• Aucun résultat trouvé

Sleep,rest-activity fragmentation and structural brain changes related to the ageing process

N/A
N/A
Protected

Academic year: 2021

Partager "Sleep,rest-activity fragmentation and structural brain changes related to the ageing process"

Copied!
9
0
0

Texte intégral

(1)

Sleep,

rest-activity

fragmentation

and

structural

brain

changes

related

to

the

ageing

process

Marion

Baillet

1

and

Christina

Schmidt

1,2

Increasingevidencesuggestsanassociationbetweentypical age-relatedchangesinsleepandbrainstructure.Herewe reviewstudiesexploringtheassociationbetweenhuman histo-pathologicalandinvivoneuroimagingmarkersofbrain structureandsleep-wakeparametersinhealthyolderadults. Evidencefrombothlarge-scaleepidemiologicalstudiesand in-labquantificationofspecificsleepsignaturesarereviewedand advantagesandpitfallshighlighted.Overall,theresultspointto anassociationbetweensleep-wakedisruptionandbothlocal anddiffusechangesinbrainstructure.Theassociativestrength largelyvariesbetweenstudiesandseemstopartiallydepend onthesleeptraitunderinvestigation.Theroleofspecific sleep-wakeregulatingmechanismsonhumancognitiveandbrain fitnessandmoreparticularlytheircausalrelationshipremains tobedisentangled.

Addresses

1GIGA-Institute,CyclotronResearchCenter/InVivoImaging,Sleepand ChronobiologyLab,UniversityofLie`ge,Lie`ge,Belgium

2PsychologyandNeuroscienceofCognitionResearchUnit,Facultyof PsychologyandEducationalSciences,UniversityofLie`ge,Lie`ge, Belgium

Correspondingauthor:Schmidt,Christina(christina.schmidt@uliege.be)

CurrentOpinioninBehavioralSciences2019,33:8–16

ThisreviewcomesfromathemedissueonCognitionandperception –*sleepandcognition*

EditedbyMichaelCheeandPhilippePeigneux

https://doi.org/10.1016/j.cobeha.2019.11.003

2352-1546/ã2019ElsevierLtd.Allrightsreserved.

Introduction

Overthelastfew years,growinginterest isobserved in

understanding theprotective effects of sleep onhealth

andqualityoflife,especiallyinthecontextoftheageing

population.Inhumans,thegrossframeworktosleepand

wakefulness alternation is provided by the interaction

betweenasleep-dependenthomeostaticprocessandthe

circadiantimingsystemresponsibleforendogenous

mod-ulationsof sleep and wakepropensity over the24-hour

day [1]. Those regulating processes act as important

modulators for brain and behavior (e.g. [2]) and their

potential implication in cognitive and brain ageing is

increasinglyconsidered([3–5];seealso[6]for areview).

Here we review studies exploring the association

betweenhuman post-mortemand in vivomagnetic

reso-nance imaging (MRI) markers of brain structure and

sleep-wakeparameters in healthyolder adults.As

sum-marized in Table 1, brain structural measures include

quantificationofgreymatteraswellaswhitematterfrom

cross-sectional and longitudinal designs, using

whole-brainorregionsofinterestapproaches.Wewill

differen-tiate studies investigating sleep-wake parameters

collected through (1) self-reported questionnaires, (2)

polysomnography(sleep architectureand

electrophysio-logicalsignatures),and(3)actimetryrecordings(integrity

of the temporal distribution of rest-activity cycles and

estimatedsleepfragmentationin real-lifesettings).

Association

between

brain

structure

and

self-reported

sleep

Sleep complaints are increasing while getting older

including altered sleep perception, changes in sleep

architecture or increased variability in the timing and

duration of sleep [7]. Sleep questionnaires have been

developedtoprovideageneraloverviewofthesubjective

quality of sleep. While they are often used as a first

diagnostictoolinclinicalpractice,qualitativeassessments

of sleep perception donot inform about specific

sleep-regulating mechanisms and are the consequence of an

amalgamofvariousbiologicalandenvironmentalfactors,

varyingover time.However,they remain costeffective

andeasytouseallowingthereforethegenerationoflarge

andrepresentativesamplesbyadoptingepidemiological

approaches.

Cross-sectionalstudiesdetectedan associationbetween

poorself-reportedsleepqualityandreducedgreymatter

volumeincludingorbitofrontalregions[8],insula[9],and

age-related thalamic and hippocampal atrophy [10]. A

longitudinalapproach reportedthatgreymatteratrophy

of frontal, parietal and temporal, but not hippocampal

regionswaspredictivefor poorsleepqualityat3.5years

follow up [11]. Compared to sleep quality, reports on

sleepdurationhaveproducedmore mixedresults. Most

cross-sectionalstudiesfailedtoobserveasignificant

asso-ciation between self-reported sleep duration and grey

mattervolume [9,12,13]. A longitudinal study reported

that both short (<7hours) and long (>7hours) sleep

durations were associated with higher rates of cortical

(2)

Table1

Crosssectionalandlongitudinalstudiesofsleep-wakestatesandstructuralbrainimaging

Paper Design n,meanageSD Project

Brainmeasures Mainfindings

Sleepquestionnairestudies Stoffers[8] Crosssectional n=65,40.59.7

Netherlandsstudyof depressionandanxiety

GMvolume–VBM8,voxel wiseanalysis

EMAwasassociatedwithlow volumewithintheleftOFC.No associationwithDIS,DMS Branger[9] Crosssectional n=51,64.110.6

Multimodalimagingofearly stageAlzheimer’sdisease

GMvolume–VBM5,voxel wiseanalysis

Highnumberofnocturnal awakeningswasrelatedtolow insularvolume.Noassociationwith sleeplatency,durationandquality Liu[10] Crosssectional n=54young,21.61.6

n=94older,66.25.1 Independentsample

GM,WM,hippocampaland thalamicvolumes–VBM8

Poorsleepqualitywasassociated withage-relatedGM,hippocampal andthalamicatrophy

Sexton[11] Longitudinal3.5years n=147,53.915.5 Cognitionandplasticity throughthelifespan

