• Aucun résultat trouvé

Cross-flow microfiltration of wine: Effect of colloids on critical fouling conditions

N/A
N/A
Protected

Academic year: 2021

Partager "Cross-flow microfiltration of wine: Effect of colloids on critical fouling conditions"

Copied!
11
0
0

Texte intégral

(1)

O

pen

A

rchive

T

OULOUSE

A

rchive

O

uverte (

OATAO

)

OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.

This is an author-deposited version published in :

http://oatao.univ-toulouse.fr/

Eprints ID : 6837

To link to this document :

DOI:10.1016/j.memsci.2011.08.008

URL :

http://dx.doi.org/10.1016/j.memsci.2011.08.008

To cite this version :

El Rayess, Youssef and Albasi, Claire and Bacchin,

Patrice and Taillandier, Patricia and Mietton-Peuchot, Martine and Devatine,

Audrey Cross-flow microfiltration of wine: Effect of colloids on critical fouling

conditions. (2011) Journal of Membrane Science, vol. 382 (n° 1-2). pp. 1-19.

ISSN 0376-7388

Any correspondance concerning this service should be sent to the repository

(2)

Cross-flow

microfiltration

of

wine:

Effect

of

colloids

on

critical

fouling

conditions

Y.

El

Rayess

a,b,∗

, C.

Albasi

a,b

, P.

Bacchin

c,d

, P.

Taillandier

a,b

,

M.

Mietton-Peuchot

e,f

,

A.

Devatine

e,f

aUniversitédeToulouse;INPT,UPS;LaboratoiredeGénieChimique;4AlléeEmileMonso,F-31432Toulouse,France bCNRS;LaboratoiredeGénieChimique;F-31432Toulouse,France

cUniversitédeToulouse;INPT,UPS;LaboratoiredeGénieChimique;118RoutedeNarbonne,F-31062Toulouse,France dCNRS;LaboratoiredeGénieChimique;F-31062Toulouse,cedex09,France

eUniversitédeBordeaux,ISVV,EA4577,UnitéderechercheOENOLOGIE,33882Villenaved‘Ornon,France fINRA,ISVV,USC1219OENOLOGIE,33882Villenaved‘Ornon,France

Keywords: Cross-flowmicrofiltration Winecolloids Criticalflux Polysaccharides Tannins

a

b

s

t

r

a

c

t

Criticalfoulingconditionswerestudiedduringwinecross-flowmicrofiltrationusingamultichannel ceramicmembrane(0.2mm).Theaimwastodeterminecriticaloperatingconditionsinordertolimit foul-ingcausedbywinecolloids(tannins,pectinandmannoproteins)andenhanceprocessperformances.The methodusedisasquarewavefiltrationbasedonthedeterminationofthereversibilityandirreversibility offouling.Filtrationswereperformedwithfilteredredwine(FW)addedwithdifferentconcentrations ofcolloids.ConsideringFW,criticalfluxforirreversibilitywasbeyondthestudiedrangeofpressure (≥1.4×10−4m/s).Noclearcriticalfluxcouldbedeterminedforanyofthetestedmoleculesinthe

stud-iedrangeofpressure.Ontheotherhand,anupperlimitoffluxesrangehasbeenidentified(belowwhich criticalfluxcouldbefound).Irreversiblefoulingalwaystakesplacefromthebeginningofthefiltrations andevenatlowpressures.ForFWcontaining0.2g/lmannoproteinand0.5g/lpectin,alossof aver-agefluxesisobservedbeyondagivenlimitoftransmembranepressure.Thisfactwasattributedtothe compactionofagellayer.Finally,acriterion(Rif/Rm≤1)hasbeensuggestedtodeterminetheso-called “thresholdflux”belowit,foulingremainsacceptable.

1. Introduction

Afteralcoholicandmalolactic fermentations,thecrude wine isacomplexmediumpresentingaturbidaspectthatisnotwell acceptedbytheconsumer;therefore,itneedstobeclarified.In ordertohavealimpidwine,thewinemakersimplementsuccessive solid–liquidseparationsusingtraditionaltechnologiessuchas cen-trifugation,dead-endfiltration(filterpresses,filtrationonsheets, diatomaceousearthfiltration)andtheuseofexogenicadditives.

Nowadays,diatomaceousearthisclassifiedasdangerous sub-stancesduetothepresenceofcrystallinesilica[1].Diatomaceous earthhasalsoanegativeimpactonenvironment;afteruses,it can-notbedisposedbutitmustbetransportedtowastedisposalsites tobetreated.So,environmentalandhealthrestrictionsforcethe oenologysectortosearchforalternativetechniquestotraditional filtrations. Cross-flow microfiltration could then represent this alternative.Indeed,thistechnologycansubstituteaone-step pro-ceduretotheconventionalprocesseswhichimplyseveralfiltration

∗ Correspondingauthorat:UniversitédeToulouse;INPT,UPS;Laboratoirede GénieChimique;4AlléeEmileMonso,F-31432Toulouse,France.

Tel.:+33534323626.

E-mailaddress:youssef.elrayess@ensiacet.fr(Y.E.Rayess).

stepsondiatomaceousearthprevioustothefinalmicrobial stabi-lizationobtainedbydeadendfiltrationonsheetsormembranes

[2].Inadditiontoagreatsimplificationofthewineprocessingline, cross-flowmicrofiltrationoffersanumberofadditionaladvantages suchaseliminationofearthuseanditsassociatedenvironmental problemsaswellasthecombinationofclarification,stabilization andsterilefiltrationinonesinglecontinuousoperation.

Conventionally,thecross-flowmicrofiltrationdevelopmentin winefiltrationhaslongbeenhamperedbysignificantfoulingof themembrane.Poorperformances,highcosts,andriskof exces-siveretentionofsomecomponentsarethemainconsequencesof fouling,leadingsometimestoalossofsomeorganoleptic charac-ters.Membranefoulingduringfiltrationofcomplexfluidssuchas fermentedfoodproducts(wine,beer)istheresultofinterplayof severalmechanisms.Theselattercouldbedividedinto[3,4]:

Internalfoulingbysmallparticlesandcolloidsasadsorptionand porepluggingwithintheinternalstructureofpores;

Externalfoulingbyparticles,macromoleculesandmacromolecules aggregatesasporeblockingandcakeformation

Themaindrawbackinwine filtrationliesinthedifficultyto understandwinefilterabilityandthereproducibilityofthe filtra-tions.Manyadvanceshavebeenmadebyresearchersespecially

(3)

inidentificationofwinecomponentsresponsibleoffouling and inimpactofmembranematerials[5–10].But,therestillalackof knowledgeofthemechanismscausingfouling.Theinfluenceofthe operatingconditionsonthesemechanismsisthennon-elucidated andmasteringtheprocessisnoteasy.

