• Aucun résultat trouvé

Adaptation and comparative study of thermal comfort in naturally ventilated classrooms and buildings in the wet tropical zones

N/A
N/A
Protected

Academic year: 2021

Partager "Adaptation and comparative study of thermal comfort in naturally ventilated classrooms and buildings in the wet tropical zones"

Copied!
8
0
0

Texte intégral

(1)

ContentslistsavailableatScienceDirect

Energy

and

Buildings

jo u r n al h om ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / e n b u i l d

Adaptation

and

comparative

study

of

thermal

comfort

in

naturally

ventilated

classrooms

and

buildings

in

the

wet

tropical

zones

Modeste

Kameni

Nematchoua

a,∗

,

René

Tchinda

b

,

José

A.

Orosa

c,∗

aEnvironmentalEnergyTechnologiesLaboratory,UniversityofYaoundéI,Yaounde,Cameroon bLISIE,UniversityInstituteofTechnologyFotsoVictor,UniversityofDschang,Dschang,Cameroon

cDepartmentofEnergyandM.P.EscuelaTécnicaSuperiordeN.yM,UniversityofACoru˜na,PaseodeRonda51,15011ACoru˜na,Spain

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received15April2014

Receivedinrevisedform9September2014 Accepted15September2014

Availableonline22September2014 Keywords: Naturallyventilated Wettropical Thermalcomfort Comparativestudy Buildings

a

b

s

t

r

a

c

t

Thispaperpresentstheresultsofastudyrelatingtothermalcomfortin28buildingsandschools,inthe

coastalandcentralareasofCameroon.Thisresearchwasconductedduringthedryandrainyseasons,

employingtheadaptiveapproach,innaturallyventilatedbuildings,inaccordancewithASHRAE55/2004,

ISO7730andISO10551.Windspeed,airtemperature,relativehumidityandCO2levelsweremeasured,

and2650questionnairesweredistributedsimultaneously.Theresultsrevealedthat76.7%ofthevoters

inDoualafoundtheresultsenvironmentallyacceptable,asagainst82.6%inYaoundé.Onaverage,74.6%

oftherespondentsfoundthatthesewerewithinthecomfortrange,while25.3%wereneutral.When

thelocalthermalcomfortfactorwasanalysed,itwasfoundthatthepercentageofdissatisfiedpersons

exceeded40%inbothcities,Yaoundéinparticular,duetoitshigheraveragetemperature.

©2014ElsevierB.V.Allrightsreserved.

1. Introduction

Acomfortable andhealthyenvironment is aprerequisitefor

robusthumanhealth.Theconceptofthermalcomfortisquite

com-plexandvariesaccordingtoeachsubject[1].However,although

manyinternationalstandardshavedefinedtherangeofcomfort,

opinionsstillstandstillwidelydivided.Comforthasbeendefined

asthestateofmindthatexpressessatisfactionwiththe

environ-ment[2].Aspeoplespendagreatpercentageoftheirtimeinindoor

ambiences[3],theindoorenvironment shouldbedesigned and

operatedtoensurethethermalcomfortandhealthofitsoccupants.

Theresultsobtainedfromvariousstudiesshowedthatpeopledo

notwhollyexpresstheirfeelingsregardingthermalpreferencesin

naturallyventilatedenvironments.Theresearchworksconducted

[4–7]revealedtheinfluenceexertedbythephysical,physiological

andpsychologicalfeelingsofpeoples’preferencesinanaturally

ventilatedenvironment. Different approaches were used inthe

studiesperformedoverthepastfewyearstoascertaintheoptimum

levelsofthermalcomfort. Thisproactiveapproachisa

develop-mentoftheanalyticalapproachinitiatedbyFanger[8].Itisbased

∗ Correspondingauthorsat:UniversityofYaoundéI,EnvironmentalEnergy Tech-nologiesLaboratory,Yaounde,Cameroon.Tel.:+23776965374;fax:+23722353866.