Corticalvolume–Freesurfer, vertexwiseanalysis Hippocampalvolumes– Freesurfer

Lowvolumewithintherightsuperior frontalcortex(crosssectional)and increasedrateofatrophywithin frontal,temporal,andparietal regions(longitudinal)waspredictive forpoorsleepquality.No associationwithhippocampal volumeoratrophy

Lo[12] Longitudinal2years n=66,67.45.8

Singapore-longitudinalaging brainstudy

GM,WM,hippocampal, ventricles,inferiorand superiorfrontalgyrivolumes –Freesurfer

Shortsleepdurationwasrelatedto increasedventricularexpansion.No associationwithotherbrainvolumes andsleepquality

Lutsey[13] Crosssectional n=312,61.75 Theatherosclerosisriskin communitiesstudy

Frontal,temporal,parietal andoccipitalcortical volume.Hippocampal,and deepgreymattervolume– Freesurfer

WMHvolumeandbrain infarcts

Noassociationbetweensleep durationandMRImeasures

Spira[14] Longitudinal8years n=122,66.68

Baltimorelongitudinalstudy ofaging

Corticalthickness– Freesurfer,vertexwise analysis

Longsleepdurationwasassociated withlowcorticalthicknessinthe inferioroccipitalgyrusandsulcusof thelefthemisphere(crosssectional). Longandshortsleepdurationwere associatedwithincreasedrateof corticalthinninginfronto-temporal area(longitudinal)

Carvalho[15] Crosssectional n=1374,>50

Mayoclinicstudyofaging

Frontal,parietal,temporal andoccipitalcortical thicknessandhippocampal volume–Freesurfer

Excessivedaytimesleepinesswas associatedwithlowcortical thicknessinfrontal,parietal, temporalandoccipitalregionsand hippocampalvolume

DelBrutto[16] Crosssectional n=237,708 Atahualpaproject

WMHvolume,lacunar infarctsanddeep microbleeds

Poorsleepqualitywasassociated withWMHpresenceandseverity. Noassociationwithsilentlacunar infarctordeepmicrobleeds Kocevska[17] Longitudinal5years n=2,529,55.86.0

Rotterdamstudy

FA,MD–tractography Sleepcomplaintswererelatedto decreasedFAinthemiddle cerebellarpeduncleandmedial lemniscusovertime.Shortsleep durationwasrelatedtoincreased WMHburdenovertimeandhigh sleepefficiencywithhighWMH volumeatfollowup.Noassociation betweenWMmeasuresatbaseline andchangesinsleepcomplaints Sexton[19] Crosssectional n=448,69.25.1

WhitehallIIimaging substudy

FA,AD,RD-FSL,TBSS, voxelwiseanalysis WMHvolume

Poorsleepqualitywasrelatedtolow FA,highADandRDvaluesinfrontal lobe.Noassociationwithsleep duration,sleepefficiency,WMH volumeandpersistenceofpoor sleep16yearspriorbrainimaging

(3)

Table1 (Continued)

Paper Design n,meanageSD Project

Brainmeasures Mainfindings

Yaffe[21] Crosssectional n=613,45.4 Coronaryarteryrisk developmentinyoungadults

Frontal,parietal,temporal andoccipitalFA,MD WMHvolume

Shortsleepdurationwasassociated withhighMDvaluesinfrontal, parietalandtemporalregionsand highparietalWMHvolume Ramos[22] Crosssectional n=1,244,70.09.0

NorthernManhattanstudy

WMHvolume Longsleepdurationwasassociated withhighWMHvolumeonlyinolder adultssufferingfromdiabetes Polysomnographicstudies

Gelber[28] Crosssectional n=167,83.7(79–95) Honolulu-Asiaagingstudy

Brainautopsy GreaterSWSdurationwas associatedwithlessbrainatrophy Dube´ [29] Crosssectional n=30young,23.492.79

n=33older,60.355.71 Independentsample

Corticalthickness–CIVET, voxelwiseanalysis

HigherSWdensitywasassociated withage-relatedinsular,superior temporal,parietalandmiddlefrontal thickness.HigherSWamplitude wasassociatedwithage-related middlefrontal,medialprefrontal, andmedialposteriorthinning Mander[30] Crosssectional n=18young,20.42.1

n=18older,72.46.1 Independentsample

mPFCvolume–VBM8 ReducedSWAwasassociatedwith age-relatedmPFCatrophy

Varga[31] Crosssectional n=18young,18–23 n=13older,51–85 Independentsample

mPFCvolume–Freesurfer ReducedfrontalSWAwasassociatd withage-relatedmPFCatrophy

Helfrich[32] Crosssectional n=20young,20.42.0 n=32older,73.75.3 Independentsample

mPFC,dlPFC,lateral orbitofrontalcortex,thalamic andhippocampalvolumes– VBM8

Impairedslowwave-spindle couplingwasrelatedtoage-related mPFCatrophy.Noassociationwith hippocampus,thalamus,lateral OFCanddlPFC

Fogel[33] Crosssectional n=13young,24.13.5 n=15older,62.23.8 Independentsample

GMvolume–FSL,voxelwise analysis

Sleepspindleswererelatedtogrey mattervolumewithinthe

hippocampus,cerebellum, cingulateandparietalcortexin youngbutnotolderadults Mander[34] Crosssectional n=20young,20.42.0

n=31older,73.55.2 Independentsample

MD-FSL,TBSS,voxelwise analysis

Decreasedinfastspindledensity wasassociatedwithage-related increasedMDvaluesin commissuralandprojectingfiber tracts

Gaudreault[35] Crosssectional n=30young,22.92.7 n=31older,59.85.4 Independentsample

FA,MD,AD,RD-FSL,TBSS, voxelwiseanalysis

SleepspindleswererelatedtoWM modificationsoverfrontalregionsin youngbutnotolderadults

Actigraphicstudies Lim[37] Crosssectional n=45,33healthyolderand

12AD,89.4(85.2–93.5) Rushmemoryandaging project

Brainautopsy Highfragmentationofsleepand activestateswasrelatedtolow galanin-immunoreactiveneuronsin theintermediatenucleus.No associationwithself-reportedsleep duration,DIS,DMS

Lim[38] Crosssectional n=315older,90.46.1 Rushmemoryandaging project

Brainautopsy Highsleepfragmentationwas associatedwithsevere

arteriolosclerosisandsubcortical macroscopicinfarcts

Wang[39] Crosssectional n=17,10healthyolderand 7AD,90.45.5

Rushmemoryandaging project

Brainautopsy Lowrest-activityamplitudewas associatedwithlow VIP-immunoreactiveneuronsinthe suprachiasmaticnucleus

(4)

while an association between short sleep duration and

ventricular expansion over two years was detected in

anotherstudy[12].Besidesleep,Carvalhoetal.reported

that excessive daytime sleepiness was associated with

reducedhippocampalvolumeandcorticalthickness,

par-ticularly in temporal regions, suggesting that not only

alteredsleepbutalsoresultingdaytimesleepinessmaybe

related tobrainstructure [15].