Membranesurfacefoulingcouldbecharacterizedwithregardto itsreversibility.Areversibleaccumulationwillberemovedwhen thetransmembranepressureisdecreased.Anirreversible depo-sitionwill beremovedonly bya physicalor chemical cleaning andwillremainwhenthepressureisreleased.Thelimitbetween reversibleandirreversiblefoulingdependsonthefluxvalue.The thresholdvalueforwhichthereversiblefoulingturnsinto irre-versiblefoulingiscalledas“criticalflux”[11].

In foodindustry, there weremany attempts todetermine a critical flux.Gésan-Guiziou et al.[12] showed whilecross-flow microfiltrationofskimmedmilkthatacriticalratioofpermeate fluxoverwallshearstresscouldbedetermined(0.9l/h/m2/bar)

aboveitanirreversibledepositionisobserved.Youravongetal.

[13]evaluatedthecriticalfluxinultrafiltrationofskimmedmilk byplottingcriticalfluxversustheratioofwallshearstressover proteinconcentration.Theyshowedalinearrelationshipbetween criticalandwallshearstress/proteinconcentration.DeBrujinand Borquez[14]showedthatnocriticalfluxwasreachedduring ultra-filtrationofapplejuicewiththeiroperatingconditions.But,their simulationshaveshowedthatnocakeformationwasobservedat a tangentialvelocityof 7.4m/s andtransmembranepressure of 150kPa(Jcritical=6.8×10−5m/s).Thefiltrationconditionsusedin

theseworks(veryhightemperature50–55◦C,veryhightangential

velocityupto7m/s)cannotbeappliedtowinefiltrationbecauseit wouldhavehugelymodifiedwinequality.

Theobjectiveofthisstudyistoinvestigateandsearchforsome criticaloperatingconditionsinwinecross-flowmicrofiltration.It hasbeenidentifiedthatsubstanceslikepolysaccharides(pectinand mannoproteins),polyphenolsandproteinsareinvolvedin mem-branefouling[5–9]butlittleinformationconcerningtheindividual impactonfoulingandthemechanismsinvolvedareavailable.The aimofthisstudyistolimitfoulingduetowinecolloids(tannins, pectinand mannoproteins) and enhanceprocess performances. Thechosenstudyprotocolwastoevaluatethecriticalfouling con-ditionsforeachofthefoulingmolecules.Thissituationdoesnot representa realwinebut itis a firststeptowards understand-ingrealwinecriticalfiltrationconditions.Themethodusedwasa squarewavefiltrationwhichallowsthedeterminationoftheextent offoulingreversibilityduringwinecross-flowmicrofiltration.This methodenabledthedistinctionbetweenreversibleandirreversible

foulingaswellasthecalculationofamoreaccuratevalueofthe criticalflux.

2. Background

Thefirstdefinitionsofthecriticalfluxconceptappearedin1995. Thecriticalfluxconceptwasdefinedas“thefluxbelowwhichno foulingoccurs”[15],as“thefluxbelowwhichadeclineoffluxwith timedoesnotoccur;aboveitfoulingisobserved”[16]oras“aflux belowwhichthereisnofoulingbycolloidalparticles”[17].

Therearetwo forms ofcritical flux: strongand weakforms

[16,18].Thestrongformisthefluxatwhichthetransmembrane pressurestartstodeviatefromthepurewater line,whichis of courselinear.Thestrongformofcriticalfluxhasbeendevelopedto discriminatenofoulingconditions.Theweakformofcriticalflux ischaracterizedbyaveryrapidfoulingonthestart-upandthe flux-transmembranepressurerelationshipisbelowthatofthepure waterline.Theweakformofcriticalfluxisthepointatwhichthis linebecomesnon-linear.

In2006,Bacchinetal.[11]refinedthedefinitionsofcriticalflux andanothertermhasbeenaddedascriticalfluxforirreversibility

Jci.Thistermwasexplained bythetransitionbetween

concen-trationpolarizationlayerstothedepositlayer.Fig.1,asseenby authors,illustratestheconceptofthiscriticalfluxforirreversibility. Whenfilteringatafluxbelowthecriticalflux,thecolloidalsystem isusuallystableastheresultofrepulsiveinteractions (interparti-cleorparticle-membrane)overcomingthedragforce(inducedby themovementofsolventthroughthemembrane).Beyondagiven valueofpermeateflux (criticalflux),when therepulsiveforces areoverwhelmedbythedragforces,adepositappearsand cre-ateshydraulicresistance.Thisphenomenonofdepositformation isnotinstantaneousandmaytakeseveralminutestoseveralhours tosettledependingontheoperatingconditionsandthetypeof particles.

Mathematically,theirreversibilityformofcriticalflux(Jci)can

bedefinedby: ForJ<Jci:J= 1P−1˘ (Rm) = 1P (Rm+Rrf) or 1P (Rm+Rads+Rrf) ,

ifadsorptiontakesplace (1)

whereJisthepermeateflux,1Pthetransmembranepressure(Pa), 1˘theosmoticpressure(Pa),thepermeateviscosity(Pas),Rm

themembranehydraulicresistance(m−1),R

adsresistancedueto

adsorption(m−1)andR

rfthereversibleresistance(m−1).

Fig.1.DiagramrepresentingthestateofcolloidalsystematdifferentfluxvalueswhereRm=membraneresistance,Rads=resistanceduetoadsorption,Rrf=reversible

(4)

Fig.2.Schematicrepresentation,asseenbyauthors,ofthecriticalfluxof irre-versibilityanditsrelationshipwiththestrongformandweakformofcriticalflux (Rf=foulingresistance).

Thereversibleaccumulationofmatter,afteradecreasein pres-sure,isrelatedtothepolarizationlayeranditsinducedosmotic pressure.Thislatteractasanoppositeforcetotheappliedpressure. Inthis case,thereversibleresistanceassociatedwiththe polar-ization concentrationlayercanbetreated asatermof osmotic pressure.

Abovethecriticalfluxfor irreversibility,multi-layers of irre-versiblefoulingaredetectedintheboundarylayerwhereasbelow itonlyaconcentrationofpolarizationlayerexistsinallcaseswith anadditionalmonolayerofadsorbedspeciesinsomecases[11,19].

ForJ>Jci:J= 1P−1˘ (Rm+Rif) = 1P (Rm+Rrf+Rif) or 1P (Rm+Rads+Rrf+Rif) ,

ifadsorptiontakesplace (2) whereRifistheirreversibleresistance(m−1).

