a n d n : T*M ^ M t h e u s u a l p r o j e c t i o n . W e will d é n o t e local c o o r d i n a t e s o n M b y ç = (QI, . . . , qm), a n d o n T'M b y a; = {q,p) = {il, • • • >9m,Pl, • • • ,Pm)-

W e e n d o w e d T*M w i t h t h e standard symplœtic form u) = dX w h e r e \ = pdq =

YliLiPi dqi is t h e Liouville form. T h e d é f i n i t i o n of A d o e s n o t d é p e n d o n t h e choice of local c o o r d i n a t e s . It h a s also a global i n t e r p r é t a t i o n o n T* M a s

\{xm=p{d7rO for X e T * M a n d ^ G T^T'M.

A symplectomorphism <p : {T*M,uj) —>• {T*M,ui) is a d i f f e o m o r p h i s m s u c h t h a t t h e p u l l b a c k of t h e s y m p l e c t i c f o r m ui is ui, i.e. i^'ui = CJ.

A n Hamiltonian function i f is a s m o o t h f u n c t i o n H : T*M —> M . A n y H a m i l t o n i a n f u n c t i o n H d é t e r m i n e s a v e c t o r field, t h e Hamiltonian vector field XH d e f i n e d b y

u){X„{x),-) = -dH{x). (1.1)

L e t H : 5^ x T * M ^ IR b e a C ° ° - s m o o t h t i m e d é p e n d e n t 1 - p e r i o d i c f a m i l y of H a m i l t o n i a n functions. C o n s i d e r t h e H a m i l t o n i a n é q u a t i o n

x{t) = Xnixit)), (1.2) I n local c o o r d i n a t e s it t a k e s t h e physical f o r m

q= dpH{t,q,p) ^^^^

p = -d,H{t,q,p).

T h e s o l u t i o n s of (1.2) g e n e r a t e a f a m i l y of s y m p l e c t o m o r p h i s m s i f ' f j v i a

T h e 1 - p e r i o d i c solutions of (1.2) a r e in o n e - t o - o n e c o r r e s p o n d e n c e w i t h t h e f î x e d p o i n t s of t h e t i m e - l - m a p (pn = f n - W e d é n o t e t h e set of s u c h s o l u t i o n s b y

V{H) = {x : -^T* M \ x{t) = XH{x{t))}.

A 1 - p e r i o d i c solution of (1.2) is called non-degenerate if 1 is n o t a n eigenvalue of t h e d i f f e r e n t i a l of t h e H a m i l t o n i a n flow d(pH{x{0)) : Tc(o)T*M Tx{o)T*M, i.e.

d e t ( 7 - d^H{x{0))) + 1.

(26)

1 0 1 . 2 C o t a n g e n t b u n d l e s

If H is t i m e - i n d e p e n d e n t a n d x a n o n - c o n s t a n t 1-periodic o r b i t , t h e n it is necessaxily d e g e n e r a t e b e c a u s e x{a + t), a e JR, a r e also 1 - p e r i o d i c s o l u t i o n s . W e wilI call s u c h a n X transversally nondegenerate if t h e e i g e n s p a c e t o t h e eigenvalue 1 of t h e m a p dip]i{x{0)) : T , ( o ) T * M T^(o)T*M is o n e - d i m e n s i o n a l .

A n almost complex structure is a c o m p l e x s t r u c t u r e J o n t h e t a n g e n t b u n d l e TT'M i.e. a n a u t o m o r p h i s m J : TT*M -> TT*M s u c h t h a t = - I d . It is said t o b e u)-compatible if t h e bilinear f o r m

{•,-)=9j{;-):=w{;J-)

d e f i n e s a R i e m a n n i a n m e t r i c o n T ' M . G i v e n s u c h a n w - c o m p a t i b l e a l m o s t c o m p l e x s t r u c t u r e , t h e H a m i l t o n i a n System (1.3) b e c o m e s

XH{X) = J{x)VH{x).

T h e action functionaloî classical m e c h a n i c s AH '• A ( T * M ) - > IR a s s o c i a t e d t o H is d e f i n e d a s ^

AH{x{t)):= f {\{x{t))-H{t,x{t)))dt.

Jo

T h i s f u n c t i o n a l is C ° ° - s m o o t h a n d its critical p o i n t s a r e precisely t h e é l é m e n t s of t h e s p a c e V{H).

