• Aucun résultat trouvé

SMALL AMPLITUDE COLLECTIVE PROTON MOTIONS IN WATER NETWORKS - APPLICATION TO ICES, CLATHRATES AND AQUEOUS SOLUTIONS

N/A
N/A
Protected

Academic year: 2021

Partager "SMALL AMPLITUDE COLLECTIVE PROTON MOTIONS IN WATER NETWORKS - APPLICATION TO ICES, CLATHRATES AND AQUEOUS SOLUTIONS"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: jpa-00226238

https://hal.archives-ouvertes.fr/jpa-00226238

Submitted on 1 Jan 1987

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

SMALL AMPLITUDE COLLECTIVE PROTON MOTIONS IN WATER NETWORKS - APPLICATION

TO ICES, CLATHRATES AND AQUEOUS SOLUTIONS

J. Green, A. Lacey, M. Sceats

To cite this version:

J. Green, A. Lacey, M. Sceats. SMALL AMPLITUDE COLLECTIVE PROTON MOTIONS IN WATER NETWORKS - APPLICATION TO ICES, CLATHRATES AND AQUEOUS SOLUTIONS.

Journal de Physique Colloques, 1987, 48 (C1), pp.C1-53-C1-58. �10.1051/jphyscol:1987108�. �jpa-

00226238�

(2)

JOURNAL D E PKYSIQUE

C o l l o q u e C1, suppl6ment au n o 3, T o m e 48, mars 1987

SMALL AMPLITUDE COLLECTIVE PROTON MOTIONS I N WATER NETWORKS -

APPLICATION TO ICES, CLATHRATES AND AQUEOUS SOLUTIONS

J . L . GREEN, A . R . LACEY and M.G. SCEATS

Department of Physical Chemistry, University of Sydney, Sydney, N. S. W. 2006, Australia

Resume. Une c a r a c t e r i s t i q u e de la s p e c t r o s c o p i e Rarnan de I'eau en r e l a t i o n avec l e mouvement c o l l e c t i f de p e t i t e amplitude des p r o t o n s , e s t employ6e pour Btudier la s t r u c t u r e de r6seau de I1eau l i q u i d e , des g l a c e s , s e m i c l a t h r a t e s , a l c o o l s , e l e c t r o l y t e s e t des melanges H O/H 0

2 2 2'

Abstract. A f e a t u r e i n t h e Raman spectrum o f water networks, assigned t o small amplitude c o l l e c t i v e proton motions, is used t o probe t h e network s t r u c t u r e

in ices, liquid water, H O/H 0 mixtures, s e m i c l a t h r a t e s , a l c o h o l s and e l e c -

t r o l y t e s . 2 2 2

1 . I n t r o d u c t i o n

The OH s t r e t c h i n g spectrum of water is s t r o n g l y perturbed by t h e s t r e n g t h of hydrogen bonding [I]. However t h e s t r e t c h i n g motions of a d j a c e n t molecules a r e s t r o n g l y coupled

[ 2 ]

a s expected f o r a t r a n s i t i o n which e x h i b i t s a l a r g e t r a n s i t i o n d i p o l e moment. This complexity was circumvented by study of t h e OH s t r e t c h i n g motions i n heavily deuterated systems

[ 2 ] ,

where t h e OH o s c i l l a t o r s a r e mechanically decoupled from t h e surrounding OD o s c i l l a t o r g . Their spectrum e x h i b i t s t h e range of OH s t r e t c h i n g f r e q u e n c i e s induced by t h e v a r i a t i o n of t h e hydrogen bonding, i.e.

inhomogeneous broadening. Data t h u s obtained provide a probe of t h e c h a r a c t e r of t h e hydrogen bonding and have been used t o develop s t r u c t u r a l models of l i q u i d water C31-

I n t h i s paper r e c e n t experiments w i l l be reviewed i n which t h e spectrum of coupled OH o s c i l l a t o r s is s t u d i e d . Whereas t h e decoupled spectrum provides information on t h e s i n g l e t bond d i s t r i b u t i o n , t h e coupled spectrum is influenced by higher order d i s t r i b u t i o n f u n c t i o n s which more d i r e c t l y r e f l e c t t h e s t r u c t u r e of t h e networks and hydrogen bond c o r r e l a t i o n s .

2. C o l l e c t i v e Proton Motions i n Defect-Free T e t r a h e d r a l Networks

The i c e s a r e continuous t e t r a h e d r a l networks t41. The s t r o n g coupling of OH o s c i l l a t o r s i n i c e I was f i r s t revealed by Haas and Hornig [51 who observed t h e coupling between a d j a c e n t OD o s c i l l a t o r s 0-D....O-D i n d i l u t e D,O/H,O i c e I. The consequences of t h i s coupling on t h e spectrum of H,O i c e I was pointed out by Whalley

[2].

C a l c u l a t i o n s by Rice and coworkers [6-81 have shown t h a t t h e observed i n f r a r e d and Raman s p e c t r a can be modelled t o a high p r e c i s i o n , and have confirmed t h a t t h e spectrum is dominated by intermolecular coupling.