E-mailaddresses:kameni.modeste@yahoo.fr(M.K.Nematchoua), jaorosa@udc.es(J.A.Orosa).

onthecalculationofthepredictedmeanvote(PMV)andpredicted

percentage of the dissatisfied (PPD) fromsix main parameters

establishedbyMacpheson[9]including,clothingand metabolic

resistance, dry bulb temperature, radiant temperature, relative

humidityandwindspeed.Today,mostresearchersoptforthe

adap-tiveorproactivemodel.TheworkperformedinAustralia,besides

thoseconductedintheUSA,AfricaandEurope[10–19]highlight

theimportanceoftheadaptivemodels.Theresultsobtainedvaried

widely,dependinguponthelocationofthestudyandtheclimatic

seasonsprevalentthere.Inparticular,airtemperatureisoneofthe

elementswhichdirectlyaffectsthethermalcomfortinaroom.

Sev-eralstudiesintheliteratureemphasisedtheimportanceofthermal

comfortonproductivityinbuildings,offices,classroomsandother

enclosedspaces.Therefore,HusseinandHazrin[20]headedacase

studyinahealthcliniclocatedinsouthernMalaysia.Theirresults

showedthatover80%oftherespondentsvotedthethermal

condi-tionstobeacceptableand,despitethis,thosewhowereneutral

werenotalwayssatisfiedwiththethermalconditions.

Further-more,Hens[21],usingtwopracticalcasestudiesofthermalcomfort

duringworkinghours,foundaPMVofzeroandaPPDgreaterthan

5%,incleardisagreementwiththeactualstandards.Consequently,

newmodels,likelocalthermalcomfortindices,mustbeanalysed

undersuchconditions.

Ontheotherhand,inafieldsurveyperformedinJos(Nigeria)

developed byOgbonna [22], therangeof acceptableconditions

in tropicalclassrooms hasbeenrecommended. Furthermore,in

http://dx.doi.org/10.1016/j.enbuild.2014.09.029 0378-7788/©2014ElsevierB.V.Allrightsreserved.

(2)

Fig.1. Locationofthecitystudied.

theresearchdonebyZinganoinMalawi[23]theimportanceof

comfort-leveltemperaturehasbeenspecified.Finally,Miyazawa

[24]demonstratedthatduringthedifferentsleepstages,the

tem-peraturerange of thermal neutralityhoversbetween19◦C and

25◦C. Thisstudyaimstocomparetheresultsobtainedfroman

experimentalstudyof thermal comfort inthe tropicalwet and

warm (e.g., Douala) and tropical wet and cold (e.g., Yaounde)

regions.Inthepresentresearchwork,astudyispresentedonthe

thermalcomfort in 28buildings andschools in thecoastaland

centralregionsoftheCameroon,basedontheadaptiveapproach

andlocalthermalcomfortmodels.Thequestionnairemethodwas

employedandphysicalmeasurementsweretakensimultaneously

toobtaintheneutralthermalcomfortconditionsintheseregions.

Thisfirststudycanbethekeytodefiningnewstrategiestoimprove

thermalcomfortconditionsandreducethebuildingenergy

con-sumptionintheseindoorambiences.

2. Fieldstudy

2.1. Citiesanalysed

DoualaandYaoundérankamongthelargestcitiesinCentral

Africa,asseeninFig.1.DoualaistheeconomiccapitalofCameroon,

themainbusinesscentreandoneofthemajorcitiesinthecountry,

locatedontheAtlanticOceancoast,between4◦03Nand9◦42E,

coveringanareaofnearly210km2.TheclimateinDoualais

tropi-calwetandhot,characterisedbytemperaturesbetween18◦Cand

34◦C,accompaniedbyheavyprecipitation,especiallyduringthe

rainyseasonfromJunetoOctober.Theairnearlyalwaysrecords

99%relativehumidityduringtherainyseasonandabout80%during

thedryseason,betweenOctoberandMay.

Thecity ofYaoundé,ontheotherhand,isthepolitical

capi-talofCameroon,locatedcentrally,atanaltitudebetween600m

and 800m and approximately 300km from the Atlantic coast.

It enjoysa sub-equatorialclimate(tropicalwet andcold),with

fourseasons,includingalongdryseason(mid-Novembertolate

March),ashortrainyseason(Apriltomid-June),ashortdryseason

(mid-Junetomid-August),andalongrainyseason(mid-Augustto

mid-November).Thecityisspreadoverseveralhills,andenjoysa

relativelyfreshclimate,muchbetterthanthatalongthecoast,with

themaximumtemperaturerangingbetween30◦Cand35◦Canda

minimumtemperatureof15◦C.