1.2.1 Fiberwise starshaped hypersurfaces

Let S b e a s m o o t h , c o n n e c t e d h y p e r s u r f a c e in T*M. W e say t h a t E is fiberwise starshaped if for e a c h p o i n t q £ M t h e set E , : = E n T*M is t h e s m o o t h b o u n d - a r y of a d o m a i n in T*M w h i c h is s t r i c t l y s t a r s h a p e d w i t h r e s p e c t t o t h e origin 0 , € T*M. W h e n d i m M > 2, T'M \ E h a s t w o c o m p o n e n t s . W e d é n o t e b y £>(E) t h e b o u n d e d i n n e r p a r t c o n t a i n i n g t h e zéro section a n d by D'^(E) t h e u n b o u n d e d o u t e r p a r t T*M \ L ' ( E ) , w h e r e I>(E) d é n o t e s t h e c l o s u r e of D{T.).

A h y p e r s u r f a c e E C T'M is s a i d t o b e of restricted contact type if t h e r e e x i s t s a v e c t o r field o n T * M s u c h t h a t

a n d s u c h t h a t Y is e v e r y w h e r e t r a n s v e r s e t o E p o i n t i n g o u t w a r d s . E q u i v a l e n t l y , t h e r e e x i s t s a 1 - f o r m a o n T*M s u c h t h a t da = uj a n d s u c h t h a t a A ( d a ) ' " ~ ^ is a v o l u m e f o r m o n E . O u r a s s u m p t i o n t h a t E is a f i b e r w i s e s t a r s h a p e d h y p e r s u r f a c e t h u s t r a n s l a t e s t o t h e a s s u m p t i o n t h a t E is of r e s t r i c t e d c o n t a c t t y p e w i t h r e s p e c t t o t h e Liouville vector field

m Y = Y^Pidpi

(27)

or, e q u i v a l e n t l y : t h e Liouville f o r m A defines a c o n t a c t f o r m o n E .

Figure 1.1: F i b e r w i s e s t a r s h a p e d h y p e r s u r f a c e .

T h e r e is a flow naturally associated w i t h E , g e n e r a t e d b y t h e u n i q u e v e c t o r field R a l o n g E defined by

dX{R, •) = 0, \{R) = 1.

T h e v e c t o r field R is called t h e Reeb vector field o n E , a n d its flow is called t h e Reeb flow.

For a closed o r b i t 7 of t h e R e e b flow, d é n o t e s by 7*^ its fcth i t e r a t e 7'°(t) = 7(A;t).

T h e i t é r â t e s of a closed o r b i t s have t h e s a m e i m a g e a n d a r e t h u s geometrically t h e s a m e . W e a r e interested in t h e g r o w t h of geometrically distinct closed orbits. W e t h u s i n t r o d u c e t h e set OR of simple closed orbits of t h e R e e b flow c o n t a i n i n g ail t h e R e e b o r b i t s which aie geometrically différent.

For T > 0 let OR^T) b e t h e set of s i m p l e closed o r b i t s of tp^ w i t h p e r i o d < r . W e

m e a s u r e t h e g r o w t h of t h e n u m b e r of é l é m e n t s in OII{T) by

(28)

1 2 1 . 2 C o t a n g e n t b u n d l e s

NR : = l i m i n f - l o g ( # C » f l ( T ) ) , T—>oo T

nR : = l i m i n f - ^ l o g ( # O f l ( r ) ) . T-K» log T

T h e n u m b e r NR is t h e exponential growth rate of closed o r b i t s , while UR is t h e polynomial growth rate.

1.2.2 Dynamics on fiberwise starshaped hypersurfaces

G i v e n a fiberwise s t a r s h a p e d h y p e r s u r f a c e S c T*M, we c a n define a n H a m i l t o n i a n f u n c t i o n F : r * M - > B, b y t h e t w o c o n d i t i o n s

F I E S I , F{q,sp) = s^F{q,p), s > 0 and {q,p) £ T'M. (1.4)

T h i s f u n c t i o n is of class C^, fiberwise h o m o g e n e o u s of d e g r e e 2 a n d s m o o t h ofF t h e zero-section.

L e m m a 1 . 2 . 1 . Let E C T*M be a fiberwise starshaped hypersurface. If Y, is the level set of a Hamiltonian function H : T'M IR, then the Reeb flow of X is a reparametrization of the Hamiltonian flow.

Proof. T h e r e s t r i c t i o n of t h e 2 - f o r m w = dX t o T S i s d e g e n e r a t e a n d o f r a n k ( 2 m — 2 ) . I t s kernel is t h e r e f o r e l - d i m e n s i o n a l . B y d é f i n i t i o n of b o t h R e e b a n d t h e H a m i l t o n i a n v e c t o r fields, t h e y also d e f i n e t h i s kernel since

iflrfAlrK = 0 a n d

tA-„w|n: = -dHln: = 0.

