• Aucun résultat trouvé

Carbon dioxide and methane dynamics in estuaries

N/A
N/A
Protected

Academic year: 2021

Partager "Carbon dioxide and methane dynamics in estuaries"

Copied!
29
0
0

Texte intégral

(1)

Carbon dioxide and methane dynamics in estuaries

Alberto V. Borges

1

and Gwenaël Abril

2

1

Université de Liège (BE)

2

Université de Bordeaux 1 (FR)

Vienna, 02 – 07 May 2010 http://www.co2.ulg.ac.be/

*

Due in 2011 if all goes well…

(2)

Vienna, 02 – 07 May 2010

(3)

Vienna, 02 – 07 May 2010 http://www.co2.ulg.ac.be/

River inputs

of CO

2

In-situ CO

2

production

= net ecosystem production

Emission of CO

2

to the atmosphere

(4)

Vienna, 02 – 07 May 2010

(5)

Vienna, 02 – 07 May 2010 http://www.co2.ulg.ac.be/

(1) Increasing ratio of

allochtonous inputs

of inorganic nutrients :

organic matter

(1)

(2)

(2) Decreasing size

(3)

(3) increasing light limitation

(6)

Vienna, 02 – 07 May 2010 http://www.co2.ulg.ac.be/

(1) allochtonous inputs of CO

2

(riverine and lateral)

(2) anoxic production of CO

2

(1)

(2)

(1)

(2)

(3) more rapid equilibration of O

2

than CO

2

(3)

(3)

1641 measurements in 24 estuarine environments

Net community production in estuaries

(7)

Vienna, 02 – 07 May 2010

http://www.co2.ulg.ac.be/

CO

2

River inputs

terrestrial organic matter

inputs (DOC) sustaining net

heterotrophy in the rivers

(pCO

2

)

Inputs of both DOC and

CO

2

from soils by

ground-waters and surface run-off

more refractory DOC

lower buffer

capacity

HCO

3

-

0 to 775 µM

(8)

Vienna, 02 – 07 May 2010

http://www.co2.ulg.ac.be/

CO

2

River inputs

In-situ CO

2

production

CH

4

degassing

and bacterial

oxidation

(9)

Vienna, 02 – 07 May 2010

http://www.co2.ulg.ac.be/

CO

2

River inputs

input of CO

2

from

rivers ~10% of total CO

2

emission from estuaries

increases in low

(10)

Vienna, 02 – 07 May 2010

http://www.co2.ulg.ac.be/

Physical settings - size

Mangrove creeks of Ca Mau (Vietnam)

decreasing size

decreasing size

Larger impact on smaller systems of inputs of pore waters rich in CO

2

& CH

4

Higher production of CO

2

and CH

4

in the water column and sediments sustained by

(11)

Vienna, 02 – 07 May 2010

http://www.co2.ulg.ac.be/

Physical settings - stratification

(1) Stratified systems

= transfer of O.M. across the pycnocline

= decrease of CO

2

in surface waters

= promoting anoxia in bottom waters

= favourable for methanogenesis

(1)

(2) Rhine

= high freshwater discharge

= short residence time

= low loss of riverine CH

4

by evasion to the

atmosphere and by bacterial oxidation

= lesser CO

2

production due net

heterotrophy

(2)

(3) Well-mixed systems

= increase of allochtonous

carbon inputs

= increase of both CO

2

&

CH

4

production

(3)

(4) Sado

= very extensive inter-tidal

areas and marshes

= higher lateral inputs of

CH

4

from pore waters

(4)

(5) Small mixed systems

= lateral inputs of CH

4

from

pore waters

= high allochtonous inputs

sustaining methanogenesis

(5)

(12)

Vienna, 02 – 07 May 2010 http://www.co2.ulg.ac.be/

CH

4

fluxes

Low tide

High tide

Ebullition (3)

Tidal pumping

Transport

through plants (2)

Aerobic oxidation

Water-air diffusion (4)

Labile OM

CH

4

Sulfate depletion depth

hydrostatic

pressure

hydrostatic

pressure

Sediment-air

Diffusion (1)

Tidal flats and marshes

O

2

CH

4

O

2

o

xi

d

at

io

n

Vegetation roots

A. Freshwaters and low salinity regions

Sediment-water diffusion

Estuarine Turbidity Maximum

Deposition & Resuspension

10-6-10-7 10-2-10-3 10-7-10-8

1.5±1.2

10-2-10-3 Anaerobic oxidation ? 10-8-10-9

14.5±17.5

1.5±1.2

0.1±0.1

Low tide

High tide

Ebullition (3)

