• Aucun résultat trouvé

KINK PAIR FORMATION MECHANISM (KPF) STUDIED IN ALUMINIUM BY CYCLE BIAS STRESS EXPERIMENTS

N/A
N/A
Protected

Academic year: 2021

Partager "KINK PAIR FORMATION MECHANISM (KPF) STUDIED IN ALUMINIUM BY CYCLE BIAS STRESS EXPERIMENTS"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: jpa-00225457

https://hal.archives-ouvertes.fr/jpa-00225457

Submitted on 1 Jan 1985

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

KINK PAIR FORMATION MECHANISM (KPF) STUDIED IN ALUMINIUM BY CYCLE BIAS

STRESS EXPERIMENTS

M. Bujard, G. Gremaud, J. Baur, W. Benoit

To cite this version:

M. Bujard, G. Gremaud, J. Baur, W. Benoit. KINK PAIR FORMATION MECHANISM (KPF)

STUDIED IN ALUMINIUM BY CYCLE BIAS STRESS EXPERIMENTS. Journal de Physique Col-

loques, 1985, 46 (C10), pp.C10-325-C10-328. �10.1051/jphyscol:19851072�. �jpa-00225457�

(2)

JOURNAL DE PHYSIQUE

Colloque C10, supplbment au n012, Tome 46, dbcembre 1985 page

C10-325

KINK PAIR FORMATION MECHANISM (KPF) STUDIED IN ALUMINIUM B Y C Y C L L C BIAS STRESS EXPERIMENTS

M . BUJARD, G . GREMAUD, J . BAUR AND W . BENOIT

Institut de G6nie Atomique, Institut Fed6ral Suisse de

Technologic,

PHB-Ecublens,

CH-1015

Lausanne, Switzerland

Resume : La t e c h n i q u e d e c o u p l a g e e n t r e une c o n t r a i n t e u l t r a s o n o r e e t u n e c o n t r a i n t e b a s s e f r k q u e n c e a k t 6 a p p l i q u b e 5 l ' b t u d e d e l a r e l a x a t i o n d e B o r d o n i d a n s l ' a l u m i n i u m . L e s s i g n a t u r e s m e s u r g e s s o n t p a r f a i t e m e n t e x p l i q u e e s p a r l e m o d s l e d e l a f o r m a t i o n d e p a i r e s d e d e c r o c h e m e n t s dCvelopp6 p a r Esnouf e t S t a d e l m a n n

[ I ,

21.

A b s t r a c t : The c o u p l i n g t e c h n i q u e between u l t r a s o u n d s a n d a low-frequency a p p l i e d b i a s stress i s u s e d f o r t h e s t u d y o f t h e B o r d o n i r e l a x a t i o n i n aluminium. The m e a s u r e d s i g n a t u r e s a r e p e r f e c t l y e x p l a i n e d by t h e k i n k p a i r f o r m a t i o n model d e v e l o p p e d by E s n o u f a n d S t a d e l m a n n [ I , 21.

I . INTRODUCTION

The most r e a l i s t i c model f o r t h e i n t e r p r e t a t i o n o f t h e B o r d o n i p e a k i n FCC m e t a l s i s b a s e d o n t h e r m a l l y a c t i v a t e d k i n k p a i r f o r m a t i o n on t h e d i s l o c a t i o n s (KPF mechanism) [ 3 ] . T h i s mechanism i s i l l u s t r a t e d i n f i g . 1 f o r t h e c a s e o f a d i s l o c a t i o n f i r m l y p i n n e d a t two p o i n t s s i t u a t e d i n t h e same P e i e r l s v a l l e y ( I ) . Due t o t h e combined a c t i o n o f a stress a p p l i e d o n t h e d i s l o c a t i o n a n d t h e r m a l f l u c t u a t i o n s , a b u l g e a p p e a r s o n t h e d i s l o c a t i o n ( 2 ) . I f t h e c r i t i c a l c o n f i g u r a t i o n o f t h e s a d d l e p o i n t i s r e a c h e d , t h e two k i n k s b u i l d i n g t h e b u l g e w i l l s p r e a d o u t from e a c h o t h e r , a l l o w i n g t h e d i s l o c a t i o n t o p a s s from a P e i e r l s v a l l e y t o t h e n e x t o n e ( 3 ) .