T h e r e f o r e

^H{X) = a{x)R{x)

for e v e r y a; € S , w i t h a n o w h e r e v a n i s h i n g s m o o t h f u n c t i o n a. •

C o n d i t i o n (1.4) t h u s implies t h a t t h e H a m i l t o n i a n v e c t o r field Xp r e s t r i c t e d t o E is a positive r e p a r a m e t r i z a t i o n of t h e R e e b vector field. C o n s e q u e n t l y

for every a; 6 E a n d for a s m o o t h p o s i t i v e f u n c t i o n cr o n IR x E . In p a r t i c u l a r , we h a v e t h a t

(29)

w h e r e s is s m o o t h and positive. Since E is c o m p a c t , s is b o u n d e d from a b o v e , s a y s{x) < b. T h u s if 7 is a 1 - p e r i o d i c o r b i t of X p , t h e n 7 is a p e r i o d i c o r b i t of Xn w h o s e p e r i o d is a t most b. H e n c e a <-periodic o r b i t of Xp is a p e r i o d i c o r b i t of Xn w h o s e p e r i o d is less t h a n {t + l)b, w h i c h îOT t > 1 is less t h a n 2bt. T h u s , if w e d é n o t e b y O f ( * ) t h e set of closed o r b i t s oi tfip w i t h p e r i o d < t, we h a v e t h a t

#Onit) >

T h e g r o w t h of t h e f u n c t i o n 11-^ ij^Opit) is t h u s e q u a l t o t h e g r o w t h o î t ^ jfOjî{t)

N o w we w a n t t o establish a c o r r e s p o n d e n c e b e t w e e n 1-periodic s o l u t i o n s of XH a n d closed o r b i t s of XH on E . C o n s i d e r t h e r a d i a l m a p c^, : T * M - > T*M,

Cs{x) := SX := {q,sp) t h e n t h e v e c t o r field V o n T * M d e f î n e d b y

Y{x) •- ^ Cs{x).

as s = i

is t h e Liouville vector field, in local c o o r d i n a t e s Y{q,p) = ^iPidpi- In f a t c , difîer- e n t i a t i n g c*A = J2i^Pi'^1i ~ w i t h r e s p e c t t o s, we o b t a i n

A = CyX = iyi^-

D i f f e r e n t i a t i n g F{sx) = s^F{x) w i t h r e s p e c t t o s a t s = 1 we get E u l e r ' s i d e n t i t y 2F{x) = dF{x){Y{x)) = -UJ{XF{X),Y{X)) = \ { X F { X ) ) .

I n v i e w of c * F = s^F a n d c* w = s w, we g e t

c*i((c.).XF)W = i x F ( c »

= s ixpOj

= -sdF

= - ^ d ( c : F )

1

T h u s {cs)tXF = -Xp or e q u i v a l e n t l y dCs{x){XF){x) = ^XF{SX).

F i x a 1 - p e r i o d i c solution x of Xp a n d d e f i n e Xg b y Xs{t) := sx{t). T h e n

Xs = dCsix){Xp){x) = -XF{XS).

(30)

1 4 1 . 2 C o t a n g e n t b u n d l e s

S u p p o s e Apix) = a > 0. E u l e r ' s i d e n t i t y yields

AF{X) = f \ { X F { X ) ) - F{x) = F{x).

Jo

So if we set s := l/y/â, t h e n satisfies F{Xs) = s^F{x) = 1. T h u s Xg is a closed orbit of p e r i o d ^/â.

Conversely if y : 5^ —> E is a closed c h a r a c t e r i s t i c , t h e n y = ^Xpiy) for s o m e s > 0.

T h u s x{t) := ly{t) is a l - p e r i o d i c s o l u t i o n of Xp a n d x^ = y.

We o b t a i n t h a t t h e m a p x ^ i / ^ is a b i j e c t i o n b e t w e e n l - p e r i o d i c s o l u t i o n s of Xp on T*M w i t h a c t i o n a a n d t h e closed o r b i t s of Xj{ o n E w i t h p e r i o d y/â. C o u n t i n g closed o r b i t s of X[{ o n E w i t h p e r i o d less t h a n or equal t o a is t h u s é q u i v a l e n t t o c o u t i n g l - p e r i o d i c s o l u t i o n s of Xp o n T*M w i t h a c t i o n less t h a n or e q u a l t o a^.

In t h e sequel of t h i s work, it will b e e v e n m o r e convenient t o consider l - p e r i o d i c s o l u t i o n s of XaF on T'M w i t h a c t i o n less t h a n or equal t o a.