Fig.2,asseenbyauthors,illustratestherelationshipofthe differ-entformsofcriticalfluxandtheresistancepresentedinEqs.(1)and (2).Thestrongformisthe“ideal”casewheretheirreversible resis-tancebelowthecriticalfluxisequaltozero.Beyondthevalueofthe criticalfluxforirreversibility,theirreversibleresistancebecomes detectable.Inotherhand,theweakformischaracterizedbyagiven valueofresistanceforlowfluxesduetotheadsorptionofmolecules onmembranematerial.Thecriticalfluxforirreversibilityis deter-minedwhentheirreversibleresistancebecomeshigherthanthat oftheadsorption.Simultaneouslytothesevariations,thereis gen-erallyadecreaseinthereversiblepartoffouling(Rrf)whentheflux

increases.

Recently, a newnotionhasappeared knownas“sustainable flux”whichincludeseconomicalfactors[11,20].Thisnotionwas foundbecauseforsomesystemsoperatingatazerofouling condi-tionissimplynotfeasible.Thisconceptwasespeciallyusedforthe treatmentofcomplexfluidsaswastewatertreatedbymembranes bioreactors[20–22].

3. Materialsandmethods

3.1. Redwine

Theredwineusedinthepresentstudywaselaboratedin2008 at thecooperative cellar of Rabastens(France) fromDuras, Fer Servadou and Syrah grape varieties.Thermovinification process wasusedtoelaboratethiswineinordertoincreasethe extrac-tionof polyphenolic compounds.After alcoholicand malolactic

fermentations,thewinewascentrifugedatthecellarinorderto removemicroorganismsandparticles.Afiltrationwasperformed withacross-flowmicrofiltrationpilotplantequippedwithorganic membranehavinganaverageporesizeof0.2mm.Thewineis ana-lyzedandmaintainedat4◦Cuntilusetopreventmicroorganisms’

development.Priortoexperiments,asecondfiltrationisperformed withthefilterusedforthisstudy(cf.Section3.4)inorderto elimi-nateeventualpotassiumtartratecrystalsandprecipitates.Thisfinal stepallowsobtainingthefilteredwine(FW).Thefilteredwineused forallfiltrationshas12%asalcoholcontent,3.6aspH,0.6g/las sugars(glucose+fructose)and0.1g/lasmalicacid.

3.2. Chemicals

Tannins (Biotan®) were purchased from Laffort (Bordeaux,

France).Thesetanninsareproanthocyanidictanninsextractedfrom grapeskinwithinstantaneousdissolving.Theywereaddedtothe wine(FW) withtheconcentrationsof1.25g/land2.5g/l.Pectin waspurchasedfromSigma–Aldrich(Lyon,France)andusedata concentrationof0.25g/land0.5g/l.Mannoproteins(Mannostab®)

werepurchasedfromLaffortandaddedtothewineat concentra-tionsof0.1g/land0.2g/l.Theconcentrationsofaddedmolecules arechosenaccordingtothosefoundinwineandidentifiedinthe literature[24,25].

3.3. Winecomponentsanalysis

Spectrophotometric analyseswerecarried out onanAgilent 8453UV/VISspectrophotometer.Totalpolyphenolsinwinewere estimatedbytheTotalPolyphenolIndex(TPI)usingtheabsorbance at 280nm and under1cm optical path.Colour Intensity(IC)is thesumofopticaldensitiesat420nm,520nmand620nmunder 1mmopticalpath.Totalpolysaccharidesweredeterminedusing themodified Usseglio-Tomassetmethodbasedonthe precipita-tionofthepolysaccharideswithethanol[23].Mannoproteinswere alsodeterminedusing themodifiedUsseglio-Tomasset method. TotalanthocyaninsweredeterminedaccordingtoRibéreau-Gayon methodusingthesodiumbisulphite[24].Totaltanninswerealso determinedaccordingtoRibéreau-Gayonmethodbytransforming theproanthocyanidinsintoanthocyanidins[24].pH,%ofalcohol, malicacid,glucoseandfructoseconcentrationweredeterminedon thewinebyFTIRspectroscopy(Fouriertransforminfra-red spec-troscopy).Wineviscosityisdeterminedwitha controlled-stress rheometer(AR-2000ex).Turbiditymeasurements(NTU)were per-formedwithaEutechTN-100turbidimeter.

Table1showstheanalyticalcompositionof thewine before addingmolecules(FW)andafteraddingmolecules.Anetincrease in TPI,IC and turbidityisobserved afteraddition oftannins. It shouldbenotedthat about80%of totaltanninsarefoundafter adding tanninspowder. This wasexplained bythe assays con-ductedontanninspowderwhichshowthatitcontains80%tannins andisfreeofpolysaccharides.Theothercompoundsareorganic acids, sugars,minerals and vitaminswhich are not involved in membranefoulingduringmicrofiltration.Ontheotherside,the determinationoftotalpolysaccharidesinwinesFW+pectinand FW+mannoproteinshowsthattheamountsofmeasured polysac-charidesareequivalenttothoseadded[24,25].

3.4. Experimentalapparatus

Thefiltrationswereperformedwithawinefiltrationpilot sys-tem(Fig.3)designedforthisstudyandprovidedbyPeraCompany (Florensac,France).Theequipmentconsistsofa10lstainlesssteel feedtank,acentrifugalpump(forabetterrespectofwinequality), anelectronicflow-metertomeasuretheaxialfeedflowrate,2 tem-peraturesensors(T1andT2)and3pressuresensorslocatedatthe

(5)

Table1

Analyticalcompositionofwineaddedwithtestedmolecules. TPI Totalanthocyanins

(mg/l)

Totaltannins(g/l) Totalpolysaccharides (mg/l) IC Turbidity(NTU) FW 44.9(±0.5) 349(±3.42) 2.45(±0.16) 60(±30) 0.88(±0.07) 0.1(±0.2) FW+1.25g/ltannins 59 355 3.49(±0.1) 64 0.93 38.7 FW+2.5g/ltannins 73 360 4.45(±0.15) 68 0.99 72.5 FW+0.25g/lpectin 45.1 n.d. 2.45 320 0.85 12.2 FW+0.5g/lpectin 44.7 n.d. 2.4 510 0.85 18 FW+0.1g/lmannoprotein 44.8 n.d. 2.46 165 n.d. 4.5 FW+0.2g/lmannoprotein 44.5 n.d. 2.45 275 0.84 8.5

feedtankentrance(P1),attheinlet(P2)andattheoutlet(P3)ofthe

membranemodule.Transmembranepressure(1P)wascalculated as1P=(P2+P3)/2.Thepressureinthesystemisobtainedwith

com-pressedairthatpressurizesthefeedtank.Thepressureisaccurately regulatedinthepilotbyacurrenttopressuretransducercontrolled withacomputersoftwareinterface.Adigitalbalance,connectedto thesystem,wasusedtodeterminetheevolutionofpermeatemass withinthetimeandtocalculatethepermeateflux.Adata acqui-sitionsystemwasconnectedtothemicrofiltrationpilot:itallows thecontinuousmonitoringof1P,temperaturesandpermeatemass alongthetime.