2.2. Materials

Inthisstudy,theindoorairvelocity,relativehumidity,CO2,

tem-peratureandsurroundinglightintensityweremeasuredusingthe

Thermo-AnemometerModelC.A1226,CO2MonitormodelCO200

andaLightMeterIM-1308,respectively.Theoutdoortemperature,

wind speed, and relative humidityvalues weresimultaneously

collectedfrom theNationalWeather StationSystem.The main

characteristicsofthemeasurementsystememployedinthiswork

areshowninTable1.Allequipmentwerecalibratedbeforeeach

experiment to ensure reliability and accuracy in the readings

recordedduringthefieldstudies.

2.3. Methodology

The study was conducted during the summer and winter

seasonsin naturallyventilatedbuildings, adoptingtheadaptive

approach and using questionnaires to obtain quantitative data

ontheactualconditionsprevailinginthesehabitats.Toachieve

thisobjective,twodatacollectionmethodswereused,namely,a

questionnaireasthesubjectivemeasurementandaphysical

mea-surementofcertainparametersthatinfluencethethermalcomfort

conditionsinbuildings.Ineachbuilding,inaccordancewithprior

researchworks,samplingprocesseswereperformedbetweentwo

andfivedaysperseason,ineachdifferentroomoroffice.For

multi-storeybuildings,theofficeschosenwerethosethatsupporteda

greaternumber ofoccupants.Table2 showssomeofthestudy

periods.Regularlyandpriortothedistributionof the

question-naires,somequestionswerefilledupregardingtheoccupants,such

aspersonal data(age, sex)and micro thermalaspects (climatic

control),toelicitbetterresponsestothequestionnaires.

Themean radianttemperature (Tr)was estimatedusingthe

regressionmodelshowninEq.(1)asafunctionoftheair

tempera-turemeasured(Ta)proposedbyNagano[29]underadetermination

factorof0.99.

Tr=0.99×Ta−0.01, R2=0.99 (1)

Atthesametime,theoperativetemperature(To)was

deter-mined from the air temperature measured (Ta)and the mean

radianttemperature(Tr),asseeninthefollowingequation[2]:

To=A×Ta+ (1−A) ×Tr (2)

wheretheweightingfactor(A)dependsonairvelocity(w),asthe

followingequation:

A=0.5 for w<0.2m/s

A=0.6 for 0.2<w<0.6m/s

A=0.7 for 0.6<w<1m/s

(3)

2.3.1. Fieldmeasurementoftheenvironmentalparameters

Measurementsweretakenevery20minat aheightof1.2m

fromthegroundlevelinstrictaccordancewiththeprescriptionsof

theASHRAEStandard55[2]andISO7730Standard[25].Oncethe

deviceswereinstalled,measurementswererecordedstartingfrom

8:00AM,toenableeachunittogetadaptedtotheenvironment.

Thedatawerenotedregularlyuntil7:00PM.Thesemeasurements

providedfourofthesixparametersestablishedbyMacpheson[9]

includingthoseofairvelocity,relativehumidity,ambient

(3)

Table1

Characteristicsofthemeasurementsystem.

Function Range Resolution Accuracy

CO2monitor(model CO200) CO2 0–9999ppm 1ppm ±(5%rdg+50ppm) Temperature –10◦Cto60C 0.1C ±0.6C 14◦Fto140F 0.1C ±0.9F Humidity 0.1%to99.9% 0.1% ±3%(10–90%) ±5%(<10%or>90%)

Digitalthermometer Temperature −20◦Cto0C 1C ±5.0%ofrdg±4digits

0◦Cto400◦C 1◦C ±1.0%ofrdg±3digits 400◦Cto1000C 1C ±2.0%ofrdg C.A1226 thermoanemometer Airvelocity 0.15–3m/s 0.01m/s ±3%R+0.1m/s 3.1–30m/s 0.1m/s ±1%R+0.2m/s Temperature −20◦Cto+80C 0.1C ±0.3%R+0.25C

Airflow 0–99999m3/h 1m3/h ±3%R±0.03surf.

LightmeterIM1308 Lightmeter 40.0lx–300.0klx ±3% ±5%reading±0.5%scale

Table2 Periodsofstudy.

