• Aucun résultat trouvé

PRESSURE DEPENDENCE OF THE HYDROPHOBIC EFFECT A NMR STUDY IN THE SYSTEM T-BUTANOL/D2O

N/A
N/A
Protected

Academic year: 2021

Partager "PRESSURE DEPENDENCE OF THE HYDROPHOBIC EFFECT A NMR STUDY IN THE SYSTEM T-BUTANOL/D2O"

Copied!
6
0
0

Texte intégral

(1)

HAL Id: jpa-00224285

https://hal.archives-ouvertes.fr/jpa-00224285

Submitted on 1 Jan 1984

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

PRESSURE DEPENDENCE OF THE

HYDROPHOBIC EFFECT A NMR STUDY IN THE SYSTEM T-BUTANOL/D2O

M. Woznyj, E. Lang, H.-D. Lüdemann

To cite this version:

M. Woznyj, E. Lang, H.-D. Lüdemann. PRESSURE DEPENDENCE OF THE HYDROPHOBIC EFFECT A NMR STUDY IN THE SYSTEM T-BUTANOL/D2O. Journal de Physique Colloques, 1984, 45 (C7), pp.C7-179-C7-183. �10.1051/jphyscol:1984720�. �jpa-00224285�

(2)

JOURNAL DE PHYSIQUE

Colloque C7, supplCment au n09, Tome 45, septembre 1984 page C7-179

PRESSURE DEPENDENCE OF THE HYDROPHOBIC E F F E C T A NMR STUDY I N THE SYSTEM T - B U T A N O L / D ~ O

M. Woznyj, E.W. Lang and H.-D. ~iidemann

I n s t i t u t fur Biophysik und PhysikaZische Biochemie, Universitat Regensburg, Postfach 397, 0-8400 Regensburg, F. R. G.

Resume - La dynamique m o l @ c u l a i r e de l a phase l i q u i d e du systeme b i n a i r e t-bu- ' m l ' e a u l o u r d e a e t 6 6 t u d i e e par RMN. n t e des r e s u l t a t s s u r l e s temps de r e l a x a t i o n spin-rereau T~ pour ql) :;'I! 0 des molecules d'eau, s u r l e s v i t e s s e s de r e l a x a t i o n i n t e r m o l e c u l a i r e s proton-proton e t s u r l e s c o e f f i c i e n t s d ' a u t o - d i f f u s i o n des mol6cules de t - b u t a n o l . Les mesures couvrent l e s games de temperature e n t r e 273 K e t 430 K e t de p r e s s i o n e n t r e 0 , l e t 200 MPa. L ' a s - s o c i a t i o n des mol6cules t - b u t a n o l n ' a l i e u que dans l a gamme de temperature e n t r e 310 K e t 360 K. En dehors de c e t t e gamme on ne peut pas observer d'asso- c i a t i o n . On n ' a pas pu d e t e c t e r d ' e f f e t s i g n i f i c a t i f de l a p r e s s i o n s u r ce comportement .

A b s t r a c t - The molecular dynamics o f the l i q u i d phase o f t h e b i n a r y system techniques. Presented are the s p i n l a t t i c e r e l a x a t i o n 0 o f the water molecules, the

e s e l f d i f f u s i o n c o e f f i c i e n t s of the t-butanol molecules. The measurements cover the temperature range between 273 K and 430 K and the pressure range from 0.1 t o 200 MPa. A s s o c i a t i o n of the t-butanol molecules occurs o n l y i n t h e temperature range between 310 K and 360 K. Outside t h i s r e g i o n no a s s o c i a t i o n can be observed. No s i g n i f i c a n t pressure e f f e c t o f t h i s behaviour c o u l d be detected.

I N T R O D U C T I O N

The i n f l u e n c e o f pressure upon the hydrophobic a s s o c i a t i o n i s s t i l l a m a t t e r of controversy. Due t o the very low s o l u b i l i t i e s o f p u r e l y apolar substances i n water i t i s necessary t o study model systems, i .e. substances which have q u i t e a l a r g e a p o l a r s u r f a c e r e g i o n as we1 1 as p o l a r groups (-OH, -NH2,. . . .). From s t u d i e s i n such model systems i t i s claimed t h a t pressure severely d e s t a b i l i z e s hydrophobic i n t e r - a c t i o n s , though the evidence presented i s scanty and i n d i r e c t /1,2/. A w i d e l y used model system f o r hydrophobic e f f e c t s i s t h e system t-butanol/water /3-6/. This system e x h i b i t s f u l l m i s c i b i l i t y over t h e whole composition range and i s therefore w e l l s u i t e d f o r a s s o c i t a t i o n s t u d i e s o f t h e "hydrophobic" component by NMR tech- niques.