The microfiltration module contains a multi-channel (44) ceramic membrane (BK-Kompact, Novasep, France) shown in

Fig.3.Itsaverageporediameteris0.2mm.Thetotalactive mem-branesurfacewas0.118m2,withanexternaldiameterof25mm.

The membrane is madeof ZrO2/TiO2 layers laid on monolithic

TiO2–Al2O3 supportlayer. The flow velocity is fixed at 2ms−1

whichisconventionallyusedinwinefiltration.

Aftereachexperiment,a6stepsprocedureofchemical clean-ingisperformedtoregeneratethemembrane.Thisprocedureis summarizedin Table2.Themembranepermeability ischecked withosmotic water afterchemical cleaning and mustbe equal

Table2

Chemicalcleaningprocedureafterfiltrationexperiment. Step Action

1 Rinsingmembranewithwater(5min)

2 Rinsingmembranewithwarmwater(45–50◦C)+0.5%NaOH

(10min)

3 Rinsingmembranewithhotwater(75–80◦C)+2–4%NaOH

(15min)/Filtration

4 Rinsingmembranewithwarmwater(45–50◦C)(10min)/filtration

5 Rinsingmembranewithwater(20–25◦

C)+0.2%citricacid (10min)/filtration

6 Rinsingmembranewithwater(20◦C)(5min)/filtration

orabove900l/h/m2/bar(at20–22C).Ifthispermeabilityisnot

reached,severalchemicalcleaningarethenneededtoregenerate themembraneandtoreachthedesiredreferencepermeabilityof themembrane.

3.5. Criticalfluxdetermination:themethodofSWB

Thesquarewavebarovelocimetry(SWB) techniquehasbeen developed by Espinasse et al. [26] and detailed also by the

(6)

Fig.4. Squarewavebarovelocimetrymethodtomeasurethecriticalflux[24].

sameauthors[27].Theprincipleofthismethodis composedof alternative increasing and decreasing pressure steps as shown schematicallyinFig.4.Thepressurestepsarethealternationof pos-itiveandnegativevariations.TheUstepscorrespondtotheupper stepswhiletheLstepscorrespondtothelowersteps.Thepermeate fluxiscalculatedcontinuously.

Thistechniqueallowstheevaluationofthefluxlossbetween twostepsofpressure.Thefluxiscomparedbetweenstepshaving thesamepressure,forexampleU1/L2orUn−1/Ln.Ifthepermeate

fluxisthesameattheindicatedsteps(U1/L2),thefouling

associ-atedtothestepU2 isconsideredastotallyreversible.Iftheflux

decreasesfor2stepshavingthesamepressure(Un−1/Ln),the

foul-ingassociatedtothestepUn isconsideredaspartlyirreversible.

Thistechniqueofdatatreatmentallowshavingaccuratevaluesof thecriticalfluxandtherateofirreversibilityofthecreateddeposit onthemembrane.Thenumberofstepsandthecorresponding pres-suresusedinthisstudyaresummarizedinTable3corresponding tooperatingconditionsusedinwinefiltration.Eachsteplastedfor 4min.

3.6. Calculationmethodoftheirreversibleandreversible resistance

Therepresentationoffoulingresistance(Rf)versusfluxallows thedeterminationofadegreeofreversibilityofthefouling.The reversibleresistancetermisusedtodescribeorquantifythe por-tionofthefoulingresistancethatiseliminatedwithadecreasein pressure.IfRfatstepLnisequaltoRfatstepUn−1,itmeansthat

foulingistotallyreversibleatpressurestepn.

Theirreversibleresistancethatappearsforanupperpressure stepcanbereachedbycomparingthefoulingresistanceatstepsLn

andUn−1steps(Fig.4).Itcanbecalculatedasfollow:

rif,n Rm =



R f Rm



Ln −



R f Rm



Un−1 (3)

whererif,nistheirreversiblefoulingrelativetostepn.

Inordertocalculatethevalueofthetotalirreversiblefouling (Rif)atagivenpressurestep,allthemeasuredrifatprevioussteps

aresummedasfollow:

Rif=(rif,n+rif,n−1+rif,n−2+...) (4)

Fig.5. Permeatefluxand1PevolutionduringfiltrationofFWandtheirassociated stepsnumbers.

Thereversibleresistance(Rrf)canbecalculatedateachstepas

follows: Rrf Rm = Rf Rm − Rif Rm (5)

Sometimes,thecalculationof thereversibleresistancegives negativevalueswhichdonothaveaphysicalmeaning.Thatcould beexplainedby:(i)thefactthatthequasi-steadystateofpermeate fluxisnotreachedor(ii)thepresenceofanabnormalincreasein foulingresistance(depositcompactionorgelationofthedeposit) duringthepressuresteps.Inthiscase,thereversibleresistanceis takenatzeroandthevalueoftheirreversibleresistanceisthen consideredequaltothetotalfoulingresistance.

4. Results

4.1. Determinationofthecriticalfluxforfilteredwine(FW)

Beforeinvestigatingtheeffectoftanninsandpolysaccharides oncriticalflux,itisnecessarytoobservethepatternof perme-atefluxevolutionduringthefiltrationofthe“basicmatrix”(i.e. thefilteredwineFW).Fig.5showstheevolutionofpermeateflux and transmembranepressurein time whilefilteringFW. When comparingthevalueoffluxesfortwostepshavingthesame1P, fluxesremainedalmoststablesandidentical.Thispointisobserved throughoutthewholecycleof1Pstepping.Thismeansthatno sig-nificantfoulingtookplace.Thereversibleandirreversiblehydraulic resistancesdeducedfromtheSWBexperimentareplottedinFig.6. Whentheirreversibleresistanceisequaltozero,itmeansthatthe foulingcouldbeconsideredastotallyreversible.InthecaseofFW, theirreversibleresistanceisnotequaltozerofromthebeginning offiltrationbutitremainsalmoststableandthesame through-outthevariationsof1P.Thisobservationcouldbeexplainedby anadsorptionofsomewinecomponentsonthemembranesurface andinthepores.Itleadstoanincreaseintheirreversible resis-tanceanddecreaseinthereversibleresistance.Thesameconcept wasillustratedinFig.1anditcorrespondstotheweakformof crit-icalflux.InthecaseofFW,thecriticalfluxforirreversibilityisover therangeofthestudiedconditions(Jci≥1.4×10−4m/s).