Regarding white matter, poor sleep quality has been

associatedwiththepresenceofwhitematter

hyperinten-sities(WMH)incross-sectional andlongitudinalstudies

[16,17].WMHarecommonlyobservedduringageingand

reflectwhitemattertissue injurysuchasdemyelination,

axonallossandgliosis[18].Importantly,WMHhavebeen

related to cognitive decline, especially executive

dys-function, and incident dementia [18]. Another study

Table1 (Continued)

Paper Design n,meanageSD Project

Brainmeasures Mainfindings

Lim[40] Crosssectional n=141,82.9(median,IQR 77.4–87.4)

Rushmemoryandaging project

Volume,surfaceandareaof Desikan-Killianyatlas regions–Freesurfer

Highsleepfragmentationwas relatedtolowvolumeswithinthe lateralorbitofrontalandinferior frontalparsorbitalisandthickness withintherightinferiorfrontalpars orbitalis.Noassociationwith corticalarea,subcorticalandWM volume,self-reportedsleepduration andnocturnalawakenings Andre´ [41] Crosssectional n=30cognitively

unimpaired,73.37 n=36SCDand/orMCI, 71.58.2 IMPAP+study GMvolume–SPM12,voxel wiseanalysis

Highvariabilityofsleep

fragmentationduringthefirstpartof thenightwasrelatedtolowvolume withinthethalamusincognitively unimpairedolderadults.No associationwithsleep fragmentationintensity vanSomeren[42] Crosssectional n=138,69.18.5

Independentsample

Medialtemporallobeand globalcorticalatrophy– visualrattingscales

Highrest-activityfragmentationwas associatedwithmedialtemporal lobeatrophy

Baillet[43] Crosssectional n=58,76.10.5(SEM) AMImagestudy

GMvolume–VBM8,voxel wiseanalysis

FA,MD,RD,AD-FSL,TBSS, voxelwiseanalysis WMHvolume

Lowrest-activityamplitudeandhigh sleepfragmentationwererelatedto lowFA,highMDandRDvaluesin thewholeWM.Thisassociationwas partlyassociatedwithWMH.No associationwithrest-activity fragmentation,stabilityofactivity rhythms,sleepdurationandGM volume

Kocevska[44] Longitudinal5.8years n=1,201,59.37.9 Rotterdamstudy

FA,MD–tractography Shortsleepduration,highWASO andlowsleepefficiencywere relatedtoWMmodificationsin severalWMtractsuptosevenyears afterbrainimaging.Noassociation withsleeplatencyandwithWM modificationchangesovertime Oosterman[45] Crosssectional n=162,69.18.6

Independentsample

WMHvolume–visualrating scale

Lowrest-activityamplitudeand unstableactivityrhythmswere associatedwithfrontaldeepWMH. Noassociationwithperiventricular WMHandrest-activity

fragmentation Zuurbier[47] Crosssectional n=970,59.27.5

Rotterdamstudy

WMHvolume,lacunar infarctsandcerebral microbleeds

Rest-activityfragmentationwas associatedwithhighWMHvolume andcerebralmicrobleeds.No associationwithstabilityofactivity rhythms,sleepduration,WASO, self-reportedsleepqualityand lacunarinfarcts

Abbreviations:GM=greymatter,WM=whitematter,OFC=orbitofrontalcortex,mPFC=medialprefrontalcortex,dlPFC=dorsolateralprefrontal cortex,VIP=vasoactiveintestinalpolypeptideneurons,WMH=whitematterhyperintensities,VBM=voxelbasedmorphometry,FA=fractional anisotropy,MD=meandiffusivity,RD=radialdiffusivity,AD=axialdiffusivity,TBSS=tractbasedspatialstatistics;EMA=earlymorning awaken-ings,DIS=difficultyinitiatingsleep,DMS=difficultymaintainingsleep,SWS=slow-wavesleep,SWA=slow-waveactivity,WASO=wakeafter sleeponset.

(5)

observedthatpoorsleepquality,andespeciallylongsleep

latency, was associated with modifications of Diffusion

Tensor Imaging (DTI) parameters, particularly radial

diffusivity(RD),butnotwithWMHvolume.Persistence

ofpoorsleepqualitysixteenyearspriorMRIwashowever

notassociatedwithwhitemattermeasures[19].Ofnote,

ageingisrelatedtoreducedfractionalanisotropy(FA)and

increased diffusivity parameters (mean diffusivity,MD

andRD;lessprominentforaxialdiffusivity,AD)

reflect-ingimpairedfiberintegrityduetoalossofcoherenceona

preferred direction and an increase of diffusion rate.

Changes in RD are assumed to reflect myelin damage

whilechangesinAD presumablyreflectaxonaldamage

[20]. Kocevskaet al. revealed no significant association

betweenwhitemattermeasuresatbaselineandchanges

in sleep complaints over time, but observed that sleep

complaintsatbaselinewereassociatedwithdecreasedFA

values in brainstem tracts over a five-year longitudinal

design; thereby suggesting that sleep complaints may

predict future age-related white matter modifications

[17]. With respect to sleep duration, shorter durations

(<6hours)havebeenassociatedwithhighWMHvolume

in parietalareas [21] and increased WMHburden over

time [17]. Short self-reported sleepers presented also

higherMDvaluesmainlyinfrontal,parietalandtemporal

whitematterregionsand,higherprevalenceof vascular

risk factors compared to moderate sleepers [21]. Other

studiesdidnotobserveasignificantassociationbetween

self-reported sleep duration and WMH in older adults

[13,22]; note that Ramos et al. reported an association

betweenlongsleep duration(>9hours)andWMH

vol-umeonlyin olderadultssuffering fromdiabetes[22].