Tidal pumping

Transport

through plants (2)

Aerobic oxidation

Water-air diffusion (4)

Labile OM

CH

4

Sulfate depletion depth

hydrostatic

pressure

hydrostatic

pressure

Sediment-air

Diffusion (1)

Tidal flats and marshes

O

2

CH

4

O

2

o

xi

d

at

io

n

Vegetation roots

A. Freshwaters and low salinity regions

Sediment-water diffusion

Estuarine Turbidity Maximum

Deposition & Resuspension

10-6-10-7 10-6-10-7 10-2-10-3 10-2-10-3 10-7-10-8 10-7-10-8

1.5±1.2

1.5±1.2

10-2-10-3 10-2-10-3 Anaerobic oxidation ? 10-8-10-9 10-8-10-9

14.5±17.5

14.5±17.5

1.5±1.2

1.5±1.2

0.1±0.1

0.1±0.1

mmol m

-2

d

-1

mol L

-1

(13)

B. High salinity regions

Low tide

High tide

Tidal pumping

Transport

through plants (6)

Water-air diffusion

Sulfate depletion depth

Sediment-air

Diffusion (5)

Mangroves and saltmarshes

Stratified Lagoons

and fjords (9)

Sediment-water diffusion

Anaerobic oxidation

10-7-10-8 10-3-10-4 10-8-10-9

Creeks at low tide (7)

Open waters and plumes (8)

10-5-10-6

Aerobic oxidation

10-2-10-3

0.14±0.10

0.18±0.02

0.04±0.17

1.85±0.99

0.32±0.27

Oxicline

10-5-10-6

Bubble dissolution

B. High salinity regions

Low tide

High tide

Tidal pumping

Transport

through plants (6)

Water-air diffusion

Sulfate depletion depth

Sediment-air

Diffusion (5)

Mangroves and saltmarshes

Stratified Lagoons

and fjords (9)

Sediment-water diffusion

Anaerobic oxidation

10-7-10-8 10-7-10-8 10-3-10-4 10-3-10-4 10-8-10-9 10-8-10-9

Creeks at low tide (7)

Open waters and plumes (8)

10-5-10-6 10-5-10-6

Aerobic oxidation

10-2-10-3 10-2-10-3

0.14±0.10

0.14±0.10

0.18±0.02

0.18±0.02

0.04±0.17

0.04±0.17

1.85±0.99

1.85±0.99

0.32±0.27

0.32±0.27

Oxicline

10-5-10-6 10-5-10-6

Bubble dissolution

Vienna, 02 – 07 May 2010 http://www.co2.ulg.ac.be/

CH

4

fluxes

mmol m

-2

d

-1

mol L

-1

(14)

Vienna, 02 – 07 May 2010 http://www.co2.ulg.ac.be/

CH

4

fluxes

0

20

40

60

0.01

0.1

1

10

100

Tidal flats (unvegetated)

Tidal marshes (vegetated)

Mangrove sediments

Salinity of surrounding w aters or porew aters

S

e

d

im

e

n

t

-

a

ir

C

H

4

f

lu

x

m

m

o

l.

m

-2

.d

-1

diffusion

ebullition

transport through plants

Increasing importance of

sulfate reduction

= out-competition

methanogenesis

(15)

Vienna, 02 – 07 May 2010

http://www.co2.ulg.ac.be/

Global scaling of CO

2

& CH

4

fluxes

(16)

Vienna, 02 – 07 May 2010

http://www.co2.ulg.ac.be/

Global scaling of CO

2

& CH

4

fluxes

Larger emission of CO

2

and CH

4

in the Northern Hemisphere

Related to surface area

(17)

Vienna, 02 – 07 May 2010

http://www.co2.ulg.ac.be/

Global scaling of CO

2

& CH

4

fluxes

PgC yr

-1

mol m

-2

yr

-1

10

6

km

2

Reference

0.60

36.5

1.40*

Abril and Borges (2004)

0.43

38.2

0.94**

Borges (2005)

0.32

28.6

0.94**

Borges et al. (2005)

0.36

32.1

0.94**

Chen and Borges (2009)

0.27

21.0

1.10***

this study

CO

2

emissions

* Woodwell et al. (1973) including intertidal areas

** Woodwell et al. (1973) excluding intertidal areas

*** Dürr et al. (2010)

(18)