Cities Dryseason Rainyseason

Time Months Years Time Months Year

Douala Fourweeks Nov.–May 2011–2012 Threeweeks Jul.–Aug. 2012

Yaounde Fiveweeks Nov.–Feb. 2011–2012 Threeweeks May–Sep. 2012

usedtocalculatethePMVand PPDindices,in accordance with

Fanger’model.

Inmostcases,thermaluniformitywasdifficulttoachieve in

classroomsandbuildings.Hence,inthisstudy,themeasurement

oftheenvironmentalparameterswasconductedatvariouspoints

occupiedbytheoccupantswhowouldberespondingtothe

ques-tionnaires.

2.3.2. Subjectivemeasurements

The questionnairesemployed in this work were distributed

twiceaday(beforeandafternoon).Thisimpliedthat1450

ques-tionnaireswerecollectedandanalysedduringthestudy.

Thesequestionnaireswereconstructedinaccordancewiththe

ISO7730[25]andISO10551standards,asexplainedprior[26,27].

Fromthesequestionnaires,theclothingandmetabolicratewere

assessedaswellas,itwasalsopossibletoknowthesex,age,weight

andsizeofeachoccupant.Finally,asinthepreviousresearchworks,

thequestionnairesenabledtheidentificationofthethermal

sensa-tion,thermalpreferenceandacceptanceofthethermalcontrolof

airmovementandhumidityintheareasoccupied.

3. Resultsanddiscussions

Table3listssomeresultsofthephysicalmeasurementsobtained

in28buildingsandclassesstudied,locatedintwoprovinces

sit-uated in thecentral and coastalregions, as mentioned earlier.

Overall,63.2%oftheindividualsintheseareasofexperienceagreed

toconductthisstudywiththesubjectshavinganaverageageof

20.6yearsintheclassroomsand28.0yearsinthebuildings.

3.1. Thermaladaptationoftheoccupants

Thestudyofthethermalinsulationandmetabolicrateof

occu-pantsanalysed inthisworkwillbedescribedin thissection.In

particular,itmustberememberedthateachoccupanthadadjusted

theirmannerofclothinginaccordancewiththeirthermalsensation

towardsneutrality.

3.1.1. Clothingvalue

Fig.2aandbindicatethethermalinsulationversusthemean

indooroperativetemperatureinDoualaandYaoundé.Insulation

duetoclothingisalwaysthemostdifficultfactortobeestimatedin

anyfieldofinvestigation,duetothewidevarietyofclothingmodels

and,consequently,thiscannotbeaccuratelyestimated,in

accor-dancewiththeclothingindextabulatedbytheASHRAEandISO

standards.However,clothinginsulationwascalculatedusingthe

standardtabulationsaswellasfromtheinsulationvaluesobtained

fromtwomodelsasseeninthefollowingequations:

Icl=−0.05×Top+2.212, R=0.66 in Yaoundé (4)

Icl=−0.0685×Top+2.576, R=0.792 in Douala (5)

Fromthesemodels,itappearsthatclothinginsulationchanges

inverselywiththeoperativetemperature(see,Fig.2aandb).This

resistanceis stronglydependentuponthezonestudiedand the

y = -0.0685x + 2.576 R2 = 0.6289 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 0perave temperave (°C) Clo Douala y = -0.0505x + 2.2123 R2 = 0.4441 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 0perave temperave (°C) Clo Yaounde

(a)

(b)

Fig.2. (a)ThermalinsulationversusmeanindooroperativetemperatureinDouala (b).ThermalinsulationversusmeanindooroperativetemperatureinYaoundé.

(4)

Table3

Physicalmeasureddata.