E X P E R I M E N T A L

The samples were prepared by weighing t h e c a r e f u l l y p u r i f i e d substances and f r e e d from oxygen by several freeze-pump-thaw cycles.

The s p i n l a t t i c e r e l a x a t i o n times TI were obtained w i t h t h e usual

- T - - 'r - 1 pulse sequence on a Varian XL-100 FT NMR spectrometer o p e r a t i n g

2 2

a t 100.1 MHz f o r protons. The s e l f d i f f u s i o n c o e f f i c i e n t s D were measured by t h e s p i n echo technique i n a m o d i f i e d V 4415 probe using t h e same instrument. D e t a i l s o f experimental design and procedure can be found elsewhere /7/.

The measurements o f the p r o t o n p r o t o n i n t e r m o l e c u l a r r a t e o f t h e t-butan01 molecules were performed i n t e r n a r y mixtures o f (CH3)3COD, (CD3)3COD and D20 w i t h mole f r a c t i o n s x g - p , x g ( l - p ) and (1-x ) r e s p e c t i v e l y xg denoting the mole f r a c t i o n o f t-butanol and p the f r a c t i o n o f t-Eutanol molecules w i t h protonated methyl groups.

For a1 1 experiments t h e extreme narrowing 1 im i t applied. No observable i s o t o p e e f f e c t was seen when s u b s t i t u t i n g (CH3)$OD by (CD3)3COD. The r e l a x a t i o n r a t e Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1984720

(3)

C7-180 JOURNAL DE PHYSIQUE

1

R1 ! of t h e methyl protons i n t h e s e t e r n a r y mixtures i s given by / 8 , 9 / :

1 i n t r a i n t e r i n t e r

R1 = R 1

+ R1, XOD-CH3 + ( P ' ( ' - P ) . ~ ) R1, C H ~ - C H ~ ( I )

with I ( I +1

K = ) . ) = 1.189.10- 1

I H ( I H + ~ ) ( 2 )

YD H and I D , H a r e t h e gyromagnetic r a t i o s and s p i n quantum numbers of t h e deuteron and proton, r e s p e c t i v e l y . Varying p one can t h e r e f o r e determine t h e intermolecular proton-proton r e l a x a t i o n r a t e of t h e methyl aroups R1, i n t e r CH3-CH3 d i r e c t l y .

T H E O R E T I C A L

Neglecting intramolecular motions t h e i n t e r m o l e c u l a r p a r t of t h e methyl proton r e - l a x a t i o n r a t e can f a i r l y well be approximated by /ID/:

YH denotes t h e gyromagnetic r a t i o of t h e proton, D t h e d i f f u s i o n c o e f f i c i e n t of t h e t-butanol molecules. p ( r ) i s t h e r a d i a l p a i r d i s t r i b u t i o n f u n c t i o n of t h e i n t e r - a c t i n g methyl protons and a t h e i r d i s t a n c e of c l o s e s t approach.

Noreover one can d e f i n e t h e a s s o c i a t i o n parameter A /11/:

i n t e r . - D

A := R1, C H ~ - C H ~ n ( 4 )

with n t h e average d e n s i t y of t h e methyl protons. I n s e r t i n g ( 3 ) one obtains:

The experimentally a c c e s s i b l e q u a n t i t y A i s a measure of t h e molecular a s s o c i a t i o n of t h e t-butanol molecules. With t h e t-butanol molecules s t a t i s t i c a l l y d i s t r i b u t e d i n t h e s o l u t i o n p ( r ) i s proportional t o n and thus A i s independent of t h e t-butanol concentration. An i n c r e a s e of A with decreasinn t-butanol concentration i n d i c a t e s a s s o c i a t i o n of t h e t-butanol molecules.

R E S U L T S A N D D I S C U S S I O N

In Fig. 1 t h e deuteron spin l a t t i c e r e l a x a t i o n times of t h e water molecules a r e presented a t 5 MPa and 200 MPa a s function of t h e t-butanol concentration.