Table3

Numberofstepsandtheassociatedpressure.

Step 1 2 3 4 5 6 7 8 9

Pressure(mbar) 200 250 200 300 250 350 300 400 350

Step 10 11 12 13 14 15 16 17 18

(7)

Fig.6.EvolutionofreversibleRrfandirreversibleRiffoulingresistanceduring

fil-trationofFWandtheassociatedtransmembranepressure(mbar).

4.2. Effectoftheaddedmolecules

4.2.1. Impactoftanninsontheevolutionofthecriticalflux

TanninsimpactoncriticalfluxwasstudiedbyaddingtoFWtwo differentconcentrationsoftannins:1.25g/land2.5g/l.Resultsof theeffectof1PsteppingonpermeatefluxarereportedinFig.7.A netincidenceoftanninsonpermeatefluxesisobservedfromthe beginningoftheexperiment.Thefoulingoccurswithinthefirst minuteoffiltrationforthetwotestedconcentrationsoftannins. Thefluxesdecreaseforthestepshavingthesame1P(inexample steps2and5).Thismeansthatthefoulingispartiallyirreversible. Theobtainedpermeatefluxesarehigherfortheconcentrationof 1.25g/loftannins(average2.5×10−5m/sat1000mbar(step16))

than2.5g/l(average1.9×10−5m/sat1000mbar).Thefluxesare

5–6timeslowerthanthoseobtainedwithFW(1.4×10−4m/s)at

1000mbar.

Fig.8showstheevolutionofreversibleandirreversible resis-tance of wines with added tannins. As canbe seen, reversible resistanceforbothtestedconcentrationsdecreasedwhile increas-ingpressure. From thebeginning of theexperiments, theratio ofirreversibleresistanceovermembraneresistanceisnotequal tozero.It is equalto 0.39for FW+1.25g/loftannins and0.43 forFW+2.5g/loftanninswhicharetwicetheirreversible resis-tanceof FW.Thismeansthatirreversiblefouling occurswithin thefirstminuteoffiltration.Ontheotherhand,irreversible resis-tanceincreasedwithpressureuntilreach,at1000mbar,5times the hydraulic resistance of the membrane for both concentra-tions.

So,itisobviousthatcriticalfoulingconditionsarereachedfrom thebeginningoftheexperiments.Therefore,itisonlypossibleto

Fig.7. Permeatefluxevolutionduring1PsteppingperformedwithFWcontaining 1.25g/land2.5g/ltannins.

Fig.8. ImpactoftanninsonreversibleRrf()andirreversibleRif(d)fouling.

determinetheupperlimitoftherange,wherecriticalfluxcould befound,intheseconditions.Thisupperlimit(nottoexceed)is equalto1.95×10−5m/sforwinescontaining1.25g/ltanninsand

1.63×10−5m/sforthosecontaining2.5g/ltannins.

4.2.2. Impactofpolysaccharidesontheevolutionofthecritical flux

The impact of polysaccharides on critical flux was studied bytesting two categories of polysaccharides. Thefirst category includespectinwhichcomesfromgrapeberries.Pectineffectwas studiedat2concentrations:0.25g/land0.5g/l.Thesecond cate-goryisformedbymannoproteinswhosepresenceinwineisdueto thereleasefromyeastcellwall.Theimpactofmannoproteinswas alsostudiedattwoconcentrations:0.1g/land0.2g/l.Fig.9shows thepermeatefluxevolutionofthefourfiltrationsofwineadded withpolysaccharides.Forthetestedcompounds,resultsshowthat foulingoccursfromthebeginningofthefiltration.Also,fluxesare notequalfortwostepshavingthesamepressureevenatfirststeps ofpressure.Thisfactmeansthatthedeterminationofacriticalflux foreachcompoundatadefinedconcentrationisnotfeasiblefor thestudiedrangeofpressure.Theamountoffoulingisdifferent dependingonthetype ofpolysaccharidesandonits concentra-tion.

ThefluxevolutionsofFW+0.2g/lmannoproteinandFW+0.5g/l pectinareimportanttobeconsideredastheyprovideveryspecial shapeoffluxversustimeandresistanceversusfluxcurves:the ini-tialfluxinstepping1obtainedwhenprocessingFW+0.5g/lpectin (J=1.18×10−5m/s) is dividedby 2comparing to thatobtained

Fig.9.Permeatefluxevolutionduring1PsteppingperformedwithFW+0.1g/l mannoproteins,FW+0.2g/lmannoproteins,FW+0.25g/lpectinandFW+0.5g/l pectin.

(8)

Fig.10.Pectin’simpactonreversibleRrf()andirreversibleRif(d)fouling.

withFW(J=2.49×10−5m/s).Inaddition,alittlegainintermsof

averagefluxisobservedbyincreasingthetransmembrane pres-suretoreachamaximumofaveragefluxat400mbar(step8and

J=1.44×10−5m/s).Byincreasingthepressurebeyond400mbar,a

lossintermsofaveragefluxisobservedcomparedtothatobtained attheindicatedpressure.

As for FW+0.5g/l pectin, the same behaviour has been noticed to FW+0.2g/l mannoproteins. The initial permeate flux of FW+0.2g/l mannoproteins is higher compared to that obtainedwithFW+0.5g/lpectin.Themaximumofaverageflux (J=2.65×10−5m/s)isreachedat600mbar(step12)forFW+0.2g/l

mannoprotein.Beyond600mbar,permeatefluxdecreasedwhen increasingthetransmembranepressure.

Theevolutionofreversibleand irreversibleresistanceduring filtration wine added with pectin is illustrated in Fig. 10. The reversibleresistancefortheFW+0.25g/lpectindecreaseswhile increasingpressureandthusthepermeatefluxuntilitbecomes zeroat600mbar.Theirreversibleresistanceincreasesduringthe experimenttobecome5.5timesthemembraneresistanceathigher pressure.The curvesshapesof reversibleand irreversible resis-tanceofFW+0.5g/lpectinarenotcommon.Atthebeginningof thefiltration,araiseinpressureincreasesthepermeatefluxandthe irreversibleresistance.Beyond400mbar(J=1.44×10−5m/s),aloss

inaveragepermeatefluxisobservedwhileirreversibleresistance continuetoincrease.Itreaches5.5timesthemembraneresistance athigherpressure(1000mbar).Thereversibleresistancedecreases whenincreasingthetransmembranepressureandbecomeszeroat 500mbar.Therefore,beyondthispressure,theirreversible resis-tancebecomesequaltothetotalresistance.

