• Aucun résultat trouvé

Precise Point Positioning: Performances under Ionospheric Scintillations

N/A
N/A
Protected

Academic year: 2021

Partager "Precise Point Positioning: Performances under Ionospheric Scintillations"

Copied!
49
0
0

Texte intégral

(1)

Precise Point Positioning

Matthieu Lonchay Performances under Ionospheric Scintillations

Geomatics Unit

New Navigator Seminar 2012

14 June 2012

NGI, The University of Nottingham

University of Nottingham, UK

Nottingham Geospatial Institute

(2)
(3)

Project

Geometry

(4)

Project

Geometry

(5)

The Precise Point Positioning – PPP - is an advanced satellite positioning technique

SPP – Standard Point Positioning

... ... ... ) ( , , i m p p i i m p i p i p i p D T I c t t P       

(6)

The Precise Point Positioning – PPP - is an advanced satellite positioning technique

Ionospheric Free (IF) model

Precise satellite clock and orbits products Code pseudorange and carrier-phase Tropospheric delay is estimated

IF IF N t t c T D t t c T D P p i IF P p i IF                     ) ( ) ( p i,

(7)

The Precise Point Positioning – PPP - is an advanced satellite positioning technique

IF IF N t t c T D t t c T D P p i IF P p i IF                     ) ( ) ( p i,

Iterative Least Square Adjustment (LSA)

(8)

0h 1h 2h 6h 12h 18h 24h 0 5 -5 Time [h] Error [m] North error East error Up error

(9)

0h 1h 2h 6h 12h 18h 24h 0 5 -5 Time [h] Error [m] North error East error Up error

(10)

The PPP suffers from several weaknesses 0h 1h 2h 6h 12h 18h 24h 0 5 -5 Time [h] Error [m] North error East error Up error

(11)

Ionospheric scintillations disrupt satellite signals propagation

(12)

Ionospheric scintillations degrade satellite signals quality

Signal phase fluctuations

Signal delay

Signal amplitude fluctuations

(13)

- Cycle slips

- Ambiguity resolution processes - Additional convergence time - Measurement noise

- Signal power fluctuations - Lost signals

- Geometry troubles - Signal delay

Ionospheric scintillations degrade satellite signals quality

Signal phase fluctuations

Signal delay

Signal amplitude fluctuations

(14)

0h 1h 2h 6h 12h 18h 24h 0 5 -5 Time [h] Error [m] North error East error Up error

Ionospheric scintillations decrease PPP performances

(15)

PPP performances under ionospheric scintillations can be improved

WP1 – Signals WP3 – Stochasticity WP5 – Ambiguity WP4 – Model WP2 – Geometry WP0 – GNSS Tools

(16)

Project

Geometry

(17)

Ionospheric scintillations reduce the number of available satellites

Signal amplitude fluctuations

(18)

Ionospheric scintillations reduce the number of available satellites

No signal

P

POS DOP

(19)

Ionospheric scintillations reduce the number of available satellites

6h 9h 12h 3 4 5 6 7 8 9 10 11 12 Time [h] Satellites No scintillation Scintillations

(20)

Ionospheric scintillations reduce the number of available satellites

6h 9h 12h 3 4 5 6 7 8 9 10 11 12 Time [h] Satellites No scintillation Scintillations

(21)

Ionospheric scintillations reduce the number of available satellites

N E S W 0° 30° 60° NORM0010.11O 09h00m00s UT G01 G03 G06 G07 G16 G18 G19 G21 G22

(22)

Ionospheric scintillations reduce the satellite geometry quality

6h 9h 12h 0 5 10 15 40 Time [h] PDOP No Scintillations Scintillations 6h 9h 12h 0 5 10 15 40 Time [h] PDOP No Scintillations Scintillations

(23)

The high DOP values are not only

involved by the low number of satellites

T1 DOP = 2.36 DOP = 13.78 T2 N E S W 0° 30° 60° N E S W 0° 30° 60°

(24)

T1 T2 47 . 3  N N  0.04 N E S W 0° 30° 60° N E S W 0° 30° 60°

The high DOP values are not only

(25)

A conical satellite geometry involves infinite DOP values

0  N 1 1 ˆ ( )   N A A Qx T                         1 sin cos cos sin cos ... ... ... ... 1 sin cos cos sin cos 1 sin cos cos sin cos 2 2 2 2 2 1 1 1 1 1 n n n n n A               

(26)

T1 DOP = 2.36 DOP = 13.78 T2 N E S W 0° 30° 60° N E S W 0° 30° 60°

The high DOP values are not only

(27)

T1 T2 T1 DOP = 2.36 DOP = 13.78 T2 N E S W 0° 30° 60° N E S W 0° 30° 60°

The high DOP values are not only

(28)