1.2.3 Spherization of a cotangent bundle

We recall f r o m [31]. Let M b e a closed c o n n e c t e d m a n i f o l d a n d E C T'M a fiberwise s t a r s h a p e d h y p e r s u r f a c e in T'M. T h e h y p e r p l a n e field

e 5 : : = k e r ( A | s ) C T E

is a c o n t a c t s t r u c t u r e on E . Consider a n o t h e r fiberwise s t a r s h a p e d h y p e r s u r f a c e E ' . T h e r a d i a l p r o j e c t i o n in e a c h fiber i n d u c e s a m a p i/;, : E , ^ R s u c h t h a t for e v e r y p £ E ç , il>q{p)p G E^. T h e n t h e difîerential of t h e d i f f e o m o r p h i s m

satisfies

* Ê E ' ( A | E ) = V ' A | E

w h e r e ip{q,p) = •>pq{p)- T h u s Î'EE' m a p s t o ^ n d hence is a c o n t a c t o m o r p h i s m ( E , ^ 5 : ) ^ ( S ' , e É ) -

T h e i n d u c e d équivalent class of t h o s e c o n t a c t m a n i f o l d is called t h e spherization (SM,^) of t h e c o t a n g e n t b u n d l e . T h e u n i t c o s p h e r e b u n d l e {SiM{g),keT X),

SiM{g) : = {{q,p) 6 T'M \ \p\ = 1}

associated t o a R i e m a n n i a n m e t r i c 5 o n M is a p a r t i c u l a r r e p r é s e n t a t i v e .

(31)

F i x a r e p r é s e n t a t i v e ( E , Ç s ) . For e v e r y s m o o t h p o s i t i v e f u n c t i o n / : E —> M , | s = k e r ( / A | 5 : ) h o l d s t r u e . W e c a n t h u s c o n s i d e r t h e a s s o c i a t e d R e e b v e c t o r field Rf o n T E d e f i n e d a s t h e u n i q u e v e c t o r field s u c h t h a t

d { f \ ) { R f , •) = (), f X i R f ) = l.

W e h a v e s e e n i n t h e p r e v i o u s section t h a t for / = 1 a n y H a m i l t o n i a n f u n c t i o n H : T*M —>• IR w i t h H~^{1) = E , w h e r e 1 is a r e g u l a r v a l u e , t h e R e e b flow of Rf is a t i m e c h a n g e of t h e H a m i l t o n i a n flow ip\j r e s t r i c t e d t o E . N o t e t h a t for a d i f f é r e n t f u n c t i o n / t h e R e e b flows o n E c a n b e c o m p l e t e l y d i f f é r e n t .

G i v e n a n o t h e r r e p r é s e n t a t i v e E ' , t h e a s s o c i a t e d c o n t a c t o m o r p h i s m Î'SE' c o n j u g a t e s t h e R e e b flows o n ( E , A ) a n d (E',V'~^A), in f a c t

d^MRx) = R^-ix-

T h i s j a e l d s t h a t t h e set of R e e b flows o n {SM, ^ ) is i n b i j e c t i o n w i t h H a m i l t o n i a n flows o n fiberwise s t a r s h a p e d h y p e r s u r f a c e s , u p t o t i m e c h a n g e .

T h e o r e m A a n d T h e o r e m B t h u s give lower b o u n d s for t h e g r o w t h r a t e of closed o r b i t s for any Reeb flow on the spherization S M o f T ' M .

1.3 Maslov index

C o n s i d e r IR^'" e n d o w e d w i t h its s t a n d a r d s y m p l e c t i c s t r u c t u r e ujo = dpA dq, {q,p) e WT x H ™ ,

a n d i t s s t a n d a r d c o m p l e x s t r u c t u r e

D é n o t e b y 5 p ( 2 m ) t h e s e t of s y m p l e c t i c a u t o m o r p h i s m s of ( H ^ ^ j W o ) , i.e.

Sp{2m) := { * € M a t ( 2 m x 2 m , IR) | ¥ J o ^ = J o } , b y £{m) t h e s p a c e of L a g r a n g i a n s u b s p a c e s of (K^™, WQ), i.e.

£ ( m ) : = {L c K^™ | uio{v,w) = 0 for ail v,w e L a n d d i m L = m}, a n d b y AQ t h e vertical L a g r a n g i a n s u b s p a c e AQ = { 0 } x H " .