A

f e a t u r e of t h e spectrum is t h e appearance i n t h e low frequency edge of t h e I,, Raman Spectrum of an i n t e n s e band due t o t h e in-phase c o l l e c t i v e motion of t h e OH o s c i l l a t o r s E91. I t is t h i s f e a t u r e t h a t we w i l l use a s a probe of t h e c o l l e c t i v e motions. A s shown i n Figure 1 , t h i s band appears, a l b e i t broader, i n t h e spectrum of amorphous s o l i d water H,O(as) and, with reduced i n t e n s i t y , i n l i q u i d water.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1987108

(3)

JOURNAL DE PHYSIQUE

C o n s i d e r t h e l i n e w i d t h , A,of t h e in-phase c o l l e c t i v e band i n i c e I . T h i s h a s been measured by Sivakumar e t a 1 1 9 1 , and is f i t t e d t o t h e form

A,

+

~ / ( e x p ( h c v / k ~ ) - 1

)

The f r e q u e n c y

v

is 200 em-', and c o r r e s p o n d s t o t h e 0-0 s t r e t c h i n g r e g i o n o f t h e t r a n s l a t i o n a l s p e c t r u m [ l o ] . The c o l l e c t i v e mode s c a t t e r s o f f t h e t r a n s l a t i o n a l o p t i c a l phonons. The w i d t h

AYORPHOUS SOLID

H,O o f t h e uncoupled OH o s c i l l a t o r s p e c t r u m

DEPOSITION AT 10 K

i n D,O is o n l y weakly t e m p e r a t u r e

dependent [9] and is p r i m a r i l y a t t r i b u t e d t o inhomogeneous broadening a r i s i n g from p r o t o n d i s o r d e r i n i c e I . T h i s w i d t h e x t r a p o l a t e d t o 0 K i s 25.8 em-'. The e x p e r i m e n t s show t h a t AIH > A o , w i t h A,

=

1 9 cm-l and t h i s we a t t r i b u t e t o m o t i o n a l n a r r o w i n g of t h e c o l l e c t i v e mode. The OH s t r e t c h i n g e x c i t a t i o n , a v i b r o n , moves

POLYCRISTALLINC

r a p i d l y t h r o u g h t h e network a t low

DCPOSITION AT IS

t e m p e r a t u r e s and t h e s p e c t r u m is

u n p e r t u r b e d by t h e inhomogeneous d i s t r i b u t i o n . I n p r i n c i p l e , t h e l i n e w i d t h n e a r 0 K s h o u l d approach a 6 - f u n c t i o n . The s c a t t e r i n g due t o o p t i c a l and a c o u s t i c m o t i o n s is f r o z e n o u t a s T

+

0 K because t h e in-phase mode l i e s a t t h e low e n e r g y edge of t h e v i b r o n

UM)

d e n s i t y of s t a t e s . The r e s i d u a l w i d t h A.

V

(em-')

o f t h e c o l l e c t i v e band c o u l d be due t o

f i g . 1: The Raman spectrum of water, H20(as) and

v i b r a t i o n a l r e l a x a t i o n . A l i k e l y

i c e .

mechanism is c o u p l i n g t o t h e bending

o v e r t o n e by Fermi r e s o n a n c e [ I l l . The e l e g a n t c o d e p o s i t i o n e x p e r i m e n t s of D e v l i n and c o w o r k e r s [ 1 2 , , 1 3 ] have a l l o w e d measurement of t h e s p e c t r u m o f i n t a c t H,O m o l e c u l e s i n D,O i c e I. The r o l e of Ferrni r e s o n a n c e h a s been deduced from t h e s e s p e c t r a [14] and t h e c o u p l i n g e l e m e n t W i s 60 cm-I. I n t h e c o u p l e d s p e c t r u m t h e impact of Fermi r e s o n a n c e i s l e s s pronounced, b u t we s u g g e s t t h a t i t c o u l d be t h e s o u r c e o f t h e r e s i d u a l w i d t h a t 0 K of t h e in-phase c o l l e c t i v e mode, by t h e i r r e v e r s i b l e p r o c e s s of e x c i t a t i o n of t h e bending o v e r t o n e on one m o l e c u l e f o l l o w e d by f i s s i o n i n t o bending e x c i t a t i o n s on a d j a c e n t m o l e c u l e s o r e x c i t a t i o n of t h e l i b r a t r o n a l modes. The l i n e w i d t h is g i v e n by F e r m i ' s Golden r u l e , Z T W ~ ~ ( V , ) M , where

p

is t h e o v e r t o n e d e n s i t y o f s t a t e s . The r e s i d u a l w i d t h i s c o n s i s t e n t w i t h a d e n s i t y of s t a t e s a t vc o f 4 . 2 x l 0 - ~ ( c m - l 1-l. T h i s is i n r e a s o n a b l e agreement w i t h t h e s i m u l a t i o n s of t h e l i q u i d w a t e r s p e c t r u m 1151 i n which t h e bending o v e r t o n e d e n s i t y of s t a t e s a t 3086 cm-l is c a l c u l a t e d t o be 1 . 3 ~ 1 0 - 3 ( c m - ~ ) - I . The r e s u l t s s u g g e s t t h a t t h e G a u s s i a n form f o r p u s e d i n s i m u l a t i o n s