T1 T2 T1 DOP = 2.36 DOP = 13.78 T2 N E S W 0° 30° 60° N E S W 0° 30° 60°

The high DOP values are not only

(29)

The combined use of GPS and Galileo

strongly improves the satellite geometry

N E S W 0° 30° 60° MLAT0010.11O 01h23m00s UT

(30)

The combined use of GPS and Galileo

strongly improves the satellite geometry

N E S W 0° 30° 60° MLAT0010.11O 01h23m00s UT

(31)

The combined use of GPS and Galileo

strongly improves the satellite geometry

0h 3h 6h 9h 12h 0 1 2 3 4 5 10 Time [h] PDOP

(32)

The combined use of GPS and Galileo

strongly improves the satellite geometry

0h 3h 6h 9h 12h 0 1 2 3 4 5 10 Time [h] PDOP

(33)

Project - WP2 Geometry - Objectives

Quantify the improvement of PPP’s performances involved by the expanded GPS-Galileo satellite geometry - Precision - Time convergence - Reliability Ionospheric Scintillations

(34)

Project

Geometry

(35)

Ionospheric Scintillations degrade satellite signal quality

Signal amplitude fluctuations

(36)

Measurement error

P

POS DOP

 

Ionospheric Scintillations degrade receiver measurement precision

(37)

The PPP stochastic model considers receiver measures to be independent

2 2 1 2 2 2 21 1 12 2 1

...

...

...

..

..

..

..

n n n n n

(38)

The PPP stochastic model considers receiver measures to be independent

2 2 2 2 1

...

0

0

...

...

..

..

0

..

0

0

..

0

n

(39)

“Everything is related to everything else, but near things are more related than

distant things.”

First law of Geography…

(40)

Satellite signals are affected differently in case of scintillations S1C [dB-Hz] 2h 3h 4h 5h 6h 7h Time [h] 44 45 46 47 47 48 49 44 45 46 47 48 49 S1C [dB-Hz] S1C [dB-Hz]

(41)

Satellite signals are affected differently in case of scintillations N E S W 0° 30° 60° MLAT0010.11O 03h00m00s UT

(42)

Spatial Auto-Correlation (SAC) can be used to generate a new PPP stochastic model

N E S W 0° 30° 60° MLAT0010.11O 03h00m00s UT

(43)

Spatial Auto-Correlation (SAC) can be used to generate a new PPP stochastic model

N E S W 0° 30° 60° MLAT0010.11O 03h00m00s UT

(44)

Spatial Auto-Correlation index are computed on satellite geometry

N E S W 0° 30° 60° MLAT0010.11O 01h23m00s UT 2 ) ( ) )( ( v v v v v v w w N I i i j i ij j i ij j i          ij ij d w  1 i i S C v  1 SACSACrandom ‐1 0 1

(45)

Spatial Auto-Correlation is fluctuating 0h 3h 6h 9h 12h -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 Time [h] Moran's I

(46)

Perspectives

- Other SAC indices (Geary’C, …) - Realistic simulations

- Tracking error vs. Power signal - …

Spatial Auto-Correlation research will be expanded

(47)

Project

Geometry

(48)
(49)

Precise Point Positioning

Matthieu Lonchay – ULg

M.Lonchay@ulg.ac.be

Performances under Ionospheric Scintillations

New Navigator Seminar 2012

14 June 2012

NGI, The University of Nottingham

Marcio Aquino - UoN Craig Hancock - UoN René Warnant - ULg

Références

Documents relatifs

précisions sont apportées sur les moyens de réaliser une chambre à scintil- lations à l’aide de la caméra électronique Lallemand-Duchesne, et de filaments d’iodure

mènes précédents, mais surtout du fait que D et G sont des grandeurs statistiques (R. Pour. considérations théoriques, voir

une méthode de détection et de dénombrement de particules nucléaires basée sur le fait que ces particules provoquent, sur un écran fluorescent, des

Recent studies, focusing on Non Subject Relative Clauses, have proposed that relativiser omission could be explained by factors such as ambiguity avoidance, predictability (via

expressed by basal myoepithelial cells in the mammary gland (green on Fig. This co-staining demonstrates a basal localization for Slug expressing epithelial cells. To analyze a

variants co-segregated in the only available family mem- bers, which were the patient’s parents. Apart from the association with AMD, CFH mutations have been pre- viously

However, anterior neural tissue precursors (a6.5 lineage) ectopically expressed these two genes (Figure 3Q,R) and had reduced Dmrt1 expression (Figure 3T). These data indicate

Airborne Differential Absorption Lidar (DIAL) observations of tropospheric water vapour over Brazil and between Brazil and south Europe in March 2004 are compared to