T h e M a s l o v i n d e x a s s o c i â t e s a n integer fi{'if) t o e v e r y l o o p '9 : IR/Z —> Sp{2m) of s y m p l e c t i c m a t r i c e s . It s a t i f i e s a n h o m o t o p y a x i o m , t w o l o o p s a r e h o m o t o p i c if a n d o n l y if t h e y h a v e t h e s a m e M a s l o v index. In t h e following w e i n t r o d u c e t w o M a s l o v t y p e i n d e x e s t h a t we will u s e in t h e g r a d i n g of F l o e r h o m o l o g y .

(32)

1 6 1 . 3 M a s l o v i n d e x

1.3.1 Maslov index for symplectic path

I n [11] C o n l e y a n d Z e h n d e r i n t r o d u c e d a M a s l o v t y p e i n d e x t h a t a s s o c i â t e s a n integer M c z ( ^ ) t o every p a t h of s y m p l e c t i c a u t o m o r p h i s m s b e l o n g i n g t o t h e s p a c e

SP := : [0,r] ^ Sp{2m) \ ^{0) = / , d e t ( / - ^ ( T ) ) ^ 0}.

T h e foUowing d e s c r i p t i o n is p r e s e n t e d in [41].

It is well k n o w n t h a t t h e q u o t i e n t Sp{2m)/U{m) is c o n t r a c t i b l e a n d so t h e f u n d a - m e n t a l g r o u p of Sp{2m) is i s o m o r p h i c t o Z . T h i s i s o m o r p h i s m c a n b e r e p r e s e n t e d b y a n a t u r a l c o n t i n u o u s m a p

p : Sp{2m)

w h i c h r e s t r i c t s t o t h e d é t e r m i n a n t m a p o n Sp{2m) Ci 0{2m) ~ U{m). C o n s i d c r t h e set

Sp{2my := G Sp{2m) \ d e t ( / - «') ^ 0}.

It h o l d s t h a t Sp{2Tn)* h a s t w o c o n n e c t e d c o m p o n e n t s 5 p ( 2 m ) ± : = {«f € Spi2m) \ ± d e t ( / - > 0}.

M o r e o v e r , every l o o p in 5 p ( 2 m ) ' is c o n t r a c t i b l e in Sp{2Tn).

For a n y p a t h ^' : [0, r] —> Sp{2m) choose a f u n c t i o n a : [0, r] —> IR s u c h t h a t

= e ' " ( " a n d d e f i n e

TT

For A € Sp{2my choose a p a t h ^ ^ ( i ) € Sp{2mY such t h a t * ^ ( 0 ) = A a n d * > i ( l ) S

{ - / , d i a g ( 2 , - 1 , . . . , - 1 , i , - 1 , . . . , - 1 ) } . T h e n A i ( ^ ' ^ ) is i n d e p e n d e n t of t h e choice of t h i s p a t h . D e f i n e

r{A) = ù.,{^A), AeSp{2my.

T h e Conley-Zenhder index of a p a t h ^ e <SF is define a s t h e i n t e g e r

T h e foUowing i n d e x i t é r a t i o n f o r m u l a , p r o v e d in [41], will b e u s e d in s e c t i o n 4.2.1.

L e m m a 1 . 3 . 1 . Let ^ ( t ) € Sp{2m) be any path such that

^{kT + t) = I ' ( t) ^ ' ( r ) * fort>0 and k e N . Then

A f c . ( f ) = fcAi(*) for every k e N . Moreover, \r{A)\ < n for every A e Sp{2my.

Références

Documents relatifs

Le noyau par exemple d’un morphisme d’algèbre pourrait être vu comme le noyau au sens des morphismes d’anneaux, tout comme le noyau au sens des morphismes de A-modules et il ne

Comme certains logiciels de la Toile peuvent requérir une activation par l'utilisateur, il est RECOMMANDÉ qu'il y ait au moins un champ Ecom visible par

Dans le cas où une version électronique native de la thèse existe, l’Université ne peut garantir que la présente version numérisée soit identique à la version électronique

Dans le cas où une version électronique native de la thèse existe, l’Université ne peut garantir que la présente version numérisée soit identique à la version électronique

Dans le cas où une version électronique native de la thèse existe, l’Université ne peut garantir que la présente version numérisée soit identique à la version électronique

La rédaction de ce document de présentation du programme d’améliorations extérieures dédié aux commerces ayant pignon sur rue dans les quartiers patrimoniaux de Québec a été

Depuis la publication par l’OMS de la première feuille de route pour la prévention et le contrôle des MTN (Agir plus vite pour réduire l'impact mondiale des maladies

Si la lutte contre le terrorisme en Afrique de l’ouest est un enjeu pour le Maroc du fait du confl it saharien, il m’en demeure pas moins que l’intensifi cation des