[ 7 ]

f a l l s o f f t o o r a p i d l y . I t is a l s o p o s s i b l e t h a t t h e combined d e n s i t y of s t a t e s of bending and l l b r a t i o n a l modes s h o u l d b e used. I f o u r h y p o t h e s i s is c o r r e c t , t h e OH s t r e t c h i n g v i b r a t i o n a l l i f e t i m e i n i c e I i s 0.6 ps.

The w i d t h of t h e v i b r o n band is e s t i m a t e d from 2(vOH-vc) where

VOH

i s t h e f r e q u e n c y of t h e decoupled o s c i l l a t o r and vc t h a t o f t h e in-phase c o l l e c t i v e mode.

For i c e s I , 11, I11 and V , H,O(as) and l i q u i d w a t e r t h e v i b r o n bandwidth s p a n s a

r a n g e of 300-400 cm-1. The s i m i l a r i t y o f t h e s e w i d t h s s u g g e s t s t h a t t h e magnitude

of t h e r e s o n a n c e c o u p l i n g between OH o s c i l l a t o r s is t h e same i n a l l t h e s e

t e t r a h e d r a l networks. T h i s is confirmed by a n a l y s i s of t h e s p e c t r a of p r o t o n

o r d e r e d i c e s I1 and I X , which y i e l d s a c o u p l i n g f o r c e c o n s t a n t [17] i n agreement

w i t h t h a t r e q u i r e d t o model t h e i c e

I

spectrum. While t h e v i b r o n bandwidth of t h e

n e t w o r k s w i t h s e v e r e l y d i s t o r t e d hydrogen bonds i s s l i g h t l y l e s s t h a n t h a t of i c e I ,

(4)

i t is c l e a r t h a t t h e c o l l e c t i v e behaviour i s not s e n s i t i v e t o t h e network topology f o r t e t r a h e d r a l networks, a conclusion borne o u t i n c a l c u l a t i o n s of t h e spectrum of H,O(as)[18,191.

The e x t e n t of t h e c o l l e c t i v e mode c h a r a c t e r is d e f i n e d by t h e r e l a t i v e c o n t r i b u t i o n of t h e in-phase c o l l e c t i v e mode t o t h e I g Raman spectrum. We have devised C201 a s p e c t r a l s t r i p p i n g procedure f o r e x t r a c t i o n of t h i s q u a n t i t y i n c a s e s where in-phase c o l l e c t i v e mode is not well r e s o l v e d , such a s i n l i q u i d water ( F i g u r e 1 ) . The p o l a r i z a t i o n r a t i o Ill /I& f o r t h e remainder of t h e spectrum does not vary s i g n i f i c a n t l y with frequency, and is very c l o s e t o t h a t of uncoupled o s c i l l a t o r s . Presumably t h i s a r i s e s from c a n c e l l a t i o n s of c o n t r i b u t i o n s due t o t h e complex phase r e l a t i o n s h i p s among t h e OH o s c i l l a t o r s i n t h e s e modes. The c o l l e c t i v e spectrum Ic(w) is t h u s d e f i n e d by I n (w) - a-lIL(w) where a is an a d j u s t a b l e parameter determined by f i t t i n g t h e high frequency shoulder t o minimize Ic(w) i n t h i s region.

The value of a is t y p i c a l l y O.2li0.02 C201. The a r e a , C , of Ic(w) r e l a t i v e t o 111 (a) is taken t o be a measure of t h e c o l l e c t i v e c h a r a c t e r . S p e c t r a of i c e I a t a wide range of temperatures were t h u s analysed [20] and t h e value of Cite was found t o be 0.54f0.03 with no temperature dependence. This i m p l i e s t h a t t h e thermal d i s o r d e r , which l e a d s t o an i n c r e a s e i n t h e l i n e w i d t h of t h e in-phase c o l l e c t i v e mode with i n c r e a s i n g temperature [9], does not reduce t h e e x t e n t of t h e c o l l e c t i v e motion, b u t merely c a u s e s a s c a t t e r i n g of t h e vibron modes by i n t e r a c t i o n with t h e l a t t i c e phonons. The value of C f o r H,O(as) is t h e same a s t h a t of i c e I C201 showing t h a t t h e c o l l e c t i v e c h a r a c t e r is not a f f e c t e d by t h e t o p o l o g i c a l d i s o r d e r of H,O(as), nor by a modest i n c r e a s e i n t h e s h o r t range d i s o r d e r [ 9 ] .