But t h e i n t e r p r e t a t i o n o f t h e B o r d o n i r e l a x a t i o n by t h e KPF mechanism is n o t d e f i n i t i v e l y e s t a b l i s h e d , b e c a u s e a l l t h e r m a l l y a c t i v a t e d mechanisms g i v e r i s e t o i n t e r n a l f r i c t i o n p e a k s ( I F ) o f s i m i l a r s h a p e . To c h e c k t h i s i n t e r p r e t a t i o n , we h a v e p l a n n e d t o s t u d y t h e B o r d o n i r e l a x a t i o n by u s i n g a c o u p l i n g t e c h n i q u e between a h i g h f r e q u e n c y s t r e s s o f low a m p l i t u d e ( u l t r a s o u n d o f 8.5 MHz) a n d a s l o w l y v a r y i n g b i a s s t r e s s o f h i g h a m p l i t u d e ( c o m p r e s s i v e s t r e s s , a m p l i t u d e t y p i c a l l y " 1 MPa and f

=

0.02 Hz). The r e a d e r is r e f e r r e d t o t h e p a p e r by G. Gremaud ( t h i s c o n f e r e n c e [ 4 ] ) f o r a d e s c r i p t i o n o f t h i s t e c h n i q u e and o f t h e k i n d o f r e s u l t s o b t a i n e d , which a r e c a l l e d " s i g n a t u r e s " .

F i g . 1 : KPF mechanism i l l u s t r a t i o n .

1 ) I n i t i a l c o n f i g u r a t i o n o f t h e d i s l o c a t i o n .

2 ) C r i t i c a l c o n f i g u r a t i o n c o r r e s p o n d i n g t o t h e s a d d l e p o i n t . 3 ) F i n a l c o n f i g u r a t i o n .

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:19851072

(3)

(20-326 JOURNAL

DE

PHYSIQUE

11. CALCULATION OF THE SIGNATURE OF THE KPF MECHANISM

To o b t a i n , f o r a g i v e n temperature T, t h e t h e o r e t i c a l s i g n a t u r e a(a) o f t h e KPF mechanism, we need two models. The f i r s t one d e s c r i b e s t h e u l t r a s o n i c a t t e n u a t i o n due t o t h e d i s l o c a t i o n s on which k i n k s have formed: a

=

a {N, a,

t } ,

where N i s t h e number o f k i n k s , a t h e s t r e s s a c t i n g on t h e d i s l o c a t i o n and t t h e time. The second model d e s c r i b e s t h e i n s t a n t a n e o u s number o f k i n k s p r e s e n t on t h e d i s l o c a t i o n s : N

=

N [ a ( t ) , t,

TI.

Concerning a

=

a {N, a, t } , f i g u r e 2 shows a d i s l o c a t i o n f i r m l y p i n n e d a t two p o i n t s and s u b j e c t e d t o a s t r e s s a. Some k i n k s a r e present. They were c r e a t e d t h r o u g h t h e KPF mechanism d e p i c t e d i n f i g . 1. The shaded areas r e p r e s e n t t h e a r e a swept by t h e k i n k s under t h e a c t i o n o f t h e u l t r a s o n i c s t r e s s uu

.

I f t h e e l a s t i c i n t e r a c t i o n between k i n k s i s neglected, t h e c o n f i g u r a t i o n y(x,a? adopted by t h e d i s l o c a t i o n depends o n l y on t h e l i n e t e n s i o n o f t h e d i s l o c a t i o n and may be computed 151. Since aus

<<

u, t h e area swept by t h e d i s l o c a t i o n , i.e. m a i n l y t h e a r e a swept by t h e k i n k s , may be deduced from a l i m i t e d expansion o f y(x,a) i n a [6]. F o r t h e p r e s e n t t a s k , t h e unique r e s u l t o f i n t e r e s t i s t h a t t h e u l t r a s o n i c a t t e n u a t i o n a i n p r o p o r t i o n a l t o t h e number o f k i n k s N.

Concerning N

=

N [ a ( t ) , t, T], t h e r e s e a r c h o f t h e i n s t a n t a n e o u s number o f k i n k s c r e a t e d on a d i s l o c a t i o n by an harmonic s t r e s s a ( t ) a t a g i v e n temperature T i s i n f a c t t h e roblem o f t h e B o r d o n i ' r e l a x a t i o n observed by I F . Thus, many models e x i s t f o r t h i s

bl.