Association

between

brain

structure

and

electrophysiological

signatures

of

sleep

Sleeparchitectureischaracterizedbytheultradian

alter-nation between rapid eye movement (REM) and

non-REM (NREM) sleep as assessed by polysomnographic

(PSG) recordings. Standard PSG-assessed variables and

moreparticularlyfrequency-bandspecificspectralpower

exhibits stable and trait-like-interindividual differences

(e.g. [23]) which make them interesting candidates for

brain-behaviorcorrelations.Sleepspindleshavefor

exam-ple been proposed to reflect featuresof trait and

time-varyingpropertiesofneuroplasticity[24]andhavebeen

associatedwithgeneralintelligence(e.g.[25]).

Compro-mised generation and propagation of sleep oscillations

(spindlesandslowwaves)havebeenlinkedtoage-related

corticalthinning[26].

Post-mortem assessments from theHonolulu-Asia Aging

Study [27] revealed that short slow-wave sleep (SWS)

duration was associated with more global grey matter

atrophy at death [28]. In vivo MRI studies similarly

revealed that during adulthood,changes in slow waves

densityandamplitudewereassociated withage-related

corticalthinninginfrontal,temporal,parietalandinsular

regions[29].Importantly,age-relatedgreymatteratrophy

within the medial prefrontal cortex (mPFC) has been

relatedtodecreasedslow-waveactivity[30,31]andslow

wave—sleepspindlecoupling[32],bothassociatedwith

overnight sleep-dependent memory impairment. Note

howeverthatanotherstudyreported significant

associa-tionsbetweensleepspindlecharacteristicsandgrey

mat-tervolume in younger adultsonly [33].Withrespectto

white matter, Mander et al. observed that age-related

increase of MD values in several white matter tracts,

suchasthecorpuscallosum,wasassociatedwithalossof

frontalfastsleepspindles.Thiswhitemattermodification

moderated the impairment of overnight sleep

spindle-dependent motor memory consolidation [34]. Another

study failed to observe such association in a younger

agerange[35].

Association

between

brain

structure

and

rest-activity

cycles

The application of in-lab approaches allow to uncover

processesunderlyingdifferentsleepphenotypes.At

con-trast,fieldactigraphyenablesmonitoringof masked

24-hourrest-activitycyclesoverdays,weeksorevenmonths.

Difficulty however remains in the inference of

physio-logicallymeaningful sleep phenotypes.Strength of this

approach is that, unlike single-night polysomnographic

recordings, it allows a rather unique assessment of the

temporalprofilesofrest-activitypatternsandtherebythe

inferencesabout putative temporaldisruption of

sleep-wakestates.Assuch,notonlysleep,butalsothetemporal

organization of rest-activity cycles has been associated

withcognitivefunctioning(e.g. [3–5]).

Knowledgeonhistopathological changesrelatedto

rest-activity cycles in ageing mainly arises from actigraphic

studiesoftheRushMemory andAging Project[36].In

the latter, Lim et al. observed that higher rest-activity

fragmentationwasrelatedtoalowernumberof

galanin-immunoreactiveneuronswithintheintermediatenucleus

ofthehypothalamus(homologueofthesleep-promoting

ventrolateralpreopticnucleusinrodents;[37]).

Further-more, higher sleep fragmentation was associated with

more severe arteriolosclerosis and subcortical

macro-scopic infarcts at autopsy (27% and 31% higher odds

foreach1standarddeviationincreaseof sleep

fragmen-tation;[38]).Finally,Wangetal.reportedthatalower

24-hour cycle amplitude (i.e. less differentiation between

day-time activity and night-time rest) was related to a

lowernumber of vasoactiveintestinal polypeptide

neu-rons of the suprachiasmatic nucleus implicated in the

maintainance of a high-amplitude circadian output and

photicresetting[39].

Fewstudiesevaluatedtheassociationbetween

actigra-phy-derivedrest-activityparametersandgreymatterin

older adults. Highsleep fragmentation has been

(6)

and inferior frontal regions [40], and its variability

during the first part of the night with low thalamic

volume[41].Recently,vanSomerenetal.reportedthat

rest-activity fragmentation accounted for 19% of the

variance in medial temporal lobe atrophy, evaluated

withavisualratingscale[42].Incontrast,anotherstudy

did not observe any significant association between

actigraphic measures of rest-activity cycles and grey

matter volume[43].

Regarding white matter, a population-based study

reportedthatactigraphic derivedpoorsleepquality and

short sleep duration wererelated to whitematter

mod-ifications(highFAandlowMD)uptosevenyearslater

butnotwiththeevolutionofDTIparametersovertime.

Howeverasactigraphicrecordingswerenotperformedat

baseline, causality between sleep and brain structure

remains difficulttoinferatthis stage[44].Threecross

sectionalactigraphicstudiesprovidedfirstevidencethat

rest-activity disturbances observed in older adults are

related to cerebral small vessel disease manifestations.

Oosterman et al. observed that a lower 24-hour

rest-activityamplitude,especiallydecreaseindaytime

activ-ity,andunstableactivityrhythmswererelatedtohigher

deepWMHvolumesinfrontalregions[45].Inmorethan

900participantsoftheRotterdamStudy[46],rest-activity

fragmentation has been associated with WMH volume

and cerebral microbleeds but not with the number of

lacunarinfarcts[47].IntheonlystudyusingDTI,Baillet

et al. observed that low 24-hour rest-activity amplitude

andhigh sleepfragmentationwerebothassociatedwith

diffusewhitemattermodifications(lowFA,highMDand

RD) and WMH volume. Interestingly, rest-activity

amplituderemained associatedwith whitematter

prop-ertieswhenaccountingforsleepfragmentation,

suggest-ing aspecific effectof the temporaldistributionofrest

andactivityover the24-hourday[43].

Discussion

Ageing is associated with modifications of brain

struc-ture,sleep-wakeregulationandcognitionbuthowthese

factors are related to each other remains to be

deter-mined.Atthisstage,itmightappearprematuretodraw

firm conclusions regarding region-specific implications

(see also Figure 1a for a conceptual representation).