The c o l l e c t i v e c h a r a c t e r of t h e motion can be s t r o n g l y p e r t u r b e d by t h e i n t r o d u c t i o n of d e f e c t s which cause t h e OH o s c i l l a t o r f r e q u e n c i e s t o l i e o u t s i d e t h e v i b r o n bandwidth. The upper l i m i t t o t h e vibron band is about 3500 cm-l f o r a l l t h e t e t r a h e d r a l networks, while t h e lower l i m i t is about 3100 cm-l. Broken hydrogen bonds have s t r e t c h i n g f r e q u e n c i e s above 3500 cm-l and because they l i e o u t s i d e t h e v i b r o n band they a c t a s d e f e c t s with r e s p e c t t o t h e c o l l e c t i v e s t r e t c h i n g motions.

I n i c e I t h e c o n c e n t r a t i o n of broken bonds is t o o small t o i n f l u e n c e t h e c o l l e c t i v e motions. However t h e e f f e c t of d e u t e r a t i o n is t o introduce mass d e f e c t s which v i b r a t e near 2400 em-'. The i n t e n s i t y of t h e c o l l e c t i v e band t h u s d e c r e a s e s with

i n c r e a s i n g OD mole f r a c t i o n POD. and t h e r e s u l t s ~ 2 1 1 can be f i t t e d by ~ ~ ~ ~ ( 1 - p ~ ~ ) ~ . This i s expected because t h e c o l l e c t i v e motions a r i s e from a coupling of n e a r e s t

neighbour OH o s c i l l a t o r s . I f C f o r a l l d e f e c t f r e e t e t r a h e d r a l networks is 0.54 then we propose t h a t f o r networks with i n t r i n s i c d e f e c t s of mole f r a c t i o n P I , t h a t C

=

~ ~ ~ ~ ( 1 - p ~ ) ~ . Thus a measurenent of C can be used t o e s t i m a t e PI. I n t h e absence of mass d e f e c t s , we can assume t h a t i n most c a s e s t h e d e f e c t s w i l l a r i s e from broken hydrogen bonds with OH s t r e t c h i n g f r e q u e n c i e s above 3500 cm-l a s r e q u i r e d by t h e magnitude of t h e vibron band. Thus

p~

can be broadly i n t e r p r e t e d a s t h e mole f r a c t i o n of broken hydrogen bonds. This i s t h e concept used t o analyse t h e d e f e c t i v e network of l i q u i d water i n t h e next s e c t i o n . A l t e r n a t i v e l y , when o t h e r molecules a r e added, i t is p o s s i b l e t h a t a new network topology w i l l a r i s e , c h a r a c t e r i z e d by water molecules with a lower c o o r d i n a t i o n number, hence a lower v a l u e of C.

3. Liquid Water - A Random Network with Defects

I t has been proposed t h a t l i q u i d water can be regarded a s a continuous random network [31. However, t h e l i f e t i m e of a c o n f i g u r a t i o n of water molecules is small and t h e random network must be d e f e c t i v e . A s water i s cooled, t h e d e f e c t d e n s i t y d e c r e a s e s and t h e behaviour of t h e thermodynamic and t r a n s p o r t p r o p e r t i e s of water e x h i b i t i n c r e a s i n g l y anomalous behaviour [22,23] s u g g e s t i n g approach towards a thermodynamic s i n g u l a r i t y , near TS - - 4 5 ' ~ . A s water is cooled a t 1 atm towards Ts t h e r e a r e i n c r e a s i n g f l u c t u a t i o n s between c o n f i g u r a t i o n s of water molecules with s i m i l a r e n e r g i e s but s i g n i f i c a n t l y d i f f e r e n t d e n s i t i e s . The w e l l known anomalous p r o p e r t i e s of water i n t h e normal l i q u i d regime stem from a r e s i d u e of t h e behaviour e x h i b i t e d i n t h e supercooled region. The s t r u c t u r a l o r i g i n of t h e behaviour Of l i q u i d water remains t h e c e n t r e of much debate.

The Raman s p e c t r a of l i q u i d water a t 1 atm were o b t a i n e d i n t h e range - 2 8 ' ~ t o

9 0 ° c , and v a l u e s of

C

were o b t a i n e d 1201 using t h e procedures d e s c r i b e d i n S e c t i o n

(5)

C1-56 JOURNAL DE PHYSIQUE

2 , and t h e r e s u l t s a r e p l o t t e d i n Figure 2. The most important f e a t u r e of t h e r e s u l t s is t h a t they l i n e a r l y e x t r a p o l a t e t o t h e value of i c e I and H,O(as) near t h e temperature Ts of t h e purported thermodynamic s i n g u l a r i t y . From t h e a n a l y s i s of S e c t i o n 2 we would conclude t h a t

p~

+O a s T+Ts. I t should be noted t h a t homogeneous n u c l e a t i o n t o i c e I p r e v e n t s experiments i n t h e v i c i n i t y of T s and t h e range of e x t r a p o l a t i o n is l a r g e . Furthermore, i t should not be construed t h a t t h e c o n f i g u r a t i o n of water is tending t o i c e I l i k e s t r u c t u r e s ( 6 membered r i n g s ) a s T+T, but r a t h e r t o a low d e n s i t y continuous t e t r a h e d r a l network.