Buildings&classrooms Operativetemperature(◦C) Meanvelocity(m/s) MeanCO2rate(ppm) Meanrelativehumidity(%) Meanluminosity(Lx)

C1 26.5 0.23 980.5 67.5 157.5 C2 25.0 0.18 805.7 62.5 322.5 C3 26.3 0.11 530.5 68.7 246.0 B1 258 0.15 979.5 66.5 146.5 B2 23.5 0.06 923.5 70.6 178.5 B3 23.8 0.09 877.5 69.5 185.5 B4 22.7 0.07 818.4 71.5 201.5 B5 26.1 0.12 457.5 65.5 196.5 B6 24.9 0.17 558.3 67.8 211.5 B7 25.3 0.14 1061.5 70.9 117.5 B8 25.5 0.18 750.9 71.0 199.7 B9 24.8 0.13 558.5 68.5 110.9 B10 25.6 0.15 597.0 71.3 172.6 B11 26.1 0.17 858.5 68.5 100.4 B12 23.6 0.21 938.5 725 209.0 B13 25.5 0.08 887.5 71.5 193.5 B14 25.9 0.29 1097.5 69.0 277.5 B15 24.8 0.10 920.0 72.7 205.6 B16 27.5 0.18 1011.0 69.0 230.5 B17 27.1 0.10 654.0 71.5 198.5 B18 26.3 0.21 967.5 71.5 254.5 B19 25.8 0.06 699.5 68.5 213.5 B20 27.8 0.27 887.5 72.5 301.5 B21 26.5 0.25 777.5 65.7 130.5 B22 24.9 0.30 1117.5 72.9 198.5 B23 27.6 0.12 548.5 59.5 205.7 C4 28.1 0.17 1039.0 67.5 159.9 C5 25.8 0.27 626.0 68.9 135.9

climatetype.Inparticular,therangevariesfrom0.36to1.45clo,

withan averageof 0.78cloforYaoundé, andbetween0.45 and

1.37clowithanaverageof0.67cloforDouala.

Fromthese results, we candeduce thatthe resistancefrom

clothingismuchgreaterinthetropicalwetcold(Yaoundé)thanin

thehothumidtropicalclimate(Douala).Onceagain,theseresults

confirmtheworkofMoujalledAndaletal.[28]regardingthe

ther-malinsulationofclothing,foranaverageclovalueof0.3–0.7clo.At

thesametime,DjongyangandTchinda[16]foundthatwith

wear-ingtropicalwarmclothes,theclothinginsulationrangedfrom0.81

to0.94clo,thusenablingthemtoconcludethatclothinginsulation

ishighlydependentontheseason.Therefore,duringthedry

sea-son,thermalinsulation,especiallyformen,rangedbetween0.4clo

and0.96cloinbothcities.

3.1.2. Metabolicrate

Metabolicratewascalculatedfromthedescriptionsofthe

activ-ities of the individuals recorded in the various questionnaires,

accordingtoISO7730[25].Theresultsobtainedfromthisstudy,

showsthatinbothDoualaandYaoundétheactivitiesaresubjectto

seasonalvariations,beingmoreintenseinthedrythanintherainy

season.Furthermore,fortemperaturesbetween18.7◦Cand28.5◦C,

theaverageactivityof1.1 putsthehot humidtropics (Douala)

againstthatof1.05inthecoldtropics(Yaoundé).Thisresult

con-firmsthathumanactivityslightlydecreaseswithanincreasingair

temperature.

3.2. Thermalsensationindices

Thermalsensation(Tsens)wasobtainedfromthequestionnaires

andthedifferentvaluesthusobtainedenabledustoarriveatFig.3,

andseverallinearcorrelations,asevidentfromEqs.(6)and (7).

Severalgoodcorrelations(R2=0.822andR2=0.937)betweenT

sens

andindoorairtemperaturearenoted.

Tsens=0.355×Ta−8.843, R2=0.822 in Douala (6)

Tsens=0.407×Ta−9.855, R2=0.937 in Yaoundé (7)

ThedifferentTsensvaluesobtainedvaryfrom−2.03to2.05,with

theaverageinternaltemperaturesrangingfrom16.5◦Cto28.5◦C

inthetropicalwetwarmclimateofDouala,andfrom−2.53to1.98

forarangeofaverageinternaltemperaturesbetween18.8◦Cand

28.0◦CinthetropicalwetcoldclimateofYaoundé.ForTsens=0,

theaveragetemperatureofneutralityinDoualaobtainedduring

thetwo seasonswas25.0◦C, whereasin Yaoundé itwasabout

24.7◦C.Also,itwasdifficulttoclearlyrecognisetherainyseasonin

Yaoundé. y = 0.355x - 8.8439 R2 = 0.6764 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 29 28 27 26 25 24 23 22 21 20 19 18 17 16 16 Air temperature (°C) Tsens Douala y = 0.4079x - 9.8558 R2 = 0.8794 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 29 28 27 26 25 24 23 22 21 20 19 18 17 Air temperature (°C) Tsens Yaounde

(a)

(b)

Fig.3. (a)ThermalsensationversusindoorairtemperatureinDouala.(b).Thermal sensationversusindoorairtemperatureinYaoundé.