Regions of interest based approaches mainly targeted

on frontal, temporal, hippocampal, and thalamic grey

mattervolume,consideringthepredominantimplication

of those regions in brain ageing trajectory but also in

sleep-wakeregulationormorespecifically,inthe

gener-ation and/or coupling of slow oscillations and sleep

spindles.OfthirteenMRIstudiesincludingsubcortical

structures[8–13,15,32,33,40–42,43],onlyfourreported

apositiveassociationbetween sleep-wakepatternsand

hippocampal [10,15,42]orthalamicvolumes[10,41]. In

contrast, all polysomnographic studies included inthis

Figure1

(a)

(b) Self-reported sleep Actigraphy Polysomnography

Brain

ageing

Trait-like sleep phenotyping

Effect size

Sample size

Representativity

Duration Quality Night-time rest Rest-activity cycles SWS REM Spindles Cortical thinning White matter changes

CSVD manifestations Sleep perception

Sleep macro- and microstructure Rest-activity cycles

(e.g. mPFC, hypothalamus)

Sleep-wake states Diffuse process

Local process

Current Opinion in Behavioral Sciences

Conceptualrepresentationof(a)resultsfromstudiesreportinganassociationbetweensleep-wakestatesandMRI-derivedbrainstructureand(b) methodologicalconsiderations.

(7)

reviewsuggestthatadecreaseinslowwavesparameters

isassociatedwithcorticalatrophy,includingthemedial

prefrontal cortex [29–31,32] suggesting a possible

neuroanatomicalsubstratetoexplain sleep-related

cog-nitive impairment. Rather consistent results were

observed regarding white matter, and especially with

actigraphicrest-activitypatternsandcerebralsmall

ves-sel disease manifestations as WMH, cerebral

micro-bleeds and related cerebrovascular pathologies

[38,43,45,47]. Actingas adiffuse process,these

man-ifestationsdisruptnotonlythenormalappearingwhite

matterbutalso connected corticalregionsthrough

sec-ondaryneurodegeneration disrupting efficient

informa-tiontransferinbrainnetworks[48].Cerebralsmallvessel

diseaseisunderlinedbyreducedcerebralbloodflowand

blood-braindysfunctionandassociatedwithvascularrisk

factors [48], suggesting that rest-activity disturbances

mayberelatedtovascularabnormalities.

Mostofthestudiesexploringtheassociationbetweensleep

andstructuralbrainchangesatolder agereliedon

ques-tionnaire-basedsubjectiveassessments ofsleep duration

andquality.Thismightatleastpartiallyexplainthe

vari-abilityinobservedresultswithrespecttobrainstructural

changesovertheageingprocess.Itmightbeassumedthat

replicabilityofstructuralbrain-behaviorassociations

criti-callyreliesuponthedefinitionandprecisionofthesleep

traitunderinvestigation(e.g.[49]).Itisthusimportantto

completepopulation-basedsampleswithin-lab

measure-mentsofmoreunmaskedsleepphenotypeswhile

control-lingforpriorsleep-wakehistory.Withinthiscontext,

trait-likeand thusreplicable characteristics havebeen attributed

forexampletoelectrophysiological-derivedsleep

charac-teristics(e.g.[50]).Thosestudies,testingforanassociation

betweenelectroencephalographic-derivedspectralpower

measures(mainlyslow-waveactivity,spindledensityand

theircoupling)andbrainstructuremostlyrevealedstrong

effectsizes([29–31,34]butsee[33,35]).Addingcomplexity

tosuchphenotypes,asforinstancetakingintoaccountthe

dynamic interaction between REM and NREM sleep

whentestingfor putativeassociations will completethe

pictureabouttheimportanceofsleeponbrainageing[51].

It wasrecently observed forexamplethatNREMand REM

sleepstagesdifferentlyaffectcognitiveoutputslinkedto

theageing process(e.g.[52])therebyre-emphasizingon

REMsleepasanimportantcontributortobrainfunction.

Finally,theroleofthecircadianclockonshapinghuman

brain ageing has been widely underestimated. This

appearssurprisingbecauseofitswidespreadimplication

and regulation of cognitive brain function [2]. Even

thoughnotassessingtheinternalclock,actigraphyallows

toinfer abouttemporalprofiles of rest-activitypatterns.

Note that most studies have focused on sleep and its

disturbanceswithoutconsideringitasapartofa24-hour

cycle.Ofseven[40,41,42,43,44,45,47]studiesusingMRI

andactigraphy,onlyfourdescribedrest-activitypatterns

[42,43,45,47]andmostof thememphasizedan

associa-tion with white matter properties. Furthermore,

post-mortem studies provide evidence that actigraphic

rest-activity patterns are associated with degeneration of

hypothalamic neurons implicated in circadian timing

and sleep-wake regulation, regionsnot easilyreachable

withconventionalMRI[37,39].Thesestudieshinttothe

importance of the temporal framework given to sleep

regulation for brain fitness at older age. Older adults

present an advanced phase of circadian rhythms (e.g.

classicalendocrinemarkerssuchasmelatoninsecretion),

leadingtoearliersleeptimesandareducedamplitudein

bothcircadian sleepand wake consolidation [53],

puta-tivelyleadingtomorefragmentedactiveandsleepstates

(i.e. intrusion of sleep into daytime activities and

frag-mentationofnight-timesleepbywakeperiodsor

noctur-nalarousals;e.g. [54]).Note that atool regrouping

cur-rentlyavailableanalysismethodswasrecentlydeveloped

inourlabinordertocatchsuchtemporalspecificitiesin

actigraphy-derivedrest-activitydata,makingthistypeof

analysisopenlyavailableforfuturestudies(Pyactigraphy,

doi:https://doi.org/10.5281/zenodo.2537921).

Assummarizedin Figure1b,bothlarge-scale

epidemio-logicalstudiesbutalsocontrolledin-labquantificationof

specific sleep phenotypes present strengths and pitfalls

suchthattheirrespectiveoutputsshouldnotbetakenas

equalbutratherusedinacomplementarymanner.Inthe

samevein,inferencesweremostlybasedoncross-sectional

correlationsbetweenbrainandsleepvariables.