The d a t a obtained a t 1 atm do not r e v e a l t h e f u l l complexity of l i q u i d water.

S t u d i e s a t constant d e n s i t y a r e more revealing. Raman s p e c t r a of water under t e n s i o n i n s e a l e d c a p i l l a r i e s were obtained and analysed. I n t h i s c a s e t h e d e n s i t y of water is approximately c o n s t a n t , 18.2 cm3mol-l below 3 0 ' ~ . The values of C obtained i n t h i s study ( a c o l l a b o r a t i v e p r o j e c t with D r . R. Speedy) a r e a l s o p l o t t e d i n Figure 2 f o r a sample with an OD mole f r a c t i o n of 0.18. A t temperatures below 20°C t h e value of C, hence

p ~ ,

does not change s i g n i f i c a n t l y . This i n d i c a t e s t h a t t h e d e f e c t s a r e s t r o n g l y coupled t o t h e d e n s i t y , i n s o f a r a s t h e c o n f i g u r a t i o n a l composition of t h e l i q u i d is temperature independent under c o n d i t i o n s of constant volume. The d a t a of Figure 2 emphasize t h e importance of performing s t u d i e s a t approximately c o n s t a n t volume conditions. Water under tension (e.g. -210 bar a t 9 . 1 2 ' ~ f o r t h e sample i n Figure

2 )

and i n t h e supercooled region e x h i b i t s an a m p l i f i c a t i o n of t h e anomalous p r o p e r t i e s of water t o such an e x t e n t t h a t they a r e r e f l e c t e d

by

observable changes i n spectroscopic p r o p e r t i e s i n t h e

OH

s t r e t c h i n g region. Further s t u d i e s a r e r e q u i r e d t o v e r i f y t h e s e r e s u l t s .

1

1

I

0.0

I I

-40 -20 0

20

40

60

80

100 1 .O 2 0 3.0

TEMPERATURE°C

td

(molarity of clathrate)

2: Collective band intensity f o r H 0 a t 1 atm

(a),

and Fig. 3: Collective band i n t e n s i t y o f (C4H9) 4NOH

b

D20/H20

from

capillary ( 0 ) corfected for OD content

(el.

solutions at 30°C.

4.

Chemical d e f e c t s i n Water Networks - H,O,/H,O S o l u t i o n s

The p r o p e r t i e s of aqueous s o l u t i o n s a r e extremely important. I f pure water is t o be viewed a s a d e t e c t i v e random network [3], then one of t h e primary q u e s t i o n s concerning aqueous s o l u t i o n s r e l a t e s t o t h e e f f e c t of s o l u t e s on t h e water s t r u c t u r e . There can be no s i n g l e answer t o t h i s question because of t h e wide v a r i e t y of behaviour e x h i b i t e d and o f t e n c l a s s i f i e d a s s t r u c t u r e I1making" o r

"breaking". The s i m p l e s t c l a s s of s o l u t e s a r e those which can themselves be incorporated i n t o t h e network. Such an example is H,O,. This molecule adds an excess of two l o n e p a i r s f o r each peroxide molecule, such t h a t each OH 0 S ~ i l l a t 0 r should, i n p r i n c i p l e , be unperturbed i n H20-H202 networks because strong 0-H...O bonds can always be formed. The uncoupled o s c i l l a t o r spectrum of mole f r a c t i o n x=

0.56 of H,O, i n water shows a d i s t r i b u t i o n of OH s t r e t c h i n g f r e q u e n c i e s which is not

d i s s i m i l a r t o t h a t of pure water and, although t h e d e t a i l e d i n t e r p r e t a t i o n is not

c l e a r , t h e s p e c t r a i n d i c a t e t h a t t h e hydrogen bonds i n t h e s e mixtures a r e s i m i l a r ' i n

s t r e n g t h t o t h o s e i n l i q u i d water. The Raman s p e c t r a of H,O,/H,O mixtures over a

wide range of compositions and temperatures have been obtained and t h e small

amplitude c o l l e c t i v e proton motions a r e analysed t o y i e l d values of C,(T). In a l l

(6)

c a s e s Cx(T) was reduced from t h a t of H20 i n d i c a t i n g a breakdown of t h e c o l l e c t i v e c h a r a c t e r a t t r i b u t e d t o s t r u c t u r e breaking.

Two regimes of behaviour were observed a s a f u n c t i o n of mole f r a c t i o n x of H,O,.