(5)

InDouala,therainyseasonischaracterisedbyfloodinginseveral

quarters.Theaveragetemperaturehoversaround26.5◦C,except

forOctober5,whentheminimumtemperaturerecordeddropped

below17.0◦C.Bycontrast,DoualaandYaoundéhavethecommon

factorofauniformtemperature(19.5◦C),whichcorrespondsto

Tsens=−1.93,betweenlateSeptemberandearlyOctober.

3.3. Thermalacceptability,comfortandpreferences

3.3.1. Thermalacceptability

Theacceptabilityandeachthermalresponsetoeachdifferent

typeofambiencewasbasedonthePMVscale:−3(cold),−2(cool),

−1(slightlycool),0(Neutral),+1(slightlywarm),+2(hot)and3

(toohot).Asthequestionnaireshadbeenbasedonthisscale,Fig.4a

andbrevealtheresultsrecordedduringthetwostudyseasons.In

Fig.4a,thedryseasonisshownforsubjectswhovotedforindices

(−1,1);56.22%ofvoterswereacceptabletowardsthemiddlerange

inDouala,asagainst47.16%inYaoundé.Overall,76.56%ofthe

vot-ersinthehothumidtropics(Douala)wereacceptableasagainst

88.67%inthecoldhumidtropics(Yaoundé).theseresultsobtained

arenearoftheconclusionsofIbrahimHusseinduringhisfieldstudy

inMalaysia[20]Moreover,only12.98%ofthoseindices(−3,−2)

and(+2,+3)inDoualawerenotacceptabletowardsthemedium

range,asagainst6.63%inYaoundé.Duringtheheavyrainyseason

(Fig.4b),76.52%ofthevotersubjectsappearedamenabletowards

themiddlerangeinYaoundé,asagainst77.00%inDouala.

Atthesametime,thelocalthermalcomfortcanbeanalysed.

Overthelastfewyearsseveralempiricalequationsusedbysome

authors,likeSimonson[30],havebeenavailabletodoanindoor

airqualitystudy.Indices,suchasthepercentageofdissatisfaction

withthelocalthermalcomfort,thermalsensationandindoorair

acceptabilityweredeterminedintermsofsomesimpleparameters

likedrybulbtemperatureandrelativehumidity.Thus,thestandard

agreeduponbyANSI/ASHRAEandISO7730toestablishcomfort

boundaryconditionswasabout10%ofdissatisfaction.

Tomeetthestandardsoflocalthermalcomfortproducedbythe

insideair conditions,Toftumet al.[31,32]studiedtheresponse

of38 individualswho wereprovidedwithcleanair ina closed

environment.Asaresult,theequationforthepercentageoflocal

dissatisfactionwasdevelopedasshowninthefollowingequation:

PD= 100

1+e(−3.58+0.18×(30−t)+0.14×(42.5−0.01Pv) (8)

ASHRAErecommendsmaintainingthepercentageoflocal

dis-satisfaction below 15% and the percentage of general thermal

Fig.4.(a)Thermalsensationduringthedryseason(b).Thermalsensationduring therainyseason.

comfort dissatisfaction below 10%. As seen, this PD tends to

decrease when the temperature decreases and, consequently,

theselimitingconditionscanbeemployedtodefinetheoptimal

conditionsforenergysavingintheairconditioningsystems.

Con-sequently,Fig.5showstheindoorlocalthermalcomfortconditions

inkeepingwiththepreviousindices.Whentheindoorair

temper-aturevariedbetween26.5◦Cand28.0◦C,thePD≥50%.Thisresult

showsthatthepercentageofgeneralthermalcomfort

dissatisfac-tionevolvedinthesamewayasairtemperature.