Assuming i s o t r o p i c r o t a t i o n a l m 3 t i o n of t h e water molecules i n t h e t-butanol/water mixtures one can c a l c u l a t e t h e H r e l a x a t i o n time of water from t h e 170 d a t a i n the case of those mixtures, t h a t due t o t h e rapid exchange between t h e water deuterons and t h e hydroxylic t-butanol de t e r o n s do n o t allow a d i r e c t experimental B

determination of t h e water m o b i l i t y from lH-T1. E s p e c i a l l y a t lower temperatures a d d i t i o n of t-butanol has a dramatic i n f l u e n c e upon t h e water mobility. This p o i n t s t o a promotion of water s t r u c t u r e through t h e a d d i t i o n of t-butanol molecules.

Fig. 2 shows t h e r e s u l t s of t h e s e l f d i f f u s i o n c o e f f i c i e n t of t h e t-butanol molecules a t two p r e s s u r e s . I t can be seen t h a t f o r low t-butanol concentrations t h e t r a n s l a t i o n a l mobility of t h e t-butanol molecules i s a f f e c t e d by t h e a d d i t i o n of t-butanol s i m i l a r l y t o t h e r o t a t i o n a l rnobi 1 i t y of t h e water molecules.

In Fig. 3 t h e s p i n l a t t i c e r e l a x a t i o n times of t h e t-butanol methyl protons a t 5 MPa i n two t e r n a r y s o l u t i o n s of (CH3)3COD, (CD3) COD and D20 a r e presented.

The mole f r a c t i o n of t-butanol xg i s equal i n both s o 7 u t i o n s . They only d i f f e r i n t h e i r f r a c t i o n o f protonated t-butanol molecules and provide an example f o r t h e determination of t h e methyl-methyl intermolecular r a t e . One can c l e a r l y s e e t h a t the i n t e r m o l e c u l a r r a t e e x h i b i t s a maximum a t about 335 K. (The e r r o r i n t h e i n - dividual TI-measurements being 2 %).

This behaviour has been observed f o r a l l but t h e h i g h e s t t-butanol concen- t r a t i o n s and can be seen i n Fig. 4 . Presented a r e t h e temperature and concen- t r a t i o n dependencies of the product R ~ : ~ ~ ~: ~A - n . - ~One can conclude t h a t ~ ~ - D

(4)

the a s s o c i a t i o n o f the t-butanol molecules goes through a maximum a t about 335 K f o r a l l b u t the h i g h e s t c o n c e n t r a t i o n s . This maximum gets q u i t e pronounced i n the lower concentrations. No s i g n i f i c a n t pressure e f f e c t o f t h i s behaviour can be seen.

Fig. 5 presents t h e A parameter (equ. 4) a t t h r e e temperatures and two pressures.

Density data b e i n g o n l y a v a i l a b l e f o r l i m i t e d pressure and temperature ranges we c a l c u l a t e d the p r o t o n d e n s i t i e s by assuming i d e a l s o l u t i o n behaviour and by neg- l e c t i n g pressure e f f e c t s . The e r r o r s i n t r o d u c e d by t h i s procedure should n o t

200 MPo

Tt Is1

t

1 0

01

0 01

-

wl-'I. 1-butanot

-

wt-% I-butanol

F i g u r e 1 - Concentration and temperature dependence o f the s p i n l a t t i c e r e l a x a t i o n times T1 of the water molecules i n t-butanol/water mixtures a t 5 MPa and 200 MPa.

Closed symbols: d i r e c t l y measured :H-T~ o f D20.

Open symbols: c a l c u l a t e d lH-T1 2 from ' ~ O - T ~ measurements o f ~ ~ under t h e ' ~ 0 assumption o f i s o t r o p i c motion o f t h e water molecules.

F i g u r e 2 - Concentration and temperature dependence o f the s e l f d i f f u s i o n c o e f f i -

c i e n t s D o f the t - b u t a n o l molecules i n (CH3)3COD/D20 mixtures a t 5 MPa and 200 MPa.

(5)

C7-182 JOURNAL DE PHYSIQUE

wt-% t-butonol

- - -

- 2 3 2 7 - 31 1 0 ~ 1 ~ IK-'I 3 5 2 3 2 7

-

31 ~ O ~ / T I K ~ ' I 3 5

-

Figure 4 - Concentration and temperature dependence o f Ri . D a t 5 MPa and 200 EIPa.

D denotes t h e s e l f d i f f u s i o n c o e f f i c i e n t

1.0: of t h e t-butanol molecules and Ri t h e

- methyl-methyl proton i n t e r m o l e c u l a r r a t e

- i n t h e (CH3)3COD/D20 sol utions.