Longitudi-naldesignsaredecisivetodifferentiatebetween

intraindi-vidualandinter-individualvariabilityandtherebyofferthe

possibilitytodeterminewhethersleep-wakedisturbances

haveapredictivevalueoncognitiveandbrainchanges.In

subjectivecognitivedeclinepopulation,definedas

preclin-icalstageofAD,poorsleepqualityhasforexamplebeen

reportedtoprecedemedialtemporallobeatrophy[55].

Notethatourreviewfocusesonpossiblecontributionsof

sleep-wake states on non-symptomatic age-related

changesin brainstructure. Insights frompositron

emis-sion tomography imaging studies, not included in this

review, revealed for example that poor sleep and

frag-mented rest-activity cycles are related to Ab and Tau

burden(e.g. [56];seealso [57]for areview). The latter

might partially account for the modification in brain

structure,openingnewavenuestoexploretheassociation

betweensleepandage-relatedchangesinbrainintegrity.

Conflict

of

interest

statement

Nothingdeclared.

Acknowledgements

TheresearchersarefundedbyanERCStartingGrant(GA757763)andby theFondsdelaRechercheScientifiquedeBelgique(F.R.S.-FNRS).

(8)

References

and

recommended

reading

Papersofparticularinterest,publishedwithintheperiodofreview, havebeenhighlightedas:

 ofspecialinterest

1. DaanS,BeersmaDG,Borbe´lyAA:Timingofhumansleep: recoveryprocessgatedbyacircadianpacemaker.AmJ Physiol1984,246:R161-183.

2. MutoV,JasparM,MeyerC,Kusse´ C,ChellappaSL,DegueldreC, BalteauE,Shaffii-LeBourdiecA,LuxenA,MiddletonBetal.:Local modulationofhumanbrainresponsesbycircadian

rhythmicityandsleepdebt.Science2016,353:687-690.

3. LuikAI,ZuurbierLA,HofmanA,VanSomerenEJW,IkramMA, TiemeierH:Associationsofthe24-hactivityrhythmandsleep withcognition:apopulation-basedstudyofmiddle-agedand elderlypersons.SleepMed2015,16:850-855.

4. OostermanJM,vanSomerenEJW,VogelsRLC,VanHartenB, ScherderEJA:Fragmentationoftherest-activityrhythm correlateswithage-relatedcognitivedeficits.JSleepRes 2009,18:129-135.

5. TranahGJ,BlackwellT,StoneKL,Ancoli-IsraelS,PaudelML, EnsrudKE,CauleyJA,RedlineS,HillierTA,CummingsSRetal.: Circadianactivityrhythmsandriskofincidentdementiaand mildcognitiveimpairmentinolderwomen.AnnNeurol2011, 70:722-732.

6. ScullinMK,BliwiseDL:Sleep,cognition,andnormalaging: integratingahalfcenturyofmultidisciplinaryresearch. PerspectPsycholSci2015,10:97-137.

7. Ancoli-IsraelS:Sleepanditsdisordersinagingpopulations. SleepMed2009,10(Suppl.1):S7-S11.

8. StoffersD,MoensS,BenjaminsJ,vanTolM-J,PenninxBWJH, VeltmanDJ,VanderWeeNJA,VanSomerenEJW:Orbitofrontal graymatterrelatestoearlymorningawakening:aneural correlateofinsomniacomplaints? FrontNeurol2012,3:105.

9. BrangerP,Arenaza-UrquijoEM,TomadessoC,Me´zengeF, Andre´ C,FloresR,de,MutluJ,SayetteVdeL,EustacheF, Che´telatGetal.:Relationshipsbetweensleepqualityandbrain volume,metabolism,andamyloiddepositioninlate adulthood.NeurobiolAging2016,41:107-114.

10. LiuY-R,FanD-Q,GuiW-J,LongZ-L,LeiX,YuJ:Sleep-related brainatrophyanddisruptedfunctionalconnectivityinolder adults.BehavBrainRes2018,347:292-299.

11. SextonCE,StorsveAB,WalhovdKB,Johansen-BergH,FjellAM: Poorsleepqualityisassociatedwithincreasedcortical atrophyincommunity-dwellingadults.Neurology2014, 83:967-973.

12. LoJC,LohKK,ZhengH,SimSKY,CheeMWL:Sleepduration andage-relatedchangesinbrainstructureandcognitive performance.Sleep2014,37:1171-1178.

13. LutseyPL,NorbyFL,GottesmanRF,MosleyT,MacLehoseRF, PunjabiNM,ShaharE,JackCR,AlonsoA:Sleepapnea,sleep durationandbrainMRImarkersofcerebralvasculardisease andAlzheimer’sdisease:theatherosclerosisriskin communitiesstudy(ARIC).PLoSOne2016,11:e0158758.

14. SpiraAP,GonzalezCE,VenkatramanVK,WuMN,PachecoJ, SimonsickEM,FerrucciL,ResnickSM:Sleepdurationand subsequentcorticalthinningincognitivelynormalolder adults.Sleep2016,39:1121-1128.

15. CarvalhoDZ,StLouisEK,BoeveBF,MielkeMM,PrzybelskiSA, KnopmanDS,MachuldaMM,RobertsRO,GedaYE,PetersenRC etal.:Excessivedaytimesleepinessandfatiguemayindicate acceleratedbrainagingincognitivelynormallatemiddle-aged andolderadults.SleepMed2017,32:236-243.

16. DelBruttoOH,MeraRM,ZambranoM,LamaJ,DelBruttoVJ, CastilloPR:Poorsleepqualityandsilentmarkersofcerebral smallvesseldisease:apopulation-basedstudyin community-dwellingolderadults(TheAtahualpaProject).SleepMed2015, 16:428-431.

17. KocevskaD,CremersLGM,LysenTS,LuikAI,IkramMA, VernooijMW,TiemeierH:Sleepcomplaintsandcerebralwhite matter:aprospectivebidirectionalstudy.JPsychiatrRes2019, 112:77-82http://dx.doi.org/10.1016/j.jpsychires.2019.02.002.

18. PrinsND,ScheltensP:Whitematterhyperintensities,cognitive impairmentanddementia:anupdate.NatRevNeurol2015, 11:157-165.