Vienna, 02 – 07 May 2010

http://www.co2.ulg.ac.be/

Global scaling of CO

2

& CH

4

fluxes

TgCH

4

yr

-1

mmol C m

-2

yr

-1

10

6

km

2

Reference

0.8-1.3

36-59

1.40*

Bange et al. (1994)

1.8-3.0

79-132

1.40*

Middelburg et al. (2002)

6.8

385

1.10**

this study

CH

4

emissions

* Woodwell et al. (1973) including intertidal areas

** Dürr et al. (2010)

(19)

Vienna, 02 – 07 May 2010

http://www.co2.ulg.ac.be/

Global scaling of CO

2

& CH

4

fluxes

CH

4

emissions

Natural sources (TgCH

4

yr

-1

)

Wetlands

100-231

Termites

20-29

Ocean

4-15

Hydrates

4-5

Geological sources

4-14

Wild animals

15

Wildfires

2-5

Estuaries

7

(20)

Vienna, 02 – 07 May 2010

http://www.co2.ulg.ac.be/

Global scaling of CO

2

& CH

4

fluxes

CH

4

emissions

Aquatic sources (TgCH

4

yr

-1

)

Wetlands

100-231

Rice paddies

31-112

Hydroelectric reservoirs

70

Lakes

8-48

Ocean

4-15

Estuaries

7

(21)

}

Vienna, 02 – 07 May 2010

http://www.co2.ulg.ac.be/

Global scaling of CO

2

& CH

4

fluxes

-1.4

-0.3

+0.3

+0.1

+0.2

(22)

Vienna, 02 – 07 May 2010

http://www.co2.ulg.ac.be/

Conclusions

(23)

Vienna, 02 – 07 May 2010

(24)

Vienna, 02 – 07 May 2010

http://www.co2.ulg.ac.be/

Conclusions

Need of observations in more estuaries worldwide

(25)

Vienna, 02 – 07 May 2010 http://www.co2.ulg.ac.be/

Conclusions

months

2009

months

2008

d

is

ta

n

c

e

f

ro

m

m

o

u

h

t

(k

m

)

500

1500

2500

3500

4500

5500

6500

7500

120

110

100

90

80

70

60

50

40

30

20

10

0

J F M A M J J A S O N D

J F M A M J J A S O N D

River

North Sea

pCO

2

(ppm)

7220 ppm

4880 ppm

100 ppm

210 ppm

Scheldt estuary

(26)

Vienna, 02 – 07 May 2010

http://www.co2.ulg.ac.be/

Conclusions

Need of observations in more estuaries worldwide

Need of sustained observations to unravel inter-annual variations

(27)

Vienna, 02 – 07 May 2010

http://www.co2.ulg.ac.be/

Conclusions

(28)

Vienna, 02 – 07 May 2010 http://www.co2.ulg.ac.be/

Range of pCO

2

variations

(ppm)

Range of pCO

2

spatial variations

(ppm 100km

-1

)

Range of pCO

2

seasonal variations

(ppm month

-1

)

(29)

Vienna, 02 – 07 May 2010

Références

Documents relatifs

Examination of fire losses by occupancy (Table II) shows that although 72 per cent of all fires occur in residential properties, losses in this type of occupancy represent only.. 26

Box plots illustrating the frequency of haptic data types found in GP-generated models when unbalanced dataset are considered with NH fitness function.. Each box includes

This study focuses on modeling the remediation process by foam injection to better understand the various interactions between foams and pollutants in porous media.. In this study,

We demonstrate how enhancements in certain transport and adsorption properties can improve the overall performance of adsorption based thermal energy storage for

Dans les deux premiers chapitres, apr` es avoir pr´ esent´ e les ´ etapes de traitement du signal appliqu´ ees au signal sismique continu dans le but de calculer des intercorr´

Intérêt de l’utilisation d’un métal de transition pour activer une liaison CH Les métaux de transition possèdent la particularité d’avoir leur sous-couche

Before closing this section, let us remind that, for each inflationary model, ASPIC gives the expression of the first three Hubble flow parameters, a discussion of the mechanism

ةيبعشلا ةيطارقميدلا ةيرئازجلا ةيروهمجلا يملعلا ثحبلاو يلاعلا ميلعتلا ةرازو سيداب نب ديمحلا دبع ةعماج – مناغتسم - ةيضايرلاو ةيندبلا ةيبرتلا دهعم