For x<0.08, t h e d a t a g e n e r a l l y follows a (1-mx) behaviour with m= 2-3 i n d i c a t i n g t h a t each H,O, c r e a t e s approximately two t o t h r e e d e f e c t s i n t h e network of 0-H o s c i l l a t o r s . For higher values of x, t h e dependence tends t o a weaker (I-x) dependence and we i n t e r p r e t t h i s i n terms of network r e c o n s t r u c t i o n . S o l i d s o l u t i o n s of H,O/H,O, e x h i b i t a complex phase diagram and t h e c r y s t a l s t r u c t u r e s of H2O,:2H,O and H,O, a r e c h a r a c t e r i z e d by networks which have a lower coordination than the t e t r a h e d r a l networks of pure H,O. The number of n e a r e s t neighbour o s c i l l a t o r s a r e reduced, and i t follows t h a t t h e vibron bandwidth w i l l decrease.

Furthermore, f o r an approximately i n v a r i a n t d i s t r i b u t i o n of o s c i l l a t o r f r e q u e n c i e s a p r o p o r t i o n a l l y l a r g e r f r a c t i o n w i l l f a l l o u t s i d e t h e vibron bandwidth thereby reducing C. We suggest t h a t t h e decrease of C a t high mole f r a c t i o n s of H,O, is a s s o c i a t e d with r e c o n s t r u c t i o n of t h e network topology t o t h a t of a network of lower c o n n e c t i v i t y . I t is i n t e r e s t i n g t o note t h a t H,O, a l s o gradually suppresses t h e d e n s i t y f l u c t u a t i o n s of water

[25]

over t h e range i n which we observe d e f e c t behaviour (x<0.1) and is completely quenched i n t h e r e c o n s t r u c t i o n regime.

5. S e m i c l a t h r a t e s - A model f o r Hydrophobic Hydration Networks

C l a t h r a t e s t r u c t u r e s a r e c h a r a c t e r i z e d by a continuous t e t r a h e d r a l water network 1261 a s i n t h e i c e s , and e x h i b i t c o l l e c t i v e small amplitude proton motions s i m i l a r t o t h a t i n i c e I . The s e m i c l a t h r a t e of t e t r a n-butyl ammonium hydroxide [27] has been s t u d i e d using t h e techniques described above. We have s t u d i e d t h e c r y s t a l , t h e l i q u i d , t h e supercooled l i q u i d and i t s aqueous s o l u t i o n s . This type of c l a t h r a t e was chosen f o r study because i t is a convenient model f o r understanding hydrophobic hydration, which is of considerable importance f o r understanding b i o l o g i c a l s t r u c t u r e s . The s e m i c l a t h r a t e c r y s t a l has a broad d i s t r i b u t i o n of hydrogen bond l e n g t h s , and t h u s e x h i b i t s a broad d i s t r i b u t i o n of decoupled OH s t r e t c h i n g f r e q u e n c i e s . However t h e in-phase c o l l e c t i v e band is well e s t a b l i s h e d and has a value of C=0.48. This is c l o s e t o t h e value expected f o r a d e f e c t f r e e t e t r a h e d r a l network, perhaps with a d e f e c t d e n s i t y of 0.06. Upon melting t h e r e is a l a r g e i n c r e a s e i n t h e decoupled o s c i l l a t o r spectrum above 3500 cm-l corresponding t o broken bonds, and C i n t h e coupled spectrum is reduced t o 0.27, suggesting a d e f e c t p r o b a b i l i t y of 0.30. In t h i s c a s e t h e f l u i d p r o p e r t i e s a r i s e from extensive breaking of t h e hydrogen bonds; indeed, more s o than i n t h e melting of i c e . However, upon d i l u t i o n with H,O, C r i s e s again t o a value l a r g e r than t h a t of bulk water a t t h e same temperature, a s shown i n Figure 3. We a t t r i b u t e t h i s behaviour t o network r e s t a b i l i z a t i o n i n which each s o l u t e molecule e s t a b l i s h e s i t s own ordered hydration s h e l l , perhaps with a s e p a r a t e d l a y e r of water molecules between t h e hydration s h e l l s of neighbouring s o l u t e s , i n comparison t o t h e shared hydrated water molecules of t h e parent c l a t h r a t e . The d i l u t i o n d a t a provide information on network r e c o n s t r u c t i o n during hydrophobic aggregation.

6. Alcohols and E l e c t r o l y t e s

Water-alcohol s o l u t i o n s e x h i b i t a wide v a r i e t y of thermodynamic [281 and t r a n s p o r t behaviour which is poorly understood i n terms of s t r u c t u r a l p r o p e r t i e s . We have s t u d i e d aqueous s o l u t i o n s of e t h a n o l , isopropanol and t-butanol with a view t o determining t h e e f f e c t of t h e s e molecules on t h e l i q u i d water random network s t r u c t u r e . The s e r i e s was chosen because i t r e p r e s e n t s a progressive incre.ase i n t h e s i z e of t h e hydrophobic alkane region. The n e a t a l c o h o l s e x h i b i t very small OH s t r e t c h i n g c o l l e c t i v e c h a r a c t e r because t h e number of n e a r e s t neighbour OH o s c i l l a t o r s is l i m i t e d and t h e vibron bandwidth is l e s s than t h e d i s o r d e r .

Measurements of C ( x , t ) show t h a t f o r x<0.16 ethanol and i-propanol a r e

accommodated i n t o t h e network with i n s i g n i f i c a n t change i n t h e c o l l e c t i v e c h a r a c t e r .