3.3.2. Thermalcomfort

In Fig.6a,an average76.10% ofthevotersopted fora

com-fortableenvironment,with71.10%forthecityofDoualaagainst

81%inYaoundéduringthedryseason.Thermalsensationsvary

between individuals in the same environment and in different

8 9 10 11 12 13 14 15 16 17 18 28 27 26 25 24 23 22 21 20 19

DRY BULB TEMPERATURE (ºC)

W (g wa te r /k gdry ai r ) PD=10% PD=30% Acc=0.2 Acc=0 PD=50% PD=70% Acc=-0.4 Acc=-0.6 PD=20% Acc=-0.2 Douala Yaounde

(6)

-5% 0% 5% 10% 15% 20% 25% 30% 35% 3 2 1 0 -1 -2 -3 Thermal sensation Frequency of votes (%)

Comfortable (Douala) Uncomfortable (Douala) Comfortable (Yaounde) Uncomfortable (Yaounde)

-10% 0% 10% 20% 30% 40% 50% 60% 3 2 1 0 -1 -2 -3 Thermal sensation Frequency of votes (%)

Comfortable (Douala) Uncomfortable (Douala) Comfortable (Yaounde) Uncomfortable (Yaounde)

(a)

(b)

Fig.6. (a)Thermalcomfortduringthedryseason.(b)Thermalcomfortduringthe rainyseason.

regions[15,16].Ofthe38%ofthesubjectswithvotingindicesof

(−3,−2),and(+2,+3),19%foundacomfortableenvironmentfor

Douala,unlikeforYaoundéorinotherwords35%of50%foundthe

placecomfortable.In Fig.6b,itappearsthat87.0%ofthevoters

inDoualafoundacomfortableenvironmentduringtherainy

sea-son,asagainst59.4%inYaoundé.Ingeneral,duringthe23-month

study,79.5%ofthesubjectsparticipatedinthevoting,asagainst

70.1%inDoualacomparedwithYaoundé,whofounda

comfort-ableenvironment.Atotalof31.5%ofthevotersinDouala,against

19.5%ofthosewhovotedinYaoundé,foundtheirneutral

environ-ment.Wededucefromtheseresults,thatamediumneutraldoes

notnecessarilyindicateacomfortableenvironment[16–18].

3.3.3. Thermalpreference

Thermalpreferences and thermal sensations depend onthe

physical,psychologicalandphysiologicalfactors,whichare

unpre-dictable.Fig.7ashowstheresultsobtainedbythedifferentthermal

preferencesduringthedryseason.Fig.7aindicatesthat,inDouala,

74.5% of the voters desire an unchanged environment, against

59.49%forYaoundé.Also,19.84%oftheoccupantswishforacooler

environmentinYaoundé,asagainst25.97%inDouala.Forthis

fac-tor,fortherainyseason,thedatafromFig.7bshowsthat31.35%of

thevoterswishforawarmerenvironmentinYaoundé,asagainst

13.01%inDouala.Overall,duringtheentireexperimentalperiod,in

thedryandrainyseasons,moreoccupantsdesiredtheir

environ-menttoremainunchanged.Ananalysisofthesedifferentresults

showthatthermalsensationandthermalpreferencevaried

accord-ingtotypeofbuildingandalsoaccordingtoseason.Thisconclusion

confirmtheresultsfoundinthelastworks[34–36].

3.4. Internalenvironmentalparameters

Fig.8revealstheevolutionoftheaverageinternaltemperature

andrelativehumidity.InDouala,theaveragetemperaturevaries

from24.5◦Cto28.8◦C,whiletherelativehumidityvaluesrange

from49.9%to73.4%.InYaoundé,humidityrangesfrom46.8%to

73.7%,whiletheaveragetemperaturevariesfrombetween23.3◦C

and26.8◦C.Inmostcases,therelativehumidityvaluesobtained

-5% 0% 5% 10% 15% 20% 25% 30% 35% 3 2 1 0 -1 -2 -3

Thermal sensaon votes

Frequency of votes (%)

Want warmer(D) Want warmer(Y) Want cooler(D) Want cooler(Y) Want no change(D) Want no change(Y)

-10% 0% 10% 20% 30% 40% 50% 60% 3 2 1 0 -1 -2 -3

Thermal sensaon votes

Frequency of votes (%)

Want warmer(D) Want warmer(Y) Want cooler(D) Want cooler(Y) Want no change(D) Want no change(Y)

(a)

(b)

Fig.7.(a)Votesofthermalpreferenceduringthedryseason(b).Votesofthermal preferenceduringtherainyseason.

werenotinaccordancewiththeASHRAEcomfortrangeestablished

between30%and60%byCIBSE[2,3].