AS t h e p r e s e n t a m p l i t u d e o f t h e a p p l i e d s t r e s s a i s r e l a t i v e l y l a r g e (- G, where G i s t h e shear modulus), we need a model v a l i d f o r such a h i g h amplitude. Only t h e one developed by Esnouf and Stadelmann [5, 6 1 may be a p p l i e d . I n t h i s model, t h e energy f o r t h e c r e a t i o n o f a k i n k p a i r i s computed f o r each i n s t a n t a n e o u s c o n f i g u r a t i o n o f t h e d i s l o c a t i o n . Only t h e l i n e t e n s i o n o f t h e d i s l o c a t i o n i s t a k e n i n t o acount; t h e e l a s t i c i n t e r a c t i o n between k i n k s i s neglected. Once t h e s a d d l e p o i n t i s reached, t h e two k i n k s m i g r a t e w i t h o u t delay t o t h e e x t r e m i t i e s o f t h e d i s l o c a t i o n , For t h e case where no i n t e r n a l s t r e s s e s a r e present, f i g . 3a shows t h e e v o l u t i o n o f t h e number o f k i n k s N as a f u n c t i o n o f t h e a p p l i e d s t r e s s a f o r temperatures T i

<

Tg

<

T j

<

TI,, as deduced by Esnouf and Stadelmann. A t t h e low temperature TI, t h e t h e r m a l a c t i v a t i o n i s weak, so t h e KPF mechanism cannot act, and t h e r e i s no e v o l u t i o n o f N. A t t h e h i g h temperature TI+, t h e t h e r m a l a c t i v a t i o n i s s o l a r g e t h a t N corresponds always t o t h e number o f k i n k s a t mechanical e q u i l i b r i u m . A t t h e i n t e r m e d i a t e temperatures Tg and T 3 , k i n k s may be created, b u t t h e e q u i l i b r i u m i s never reached; t h e curves N(Q) have a l a r g e h y s t e r e s i s .

The t h e o r e t i c a l e v o l u t i o n (due t o t h e KPF mechanism) o f t h e I F a t v a r i o u s temperatures i s r e a d i l y o b t a i n e d from t h e curves ~ ( o ) ( f i g . 3a). Indeed, i t i s easy from these curves t o deduce t h e curves ~,,(a) ( f i g . 3b) d e p i c t i n g t h e a n e l a s t i c deformation can versus t h e s t r e s s o, t h e enclosed area o f which i s p r o p o r t i o n a l t o t h e mechanical energy l o s s i n t h e ,sample. Thus, p l o t t i n g t h e s e areas computed f o r each temperature versus t h e temperature, we o b t a i n t h e graph o f t h e f i g . 3c.

T h i s graph shows a peak, which i s t h o u g h t by Esnouf and Stadelmann t o correspond t o t h e B o r d o n i peak.

Fig. 2 : I l l u s t r a t i o n o f a d i s l o c a t i o n s u b j e c t e d t o a s t r e s s a and h a v i n g some k i n k s c r e a t e d t h r o u g h t h e KPF mechanism. The shaded areas r e p r e s e n t t h e areas swept o u t by t h e k i n k s due t o t h e u l t r a s o n i c s t r e s s .

(4)

Fig. 3 : T h e o r e t i c a k d e s c r i p t i o n o f t h e I F behavior ( c ) and o f t h e s i g n a t u r e s ( d ) i n presence of t h e k i n k p a i r f o r m a t i o n mechanism (see t e x t ) .

The t h e o r e t i c a l shape o f t h e s i g n a t u r e o f t h e KPF mechanism i s a l s o r e a d i l y deduced from t h e graph N(a) ( f i g . 3a). Owing t o t h e l i n e a r r e l a t i o n e s t a b l i s h e d between a and N, we may r e p l a c e N by a on t h e o r d i n a t e o f t h e graph o f f i g . 3a, a c h i e v i n g so t h e graph a ( o ) ( f i g . 3d), which i s t h e t h e o r e t i c a l s i g n a t u r e o f t h e KPF mechanism.

I t i s i n t e r e s t i n g t o n o t e t h a t t h e enclosed area o f t h e s i g n a t u r e s p l o t t e d versus t h e temperature should have a maximum a t a temperature near t h a t o f t h e B o r d o n i peak ( f i g . 3e).