This implies t h a t t h e s e a l c o h o l s n e i t h e r introduce broken hydrogen bond d e f e c t s , nor

d e s t r o y t h e t e t r a h e d r a l c h a r a c t e r of t h e network. On t h e o t h e r hand, t h e t-butanol

i n c r e a s e s t h e value of C r e l a t i v e t o t h a t of pure water, and t h e l a r g e s t value of C

i s s i m i l a r t o t h a t of t h e comparable s e m i r c l a t h r a t e discussed i n t h e previous

s e c t i o n . This suggests t h a t t h e s o l u t i o n p r o p e r t i e s of t-butyl alcohol 1291 a r i s e

(7)

Cl-58 JOURNAL DE PHYSIQUE

f r o m f o r m a t i o n o f c l a t h r a t e - l i k e c a g e s .

F i n a l l y , s t u d i e s h a v e b e e n c o m p l e t e d o n L i C l e l e c t r o l y t e s o l u t i o n s . T h e s e s o l u t i o n s q u e n c h t h e a n o m a l o u s p r o p e r t i e s o f w a t e r [ 3 0 , 3 1 ] a n d ,

a s

f o r H,O,/H,O m i x t u r e s ,

we

h a v e o b s e r v e d

a

d e c r e a s e

i n

t h e c o l l e c t i v e b a n d c h a r a c t e r . T h i s

is

a t t r i b u t e d t o b r e a k i n g u p

of

t h e t e t r a h e d r a l s t r u c t u r e o f t h e

water

n e t w o r k .

7 .

C o n c l u s i o n s

I n

t h i s p a p e r

we

h a v e r e v i e w e d t h e b a s i c c o n c e p t s w h i c h e x p l a i n t h e o b s e r v a t i o n o f

a

s t r o n g l y p o l a r i z e d b a n d i n t h e

111

Raman s p e c t r u m

of water

n e t w o r k s i n

terms

o f

an

i n - p h a s e c o l l e c t i v e OH s t r e t c h i n g s p e c t r u m .

We

h a v e d e m o n s t r a t e d t h a t t h i s r e g i o n o f

t h e

s p e c t r u m c a n b e u s e d

as a

p r o b e o f t h e n e t w o r k s t r u c t u r e b y a p p l i c a t i o n

t o a

v a r i e t y

of

a q u e o u s s o l u t i o n s . T h e i n t r o d u c t i o n o f

s o l u t e s

may c h a n g e t h e c o l l e c t i v e c h a r a c t e r d e p e n d i n g

on

w h e t h e r

i t

p r o m o t e s t h e n e t w o r k s t r u c t u r e , b y r e d u c i n g t h e n e t w o r k d e f e c t p r o b a b i l i t y ,

o r

b r e a k s t h e n e t w o r k s t r u c t u r e . T h e

l a t t e r

may

occur

e i t h e r by t h e i n t r o d u c t i o n

of

e x t r a d e f e c t s

i n

t h e

form of

b r o k e n h y d r o g e n b o n d s

or

b y r e c o n s t r u c t i o n o f t h e n e t w o r k

i n t o

o n e o f

lower

c o n n e c t i v i t y t h a n t h e t e t r a h e d r a l n e t w o r k s o f p u r e w a t e r s y s t e m s . T h i s w o r k w a s s u p p o r t e d b y t h e A u s t r a l i a n R e s e a r c h G r a n t s S c h e m e . JLG a c k n o w l e d g e s t h e a w a r d of

a

Commonwealth P o s t g r a d u a t e S c h o l a r s h i p .

R e f e r e n c e s

[ 11

FALiK,

M. ,

KNOP, 0.

, Water, A Comprekensive T r e a t i s e ,

V o l . 2 , F . F r a n k s e d . ( P l e n u m P r e s s , N.Y. 1 9 7 3 ) C h a p t e r 2

[

2 1 wHALLEY, E . ,

Dev. Appl. Spee. 2

( 1 9 6 8 ) 2 7 7 - 2 8 1 .

[

3 1 SCEATS, M.G., RICE, S.A.,

Water, A Comprekensive T r e a t i s e ,

V o l . 7 , F . F r a n k s e d ( P l e n u m P r e s s , N.Y. 1 9 8 3 ) C h a p t e r 2

[

4 1 FLETCHER, N.H.,

The Chemicaz Physics of Ice

( C a m b r i d g e U n i v . P r e s s , C a m b r i d g e ) 1 9 7 0 .

[ 51

HAAS, C . , HORNIG, D.F.,

J . Ckem. Pkys. 32

( 1 9 6 0 ) 1 7 6 3 1 1 7 6 9 .

[

6 1 McGRAW, R., MADDEN, W.G., BERGREN, M.S., RICE, S.A., SCEATS, M.G.

,

J .

&em.

Phys. 69

( 1 9 7 8 ) 3 4 8 3 - 3 4 9 6 .