19. SextonCE,ZsoldosE,FilippiniN,GriffantiL,WinklerA, MahmoodA,AllanCL,TopiwalaA,KyleSD,SpiegelhalderKetal.: Associationsbetweenself-reportedsleepqualityandwhite matterincommunity-dwellingolderadults:aprospective cohortstudy.HumBrainMapp2017,38:5465-5473http://dx.doi. org/10.1002/hbm.23739.

20. SalthouseTA:Neuroanatomicalsubstratesofage-related cognitivedecline.PsycholBull2011,137:753-784.

21. YaffeK,NasrallahI,HoangTD,LauderdaleDS,KnutsonKL, CarnethonMR,LaunerLJ,LewisCE,SidneyS:Sleepduration andwhitematterqualityinmiddle-agedadults.Sleep2016, 39:1743-1747.

22. RamosAR,DongC,RundekT,ElkindMSV,Boden-AlbalaB, SaccoRL,WrightCB:Sleepdurationisassociatedwithwhite matterhyperintensityvolumeinolderadults:theNorthern Manhattanstudy.JSleepRes2014,23:524-530.

23. TuckerAM,DingesDF,VanDongenHPA:Traitinterindividual differencesinthesleepphysiologyofhealthyyoungadults.J SleepRes2007,16:170-180.

24. KooPC,MarshallL:Neuroscience:asleeprhythmwithmultiple facets.CurrBiol2016,26:R813-815.

25. Bo´dizsR,KisT,La´za´rAS,Havra´nL,Rigo´ P,ClemensZ,Hala´szP: Predictionofgeneralmentalabilitybasedonneuraloscillation measuresofsleep.JSleepRes2005,14:285-292.

26. ZhongH-H,YuB,LuoD,YangL-Y,ZhangJ,JiangS-S,HuS-J, LuoY-Y,YangM-W,HongF-Fetal.:Rolesofaginginsleep. NeurosciBiobehavRev2019,98:177-184.

27. GelberRP,LaunerLJ,WhiteLR:TheHonolulu-Asiaagingstudy: epidemiologicandneuropathologicresearchoncognitive impairment.CurrAlzheimerRes2012,9:664-672.

28. GelberRP,RedlineS,RossGW,PetrovitchH,SonnenJA, ZarowC,Uyehara-LockJH,MasakiKH,LaunerLJ,WhiteLR: Associationsofbrainlesionsatautopsywith

polysomnographyfeaturesbeforedeath.Neurology2015, 84:296-303.

29. Dube´ J,LafortuneM,BedettiC,BouchardM,GagnonJF,DoyonJ, EvansAC,LinaJ-M,CarrierJ:Corticalthinningexplains changesinsleepslowwavesduringadulthood.JNeurosci 2015,35:7795-7807.

30. ManderBA,RaoV,LuB,SaletinJM,LindquistJR,Ancoli-IsraelS, JagustW,WalkerMP:Prefrontalatrophy,disruptedNREMslow waves,andimpairedhippocampal-dependentmemoryin aging.NatNeurosci2013,16:357-364.

31. VargaAW,DuccaEL,KishiA,FischerE,ParekhA,KoushykV, YauPL,GumbT,LeibertDP,WohlleberMEetal.:Effectsofaging onslow-wavesleepdynamicsandhumanspatialnavigational memoryconsolidation.NeurobiolAging2016,42:142-149.

32.

 HelfrichbrainscomeRF,ManderuncoupledBA,Jagustinsleep:WJ,slowKnightwave-spindleRT,WalkerMP:Old synchrony,brainatrophy,andforgetting.Neuron2018, 97:221-230.e4.

Recent studyreporting an association between slow wave — sleep spindlecouplingandspecificage-relatedgreymatteratrophyoverthe medialprefrontalcortex.

33. FogelS,VienC,KarniA,BenaliH,CarrierJ,DoyonJ:Sleep spindles:aphysiologicalmarkerofage-relatedchangesin graymatterinbrainregionssupportingmotorskillmemory consolidation.NeurobiolAging2017,49:154-164.

34. ManderBA,ZhuAH,LindquistJR,VilleneuveS,RaoV,LuB, SaletinJM,Ancoli-IsraelS,JagustWJ,WalkerMP:Whitematter structureinolderadultsmoderatesthebenefitofsleep

(9)

spindlesonmotormemoryconsolidation.JNeurosci2017, 37:11675-11687.

35. GaudreaultP-O,GosselinN,LafortuneM,Deslauriers-GauthierS, MartinN,BouchardM,Dube´ J,LinaJ-M,DoyonJ,CarrierJ:The associationbetweenwhitematterandsleepspindlesdiffersin youngandolderindividuals.Sleep2018,41.

36. BennettDA,SchneiderJA,BuchmanAS,MendesdeLeonC, BieniasJL,WilsonRS:Therushmemoryandagingproject: studydesignandbaselinecharacteristicsofthestudycohort. Neuroepidemiology2005,25:163-175.

37. LimASP,EllisonBA,WangJL,YuL,SchneiderJA,BuchmanAS, BennettDA,SaperCB:Sleepisrelatedtoneuronnumbersinthe ventrolateralpreoptic/intermediatenucleusinolderadultswith andwithoutAlzheimer’sdisease.Brain2014,137:2847-2861.

38.

 fragmentation,LimASP,YuL,Schneidercerebralarteriolosclerosis,JA,BennettDA,BuchmanandbrainAS:infarctSleep pathologyincommunity-dwellingolderpeople.Stroke2016, 47:516-518.

Post-mortemstudyreporting anassociationbetween actigraphy-esti-matedsleepfragmentationandcerebrovascularpathologies.

39.

 WangBuchmanJL,LimAS,AS,BennettChiangDA,W-Y,HuK,HsiehSaperW-H,CB:LoSuprachiasmaticM-T,SchneiderJA, neuronnumbersandrest-activitycircadianrhythmsinolder humans.AnnNeurol2015,78:317-322.

Post-mortemstudyreporting anassociationbetween actigraphy-esti-matedrest-activitypatternsandnumberofVIP-expressingneuronsinthe suprachiasmaticnucleus.

40. LimASP,FleischmanDA,DaweRJ,YuL,ArfanakisK,BuchmanAS, BennettDA:Regionalneocorticalgraymatterstructureand sleepfragmentationinolderadults.Sleep2016,39:227-235.