111. MEASUREMENT OF THE SIGNATURE OF THE BORDONI RELAXATION

The s i g n a t u r e s measured i n a sample o f 6N aluminium i n t h e temperature range o f t h e B o r d o n i r e l a x a t i o n a r e shown i n f i g . 4a. The frequency o f t h e harmonic s t r e s s i s 0.02 Hz, t h a t o f t h e u l t r a s o n i c wave i s 8.5 MHz. F i g . 4b shows t h e e v o l u t i o n o f t h e enclosed a r e a o f t h e s i g n a t u r e versus t h e temperature o f measurement. As expected from t h e t h e o r y o f Esnouf and Stadelmann, a peak appears a t a temperature near t h a t o f t h e B o r d o n i peak which would be

-

80 K a t a frequency o f 0.02 Hz. C l e a r l y , t h e shapes o f these s i g n a t u r e s a r e almost t h e same as those o f t h e t h e o r e t i c a l s i g n a t u r e s o f t h e KPF mechanism. Only t h e a m p l i t u d e o f t h e s i g n a t u r e measured a t h i g h temperature (217 K ) i s lower t h a n t h a t expected, b u t t h i s can be e x p l a i n e d by t h e unceasing c r e a t i o n o f p o i n t d e f e c t s due t o t h e h i g h a m p l i t u d e o f t h e a p p l i e d s t r e s s .

I V . DISCUSSION

Our e x p e r i m e n t a l r e s u l t s i n A1 a r e w e l l e x p l a i n e d by t h e model o f t h e KPF mechanism developed by Esnouf and Stadelmann [I 21. T h i s p r o v i d e s a s t r o n g c o n f i r m a t i o n o f t h a t model and o f t h e i d e a o f Seeger (71 t o a t t r i b u t e t h e B o r d o n i peak t o t h e KPF mechanism. I t i s w o r t h w h i l e t o n o t e t h a t t h e u l t r a s o n i c a t t e n u a t i o n model based upon t h e e l a s t i c i n t e r a c t i o n a c t i n g between k i n k s [8, 9, ID] does n o t p r e d i c t t h e

(5)

JOURNAL

DE

PHYSIQUE

Fig. 4 :

a) Measured s i g n a t u r e s i n A1 a t d i f f e r e n t temperature. The frequency o f t h e a p p l i e d s t r e s s i n 0.02 Hz, t h e u l t r a - s o n i c frequency i s 8.5 MHz.

b ) E v o l u t i o n versus t h e tempera- t u r e o f measurement o f t h e enclosed areas o f t h e signa- t u r e s . A t t h e fequency o f 0.02 Hz, t h e B o r d o n i peak would appear a t about 80 K.

I t T

(to

+

100 200

observed shape o f t h e s i g n a t u r e s . T h i s i s i m p o r t a n t because, u n t i l now, a l l u l t r a - s o n i c a t t e n u a t i o n measurements were analysed w i t h such a model when t h e presence o f k i n k s i n t h e sample was t a k e n i n t o account.

ACKNOWLEDGMENTS

The a u t h o r s w i s h t o thank P r o f . M.S. Wechsler f o r c r i t i c a l r e a d i n g o f t h e manus- c r i p t .

REFERENCES

[I]

C. Esnouf, T h e s i s INSA-Lyon (1978) & C. Esnouf, G. F a n t o z z i , ICIFUAS 6 ( U n i v e r s i t y o f Tokyo Press, Tokyo 1977, ed. R.R. H a s i g u t i and N. Mikoshiba), p. 557.

[ 2 ] P. Stadelmann, T h e s i s EPF-Lausanne (1978) & P. Stadelmann, W. B e n o i t , Helv.

Phys. Acta,

2

(1979) 637.

[ 3 ] G. F a n t o z z i , C. Esnouf, W. B e n o i t , I.G. R i t e h i e , Progress i n M a t e r i a l s Science,

11

(1982) 311.

4 G. Gremaud, M. B u j a r d , t h i s conference.

5 U.F. Kocks, A.S. Argon, M.F. Ashby, Progress i n M a t e r i a l s Science,

19,

Thermo-

1 1

- - dynamics and K i n e t i c s o f S l i p (Pergamon Press, Oxford, 1975).

6.

:7 .8: 9

[ l o :

M. Bujard, T h e s i s EPF-Lausanne (19851, t o be pubished.

A. Seeger, P h i l . Mag.,

1

(1956) 651.

T. Suzuki, C. Elbaum,

J.

Appl. Phys.

2,

no 5 (1964) 1539.

G. A l e f e l d ,

J.

Appl. Phys. 36, no 9 (1965) 2642.

M. Bujard, G. Gremaud, E C I F ~ S 4,

J.

Physique,

44

(1984) C9-673.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to