L

7 1 BERGREN, M . , RICE, S.A.,

J. Ckem. Pkys. 77

( 1 9 8 2 ) 583-602.

[ 81

RICE,

s

. A . , BERGREN,

M.s.,

BELCH, A.c., NIELSON, G . ,

J . Pkys. Conem.

8 7 ( 1 9 8 3 ) 4 2 9 5 - 4 3 0 8 .

L

9 1 S I V A ~ ? & A R , T.C., RICE, S.A., SCEATS, M.G.,

J. Ckem. Pkys. 69

( 1 9 7 3 ) 3468-3476.

[lo]

HOBBS, P . V . ,

I c e Physics

( O x f o r d U n i v e r s i t y P r e s s , 1 9 7 4 )

[ll] SCEATS, M.G., STAVOLA, M., RICE, S.A., J .

&em. PkyS. 11

( 1 9 7 9 ) 983-990.

[ l 2 ] RITZHAUPT, G. a n d DEVLIN, J . P . ,

J. &em. Pkys.

( 1 9 7 7 ) 4 7 7 9 - 4 7 8 0 .

[13] RITZHAUPT, G., THORNTON, C . , DEVLIN, J . P . ,

Ckem. Pkys. L e t t . 59

( 1 9 7 9 ) 4 2 0 - 4 2 2 . [ 1 4 ] DEVLIN, J . P . , WOOLDRIDGE, P . J . , RITZHAUPT, G . ,

&em. Pkys. L e t t .

( i n p r e s s ) [15] MILLS, M.F., REIMERS, J . R . , WATTS, R.O.,

M O ~ . Pkys. 57

( 1 9 8 6 ) 777-791.

[16] TAYLOR, M., WHALLEY, E . J . ,

&em. Phys. 40

( 1 9 6 4 ) 1 6 6 0 - 1 6 6 4 . [17] BERTIE, J . E . , FRANCIS, B . F . ,

J. Ckem. Pkys. 72

( 1 9 8 0 ) 2 2 1 3 - 2 2 2 1 .

[18]

MADDEN, W.G., BERGREN, M.S., McGRAW, R . , RICE, S.A., SCEATS, M.G.,

J .

a e m . Phys. 69

( 1 9 7 8 ) 3 4 9 7 - 3 5 0 1 .

[19] NEILSON, G., RICE, S . A . , J .

&em. Pkys.78

( 1 9 8 3 ) 4 8 2 4 - 4 8 2 7 .

[20] GREEN, J . L . , LACEY, A.R., SCEATS, M.G., J .

Pkys. &ern. 90

( 1 9 8 6 ) 3 9 5 8 - 3 9 6 4 . 1 2 1 1 GREEN, J . L . , LACEY, A.R., SCEATS, M.G.,

&ern. Phys. L e t t . 130

( 1 9 8 6 ) 67-71.

[22] SPEEDY, R . J . , ANGELL, C.A.,

J . &em. Pkys. 65

( 1 9 7 8 ) 8 5 1 - 8 5 8 .

[23] ANGELL, C.A.,

Water, A Comprehensive T r e a t i s e ,

V o l . 7 , F . F r a n k s e d . ( P l e n u m P r e s s , N.Y., 1 9 8 3 ) C h a p t e r

1.

[24] BANSIL, R., WIAFE-AKENTEN, J . , TAAFFE, J . L . , J .

&ern. Pkys. 76

( 1 9 8 2 ) 2 2 2 1 - 2 2 2 6 . [ 2 5 ] OGUNI, M., ANGELL, C.A., J .

&em. Pkys. 73

( 1 9 8 0 ) 1 9 4 8 - 1 9 5 4 .

[ 2 6 ] DAVIDSON, D.W.

, Water, A Comprekensive T r e a t i s e ,

V o l . 2 , F . F r a n k s e d . ( P l e n u m P r e s s , N.Y., 1 9 7 3 ) C h a p t e r 3.

[27] McMULLAN, R.K., BONAMICO, M., JEFFREY, G.A., J .

Chem. Pkys. 39

( 1 9 6 3 ) 3 2 9 5 - 3 3 1 0 . [28] FRANKS, F . a n d REID, D.s.,

Water, A Comprehensive ~ r e a t i s e ,

V o l . 2 , F . F r a n k s ,

ed. ( P l e n u m P r e s s , N.Y., 1 9 7 3 ) C h a p t e r 5 .

[ 2 9 ] BENDER, T.M., PECORA, R., J .

Pkys. Chem.

9 0 ( 1 9 8 6 ) 1 7 0 0 - 1 7 0 6 .

[30] ANGELL,

c.A.,

SARE, J.E., DONNELLA, J., M ~ A R L A N E ,

D.R.,

J .

Pkys. hem.

85

( 1 9 8 1 ) 1 4 6 1 - 1 4 6 4 .

[31]

ANGEE,

C.A.,

Nature

( L o n d o n ) 2 9 6 ( 1 9 8 2 ) 1 3 8 - 1 4 1 .

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to