Fig.11.Mannoproteins’impactonreversibleRrf()andirreversibleRif(d)fouling.

Fig.11showstheimpactofaddedmannoproteinonthe evo-lution of reversible and irreversible resistance. For FW+0.1g/l mannoprotein,theevolutionofbothresistancesissimilartothat obtainedwithtanninsand0.25g/lpectin.Irreversibleresistance reachesabout4 timesthemembrane resistance. In thecase of FW+0.2g/l mannoprotein,thecurves shapesof both resistance looklikethoseobtainedwith0.5g/lpectin.Thedifferenceisthe inflexionpointwhichisobtainedat600mbar(J=2.55×10−5m/s).

Irreversibleresistancereachesin this case7.5 timesmembrane resistance.

5. Discussion

In thepresent study, experimentswere realizedin orderto determine the critical flux for irreversibility Jci in wine

cross-flowmicrofiltration.Forcolloidalfiltration,thistermisthemore appropriatebecauseitdiscriminatesbetweenreversibleand irre-versiblefouling.Whenfilteringcolloidaldispersion,foulingcannot betotallyavoided duetothephenomenonoftheconcentration polarizationand insomecasesadsorption onmembrane mate-rial.But,thecoagulationofdispersedphaseclosetothemembrane surface,followedbydepositionuponit,canbeavoided.

In wine, tannins,pectin and mannoproteinpresent colloidal behaviours.Intheory,whenfilteringbelowthecriticalfluxfor irre-versibility,irreversiblefoulingbywinecolloidscanbeprevented. Inourexperiments,nocriticalfluxforirreversibilitycouldbe deter-minedforthewinecolloidsforthestudiedrangeofpressureswhich arethesameusedinwinefiltration.Alltestedmolecules, what-evertheconcentration,exhibitirreversiblefoulingevenatverylow pressures.

For wine tannins,itwasdemonstrated thattheiradsorption on membrane surface occurs in static conditions [9,10]. Under dynamic conditions, tannins tend to accumulate at the pore entranceonthemembranefeedside[9].Itseemsalso,accordingto

Fig.8,thattherateoffoulinganditstypeisstronglyinfluencedby thetransmembranepressure.Theincreaseinirreversiblefouling canbeexplainedbythetransitionbetweenthestateofdispersed moleculestoaggregates.Thisfactispromotedbytheincreaseof thetransmembranepressurewhichforcesthemoleculestobenear themembranesurfaceandpromotesmembrane/tanninsand tan-nins/tanninsinteractions.

Winepolysaccharideshavebeenidentifiedtoplayamajorrole in membrane fouling during cross-flow microfiltration of wine

[4–10].AccordingtotheresultspresentedinSection4.2.2, foul-ingbypolysaccharidescannotbeavoided.Itwasshownthatunder staticconditions polysaccharidesadsorptionis negligible[7].In dynamicconditions,polysaccharidesadsorptiontendstobe gov-ernedbythehydrophobic/hydrophiliccharacterofthemembrane

[10]aswellasbymembranepolarity[7].Inmostfruitjuices,pectin (awell-knowngellingagent)formsagel-layeronthemembrane surface[28–31].Theformation ofthis layeris enhancedbythe process.Kirket al.[32]as wellas Szaniawskiand Spencer[33]

showedabellshapedprofilewhenplottingpermeatefluxversus TMPduringthefiltrationofsolutionsrichinpectin.These observa-tionswereexplainedasfollowing:anincreaseinpressurewould causethemacromoleculeswhicharealreadyonthemembrane sur-facetopackmoretightly;Athighpressures,thedenselypacked pectinmoleculesformabarrieracrossthemembraneandprevent theflowofpermeateflux.Thisbarrierwasidentifiedasgel-layer

[34].Duringfiltrationofsolutionscontainingpectin,Raietal.[35]

showedthatanincreaseinpressureleadtoanincreaseinfluxtilla limitwhereagel-typelayergrowsrapidlybecauseiftheenhanced forcedconvectionofthesolutestowardsmembrane.Pectin hydrol-ysisbypectinasesleadstoanimprovementofthepermeateflux

(9)

Fig.12.(A)Pecticgellayeratmembranesurface,(B)pecticgellayercompaction,and(C)unstructuredpecticgellayer.

An unexpected phenomenon occurred when filtering FW+0.5g/l pectin and FW+0.2g/l mannoproteins (cf. Fig. 9). Afteragivenlevelofpressure,theaveragepermeatefluxbeginto decreasewithincreasingpressure.Infact,Kirketal.[32]showed thatpectinformsanelasticpecticgellayerwhichisevidencedby thepartialrestorationof permeateflux upongradualrelease of thetransmembranepressure.Thishighlights thatthepecticgel couldbe compressible.In our study,the following explanation canbe proposed. Thegel layerwascompressible tilla limit of pressure.Beyondthislimit,hydrogenbondbridges,thattransform thepecticchainsintogelaggregates(Fig.12A),collapseleadingto theclosureofinterstitialspacesbetweenthechains(Fig.12B).The gellayercanalsobeunstructuredunderpressureandfillpartially theporesleadingtoanadditionalfoulingincrease(Fig.12C).So, thecompactedpecticgellayeractsas asecondmembrane and mayretainothersolutes.Thisexplainstheresultsobtainedwith FW+0.5g/lpectin.

Mannoproteinsimpactonmembranefoulingwaslittlestudied intheliterature.Itwasshownthatmannoproteinsmightcausethe strongestdecreaseinwinefilterability[8].Mannoproteinsarenot agellingagentanddonotformagel-likestructureoverthe mem-brane.Mannoproteinsseemtoformadepositatthemembrane surface.Theresultsobtainedwhen filteringFW+0.2g/l manno-proteinscouldbealsoexplainedbyacompressiblecakewherethe spacesbetweenmoleculesarereducedwiththepressureincrease. Theseresultshighlightthatthecriticalfluxconceptis inappro-priatetobeindustriallyappliedtowinecross-flowmicrofiltration

withintheclassicalrangeofoperation.Therefore,otherconcepts shouldbetakenintoconsiderationlike“thresholdflux”term.Itis definedasthefluxatorbelowwhichmembranesystemwill gen-eratealowrateoffoulingandfluxesremainacceptablebutabove whichtherateoffoulingincreasesmarkedly[22].Thisdefinition wasusedfirstlyfor“sustainableflux”buttheconceptofthe lat-terismodifiedandincludeseconomicfactors.So,thisconceptis usefultodefineregionsoflowandhighfouling.Thecriteriaand aspectstodefinethisthresholdfluxmayvarydependingonwhat theresearchersareseeking.Thecriteriondefinedinthisstudyis basedontheratiobetweenirreversibleresistanceandthehydraulic membraneresistanceanditisdefinedas:“thefluxatwhichthe ratioRif/Rmisinferiorto1”.