-

I I I I I I r

2.3 2.7 3.1 3.5

- - l o 3 / ~ ( K - ~ I

A 5MPa 29LK 200MPa

Figure 3 - Temperature dependence of the (,5,,2, proton spin l a t t i c e re1 axation times T1 i n two t e r n a r y mixtures of (CH3)3C0D,

(CD3)3COD and D20 a t 5 MPa. The mole lo-\/p3+-++-+---+

If--*---

f r a c t i o n of t-butanol i s 0.071 i n both s o l u t i o n s .

o: 14 % of the t-butanol molecules a r e protonated

x: 87,7 % of t h e t-butanol molecules

a r e protonated lo-3a 3 3 9 ~

exceed 15 %. Considering t h e e r r o r s i n -

volved i n t h e determination of t h e A

Ifp

)Kt* \

parameter, e s p e c i a l l y a t low concen- )*J;+~c +- - -*

.

+--% -

t r a t i o n s , i t follows from t h e d a t a

presented i n Fig. 5 t h a t a s s o c i a t i o n l o 3 '

of t h e t-butanol molecules i s only observable a t t h e i n t e r m e d i a t e temperature of 339 K. A t 294 K and a t 439 K t h e d a t a a r e b e s t explained by

the a t-butanol s t a t i s t i c a l molecules. d i s t r i b u t i o n No s i g n i - of

::;- ;:,

7(!/L3

.:::

f i c a n t pressure dependence could be observed.

0 20 LO 60 80 100 0

-

20 40 w t - % t-butanol 60 80 I W

Figure 5 - Concentration dependence of t h e a s s o c i a t i o n parameter A f o r t-butanol i n (CH3)3COD/D20 mixtures a t various pressures and temperatures.

(6)

For a more extensive discussion, t h e various models f o r the i n t e r m o l e c u l a r proton- p r o t o n r e l a x a t i o n r a t e would have t o be a p p l i e d t o t h e data, and i n a d d i t i o n , one would want t o have a v a r i e t y o f thermodynamic and dynamic data i n t h e whole p,t range covered.

Provided, a l l these data were a v a i l a b l e , one would s t i l l have t o answer t h e question, t o what e x t e n t t h e t-butanol/water system can be a u s e f u l model system f o r hydrophobic phenomena, i . e . how the e f f e c t s caused by t h e h y d r o x y l i c group i n t e r f e r e w i t h t h e hydrophobic i n t e r a c t i o n and the s t e r i c a l c o n s t r a i n t s o f t h e t h r e e methyl arouos.

A C K N O W L E D G E M E N T

The work presented here was o n l y f e a s i b l e through t h e e x p e r t t e c h n i c a l assistance o f M r . S. Heyn, R. K n o t t and E. Treml. Generous f i n a n c i a l support was obtained from the DFG and t h e Fonds d e r Chemie.

R E F E R E N C E S

/ 1/ K. SUZUKI, Y. TANIGUCHI, T. WATANABE, J. Phys. Chem., 1973, 77, 1918 / 2/ N.S. ISAACS: L i q u i d Phase High Pressure Chemistry, John Wiley and Sons,

Chichester 1981, p. 354 ff

/ 3/ K. IWASAKI, T. FWIYAMA, J. Phys. Chem., 1977, 81, 1908 / 4/ K. IWASAKI, T. FUJIYAMA, J. Phys. Chem., 1979, 83, 463

/ 5/ K. TAMURA, M. MAEKAWA, T. YASUNAGA, J. Phys. Chem., 1977, 81, 2122

/ 6/ A. HVIDT, R. MOSS, G. NIELSEN, Acta Chem. Scand., 1978, B 32, 274 / 71 F.X. PRIELMEIER, E.W. LANG, H .-D. LDDEMANN, Mol . Phys., i n p r i n t / 8/ H.-D. LUDEMANN, E.W. LANG, This volume

/ 91 M. ZEIDLER i n : F. Franks ed. "Water - A Com~rehensive T r e a t i s e " , Plenum Press, New York 1973, Vol. 2, p. 529 ff

/ l o / H. LEITER, K.J. PATIL, H.G. HERTZ, J . Sol. Chem., 1983, 12, 503 /11/ E.v. GOLDAMMER, H.G. HERTZ, J . Phys. Chem., 1970, 74, 3734

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to