41. Andre´ C,TomadessoC,deFloresR,BrangerP,RehelS, Me´zengeF,LandeauB,SayetteV,dela,EustacheF,Che´telatG etal.:Brainandcognitivecorrelatesofsleepfragmentationin elderlysubjectswithandwithoutcognitivedeficits.Alzheimers Dement(Amst)2019,11:142-150.

42. VanSomerenEJW,OostermanJM,VanHartenB,VogelsRL, GouwAA,WeinsteinHC,PoggesiA,ScheltensP,ScherderEJA: Medialtemporallobeatrophyrelatesmorestronglyto sleep-wakerhythmfragmentationthantoageoranyotherknown risk.NeurobiolLearnMem2018,160:132-138http://dx.doi.org/ 10.1016/j.nlm.2018.05.017.

43.

 BailletActivity/restM,DilharreguycycleandB,Pe´re`sdisturbancesK,DartiguesofstructuralJ-F,MayobackboneW,CathelineofG: cerebralnetworksinaging.Neuroimage2017,146:814-820.

Diffusiontensor imagingstudyreportinganassociationbetween acti-graphy-estimatedrest-activitypatternsandwhitemattermodifications. 44.

 KocevskaSomerenEJW,D,TiemeierIkramMA,H,LysenVernooijTS,MW,deGrootLuikAI:M,TheMuetzelprospectiveRL,Van associationofobjectivelymeasuredsleepandcerebralwhite mattermicrostructureinmiddle-agedandolderpersons. Sleep2019,42 http://dx.doi.org/10.1093/sleep/zsz140.

Longitudinal studyreporting an association between actigraphy-esti-matedsleepqualityandwhitemattermodificationsuptosevenyears later,butnowithdiffusionparameterschangesovertime.

45. OostermanJ,vanHartenB,VogelsR,GouwA,WeinsteinH, ScheltensP,ScherderE:Distortionsinrest-activityrhythmin agingrelatetowhitematterhyperintensities.NeurobiolAging 2008,29:1265-1271.

46. HofmanA,BretelerMMB,vanDuijnCM,KrestinGP,PolsHA, StrickerBHCH,TiemeierH,UitterlindenAG,VingerlingJR, WittemanJCM:Therotterdamstudy:objectivesanddesign update.EurJEpidemiol2007,22:819-829.

47. ZuurbierLA,IkramMA,LuikAI,HofmanA,VanSomerenEJW, VernooijMW,TiemeierH:Cerebralsmallvesseldiseaseis relatedtodisturbed24-hactivityrhythms:apopulation-based study.EurJNeurol2015,22:1482-1487.

48. WardlawJM,SmithC,DichgansM:Smallvesseldisease: mechanismsandclinicalimplications.LancetNeurol2019, 18:684-696.

49. KharabianMasoulehS,EickhoffSB,HoffstaedterF,GenonS: Alzheimer’sdiseaseneuroimaginginitiative:empirical examinationofthereplicabilityofassociationsbetweenbrain structureandpsychologicalvariables.eLife2019,8.

50. FinelliLA,AchermannP,Borbe´lyAA:Individual“fingerprints”in humansleepEEGtopography.Neuropsychopharmacology 2001,25:S57-S62.

51. ScullinMK,GaoC:Dynamiccontributionsofslowwavesleep andREMsleeptocognitivelongevity.CurrSleepMedRep 2018,4:284-293.

52. dellaMonicaC,JohnsenS,AtzoriG,GroegerJA,DijkD-J:Rapid eyemovementsleep,sleepcontinuityandslowwavesleepas predictorsofcognition,mood,andsubjectivesleepqualityin healthymenandwomen,aged20–84years.FrontPsychiatry 2018,9.

53. SchmidtC,PeigneuxP,CajochenC:Age-relatedchangesin sleepandcircadianrhythms:impactoncognitive

performanceandunderlyingneuroanatomicalnetworks.Front Neurol2012,3.

54. HuangY-L,LiuR-Y,WangQ-S,VanSomerenEJW,XuH,Zhou J-N:Age-associateddifferenceincircadiansleep-wakeand rest-activityrhythms.PhysiolBehav2002,76:597-603.

55. LauriolaM,EspositoR,PizziSD,deZambottiM,LondrilloF, KramerJH,RabinoviciGD,TartaroA:Sleepchangeswithout medialtemporallobeorbraincorticalchangesin community-dwellingindividualswithsubjectivecognitivedecline. Alzheimer’sDement2017,13:783-791.

56. LuceyBP,McCulloughA,LandsnessEC,ToedebuschCD, McLelandJS,ZazaAM,FaganAM,McCueL,XiongC,MorrisJC etal.:Reducednon–rapideyemovementsleepisassociated withtaupathologyinearlyAlzheimer’sdisease.SciTranslMed 2019,11:eaau6550.

57. VanEgrooM,NarbutasJ,ChylinskiD,VillarGonza´lezP,MaquetP, SalmonE,BastinC,ColletteF,VandewalleG:Sleep-wake regulationandthehallmarksofthepathogenesisof Alzheimer’sdisease.Sleep2019,42.

Références

Documents relatifs

l'aide d'un collègue expérimenté la disponnibilité d'un équipement adapté l'intérêt personnel pour les MITIC la facilité d’accès à toutes les informations le gain de temps

However, no study has assessed the relationships between objective sleep fragmentation (SF) and brain and cognitive integrity across different cognitive stages, from

Duration, rarity, affected area, and weather types associated with extreme precipitation in the Ore Mountains (Erzgebirge) region, Central Europe. International Journal

Finally, figure 7.8-D shows the instantaneous heart rate (HR) signal, as detected from the ECG. It can be observed that there are no significant tachycardia events and the.. mean HR

Chlorination using N-chlorosuccinimide (NCS) enabled the preparation of chlorinated compounds 7b-e (Table 4, entries 2-5), showing that aluminated trisubstituted

Rare earth element concentrations in dissolved and acid available particulate forms for eastern UK rivers..

-A vrai dire dans toutes les religions l’enfer est utiliser pour garder leurs peuples dans le droit chemin mais ils l’utilisent male car notre but n’est pas de punir ceux qui