Fig.13showedthecriterion(Rif/Rm≤1)usedtodeterminethe thresholdfluxandcomparisonoftheobtainedfluxwiththecritical fluxofirreversibility(Jci).ThedatashowninFig.13exceptforFW

representthehigherlimitoftherangethatcouldbeobtainedunder thedefinedconditions.

The threshold fluxes for all the filtrations are higher than those obtainedwith thecritical flux concept, even witha cer-taindegreeof fouling.Thegain influxes mayreach34%inthe case of FW+ 0.1g/l mannoprotein. In the cases of FW+0.5g/l pectinandFW+0.2g/lmannoprotein,criticalfluxfor irreversibil-itycouldnotbedeterminedbutathresholdfluxcouldbeobtained. In other hand, the critical and threshold fluxes are still much lower than those obtained with FW which are higher than 1.4×10−4m/s.

(10)

Fig.13.Comparisonofcriticalfluxforirreversibility(thebargivesherethelowervalueofcriticalfluxforFWandtheuppervalueofcriticalfluxforFWwithaddedmolecules) andthethresholdflux.

6. Conclusion

In this study, critical operating conditions during wine cross-flowmicrofiltrationwerestudied.Thesquarewave barov-elocimetry(SWB)wasusedtoassesstheevolutionofreversible andirreversibleresistancewithpermeateflux.Itallowsthe deter-mination of critical flux for irreversibility (Jci). For all tested macromolecules (tannins,pectinand mannoproteins) and asso-ciateconcentrations,noclearcriticalfluxforirreversibilitycanbe reallydeterminedintherangeoftestedpressures:thisstudy deter-minesthentheuppervalueofthecriticalflux.Infact,membrane foulinginpresenceofthesewinemoleculesoccursfromthefirst minuteoffiltration.Thisworkshowstheimportanceoftannins, pectinandmannoproteinonthemembranefoulingfor concentra-tionrangesclassicallyfoundinwine.Themainfoulingmechanisms areadsorptiononmembranematerialasshowedwithFW solu-tionand formationof depositlayeras proposedfor FW+0.2g/l mannoproteins.Agellayercompactionordeformationunderhigh pressuresisproposedtoexplainthephenomenonobservedwith FW+0.5g/lpectin.Newcriteriawereusedinordertodeterminea “thresholdflux”whereacertaindegreeoffoulingisacceptable.It leadstoaconvenientsetofoperatingconditionscompatiblewith industrialconstraints.

Acknowledgements

Theauthorsgratefullyacknowledge“PERA”societyand Cen-treNationaldeRechercheScientifique(CNRS)fortheirfinancial support.

Nomenclature

1P transmembranepressure(Pa) 1˘ osmoticpressure(Pa)

 permeateviscosity(Pas) FW filteredwine

J permeateflux(m/s)

Jci criticalfluxforirreversibility(m/s)

IC colourintensity

Rm membranehydraulicresistance(m−1)

Rads resistanceduetoadsorption(m−1)

Rrf reversibleresistance(m−1)

Rif irreversibleresistance(m−1)

SWB squarewavebarovelocimetry TPI totalpolyphenolindex

References

[1]A.G.Cook,P.Weinstein,J.A.Centeno,Healtheffectsofnaturaldusts:roleof traceelementsandcompounds,Biol.TraceElem.Res.103(2005)1–15. [2]A.Lüdemann,Wineclarificationwithacross-flowmicrofiltrationsystem,Am.

J.Enol.Viticult.38(1987)228–235.

[3]G.Belfort,R.H.Davis,A.L.Zydney,Thebehaviourofsuspensionsand macro-moleculessolutionsincross-flowmicrofiltration,J.Membr.Sci.96(1994)1–58. [4]Q.Gan,R.W.Field,M.R.Bird,R.England,J.A.Howell,M.T.McKechnie,C.L. Oshaughnessy,Beerclarificationbycross-flowmicrofiltration:fouling mech-anismsandfluxenhancement,Chem.Eng.Res.Des.75(1997)3–8. [5]M.P.Belleville,J.M.Brillouet,B.T.Delafuente,M.Moutounet,Foulingcolloids

duringmicroporousaluminamembranefiltrationofwine,J.FoodSci.57(1992) 396–400.

[6]P.J.CameiraDosSantos,Colmatageenmicrofiltrationtangentielle:miseen evidenced’interactionsentrelespolysaccharidesetlespolyphénolsd’unvin etdesmembranespolymériques,Ph.D.Thesis.UniversityofMontpellierII. EcoleNationaleSupérieureAgronomiquedeMontpellier,1995.

[7]M.N.Vernhet,J.M.BellonFontaine,E.Brillouet,M.Roesink,Moutounet,Wetting propertiesofmicrofiltrationmembrane:determinationbymeansofthe cap-illaryrisetechniqueandincidenceontheadsorptionofwinepolysaccharide andtannins,J.Membr.Sci.128(1997)163–174.

[8]A.Vernhet,P.Pellerin,M.P.Belleville,J.Planque,M.Moutounet,Relativeimpact ofmajorwinepolysaccharidesontheperformancesofanorganic microfiltra-tionmembrane,Am.J.Enol.Viticult.50(1999)51–56.

[9]M.Vernhet,Moutounet,Foulingoforganicmicrofiltrationmembranesbywine constituents:importance,relativeimpactofwinepolysccharidesand polyphe-nolsandincidenceofmembraneproperties,J.Membr.Sci.201(2002)103–122.

(11)

[10]M.Ulbricht,W.Ansorge,I.Danielzik,M.Konig,O.Schuster,Foulingin micro-filtration ofwine: theinfluenceofthemembranepolymeronadsorption ofpolyphenolsandpolysaccharides,Separ.Purif.Technol.68(2009)335– 342.

[11]P.Bacchin,P.Aimar,R.W.Field,Criticalandsustainablefluxes:theory, experi-mentsandapplications,J.Membr.Sci.281(2006)42–69.

[12]G.Gésan-Guiziou,E.Boyaval,G.Daufin,Criticalstabilityconditionsin cross-fluxmicrofiltrationofskimmedmilk:transitiontoirreversibledeposition,J. Membr.Sci.158(1999)211–222.

[13] W.Youravong,M.J.Lewis, A.S.Grandison,Criticalfluxinultrafiltrationof skimmedmilk,FoodBioprod.Process.81(2003)303–308.

[14] J.DeBruijin,R.Borquez,Analysisofthefoulingmechanismsduringcross-flow ultrafiltrationofapplejuice,LWT39(2006)861–871.

[15] P.Bacchin,P.Aimar,V.Sanchez,Modelforcolloidalfoulingofmembranes, AICHEJ.41(1995)368–377.

[16] R.W.Field,D.Wu,J.A.Howell,B.B.Gupta,Criticalfluxconceptformicrofiltration fouling,J.Membr.Sci.100(1995)259–272.

[17] J.A.Howell,Sub-criticalfluxoperationinmicrofiltration,J.Membr.Sci.107 (1995)165–171.

[18] D.X.Wu,J.A.Howell,R.W.Field,Criticalfluxmeasurementformodelcolloids, J.Membr.Sci.152(1999)89–98.

[19]L. Defrance, M.Y. Jaffrin, Comparison between filtrations at fixed trans-membranepressure andfixedpermeateflux:application toamembrane bioreactorusedforwastewatertreatment,J.Membr.Sci.152(1999)203– 210.

[20]A.G.Fane,Sustainabilityandmembraneprocessingofwastewaterforreuse, Desalination202(2007)53–58.

[21]P.Le-Clech,V.Chen,T.Fane,Foulinginmembranebioreactorsusedin wastew-atertreatment,J.Membr.Sci.284(2006)17–53.

[22]R.W.Field,G.K.Pearce,Critical,sustainableandthresholdfluxesfor mem-branefiltrationwithwaterindustryapplications,Adv.ColloidInterfaceSci. 164(2011)38–44.

[23]L.Usseglio-Tomasset,Lescolloïdesglucidiquessolublesdesmoûtsetdesvins, Connaissancedelavigneetduvin10(1976)193–226.

[24]P.Ribéreau-Gayon,Y.Glories,A.Maujean,D.dubourdieu,Handbookofenology volume2:thechemistryofwine,stabilizationandtreatments,2ndedition, Dunod,Paris,2006.

[25]C.Flanzy,Œnologie:fondementsscientifiquesettechnologiques,LavoisierTEC &DOC,Paris,1998.

[26]B.Espinasse,P.Bacchin,P.Aimar,Onanexperimentalmethodtomeasure criticalfluxinultrafiltration,Desalintaion146(2002)91–96.

[27] B. Espinasse, P. Bacchin, P. Aimar, Filtration method characterizing the reversibilityofcolloidalfoulinglayersatamembranesurface:analysisthrough criticalfluxandosmoticpressure,J.ColloidInterfaceSci.320(2008)483–490. [28]M.Z.Sulaiman,N.M.Sulaiman,L.Y.Shih,Limitingpermeatefluxinthe clarifi-cationofuntreatedstarfruitjuicebymembraneultrafiltration,J.Chem.Eng.68 (1998)145–148.

[29] M.Z.Sulaiman,N.M.Sulaiman,M.Shamel,Ultrafiltrationstudiesonsolutions ofpectin,glucoseandtheirmixturesinapilotscalecrossflowmembraneunit, J.Chem.Eng.84(2001)557–563.

[30]P.Rai,G.C.Majumdar,S.Dasgupta,S.De,Modelingofsucrosepermeation thoughapectingelduringultrafiltrationofdepectinizedmosambi[Citrus sinen-sis(L.)Osbeck]juice,J.FoodSci.71(2006)87–94.

[31] P.Rai,G.C.Majumdar,S.Dasgupta,S.De,Modelingofpermeatefluxofsynthetic fruitjuiceandmosambijuice(Citrussinensis(L.)Osbeck)instirredcontinuous ultrafiltration,LWT40(2007)1765–1773.

[32]D.E.Kirk,M.W.Montgomery,M.G.Kortekaas,Clarificationofpearjuiceby hollowfiberultrafiltration,J.FoodSci.48(1983)1663–1667.

[33]A.R.Szaniawski,H.G.Spencer,Microfiltrtaionofpectinsolutionsbyatitanium dioxidemembrane,KeyEng.Mater.61/62(1991)243–248.

[34]R.Jiraratananon,A.Chanachai,Astudyoffoulingintheultrafiltrationofpassion fruitjuice,J.Membr.Sci.111(1996)39–48.

[35]P.Rai,G.C.Majumdar,S.Dasgupta,S.De,Understandingultrafiltration perfor-mancewithmosambijuiceinanunstirredbatchcell,J.FoodProcess.Eng.28 (2005)166–180.

[36] F.Vaillant,P.Millan,G.O’Brien,M.Dornier,M.Decloux,M.Reynes,Crossflow microfiltrationofpassionfruitjuiceafterpartialenzymaticliquefaction,J.Food Eng.42(1999)215–224.

Figure

Fig. 1. Diagram representing the state of colloidal system at different flux values where R m = membrane resistance, R ads = resistance due to adsorption, R rf = reversible resistance and R if = irreversible resistance.
Fig. 2. Schematic representation, as seen by authors, of the critical flux of irre- irre-versibility and its relationship with the strong form and weak form of critical flux (R f = fouling resistance).
Fig. 3. (a) Scheme of the experimental setup for the critical flux determination and (b) the multi-channel ceramic membrane configuration.
Fig. 5. Permeate flux and 1P evolution during filtration of FW and their associated steps numbers.
+5

Références

Documents relatifs

Here it is pointed out that the findings of recent calculations and computer simulations concerning the effects of polydispersity on the crystallization of hard

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Capillary instability of this film prompts its evolution into a series of fluid droplets, inside of which the slack elastic thread wraps into a series of coils. The result is

Contrairement à la musique, la narration n’admet pas aisément la coïncidence entre le temps raconté et le temps de la lecture (temps de sa performation), même si elle cherche

During this filtration run, operating conditions were changed in order to determine effect of different parameters (US and shear flow). Discussions will be given step by

Participants (French Air Force student pilots) were notified by a verbal message or by a visual black screen on the PFD each time they spent more than 2 seconds looking at the

Our 3-D velocity model exhibits high velocities in the depth range of 30–50 km beneath western Arabia, eastern Mediterranean, Central Iranian Block, South Caspian Basin and the