In Fig. 9a, the averagewind speed is 0.085m/s, alternating

between0.01m/s and 0.31m/s in Yaoundé, as against0.05m/s

and0.32m/sinDouala.OtherparameterslikeCO2concentration

andluminosityalsoexerttheirinfluenceontheindoorcomfort

ofabuilding.InFig.9b,indoorCO2concentrationdiffers

depend-ingonthebuildingmaterialsthathadbeenused,relevanttothe

habitatandtime.TheCO2 concentrationvariesfrom533ppmto

1168ppm,withtherecordedaveragebeing832.5ppminDouala,

asagainst887.5ppminYaoundé.ElevatedCO2rateinabuilding

affectthehealthofoccupant[33].Infact,ahighlevelofCO2can

causeheadacheandchangesinbreathrhythmsinhouses[33].The

effectofluminosityhasnotalwaysbeengoodintheoffices

stud-ied.Luminosityvariedfrom100.4to322.5lx,whenitisinferiorto

200lxinanoffice,itinfluencesonthehealth(seeTable3).

Differentoutdoorparameters(airtemperature,relative

humid-ityandwindspeed)alsoinfluenceindoorcomfort.Theseelements

havebeenstudiedandarediscussedinthenextparagraph.

(7)

0 0.1 0.2 0.3 8:00 8:20 9:00 9:20 10:00 10:20 11:00 11:20 12:00 12:00 1:00 1:20 2:00 2:20 3:00 3:20 4:00 4:20 5:00 5:20 6:00 6:20 7:00 7:20 Time (hours)

Indoor air speed ( m/s)

Douala Yaounde 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 8:00 8:20 9:00 9:20 10:00 10:20 11:00 11:20 12:00 12:00 1:00 1:20 2:00 2:20 3:00 3:20 4:00 4:20 5:00 5:20 6:00 6:20 7:00 7:20 Time (hours) CO 2 (ppm) Douala Yaounde

(a)

(b)

Fig.9. (a)Airspeedforthetwocities.(b)IndoorCO2concentrationforthetwo

cities.

3.5. Outdoorair

The relative humidity, as well as wind speed and air

tem-perature,exertsagreatinfluenceonthethermalsensationsand

preferenceswithinabuilding.InFig.10,themonthlyaveragesof

differentoutdoortemperatureshavebeenrecordedforthemonth

ofOctober2010leadinguptoSeptember2012.InDoualacity,the

temperaturesareabove26.0◦C, exceptfor themonthofAugust

2011,whereitis25.6◦C.Moreover,inYaoundé,theexternal

tem-peraturevariesfrom23.3◦C(correspondingtoOctober2010)to

25.9◦C (November 2011). Relative humidity is not predictable

becauseitisnonlinear.Byanalysingtherelativehumidityvaluesof

thedatarecordedfor24successivemonthsinFig.11,weobserve

thatitvariesfrom77.0%to90.0%forDoualawithanaveragevalueof

86%,whileinYaoundé,thevaluesrangebetween71.0%and85.0%,

andaverageat73.7%.Weconcludethattherelativehumidityis

muchgreaterinDoualathaninYaoundé.ThelocationofDouala

iscertainlyoneofthemaincausesforthisincrease inthe

rela-tivehumidityinthehumidwarmtropics.FromAugust2011to

February2012,thehumiditydecreasedconsiderablyinboththe

cities. 22 23 24 25 26 27 28 29 30

Oct(10) Nov(10 Dec(10) Jan(11) Feb(11) Mar(11 Apr(11) May(11 Jun(11) Jul(11) Aug(11) Sep(11) Oct(11) Nov(11 Dec(11) Jan(12) Feb(12) Mar(12 Apr(12) May(12 Jun(12) Jul(12) Aug(12) Sep(12) Months (Years)

Average outdoor air temperature (°C)

Douala Yaounde

Fig.10.Outdooraverageairtemperatureforthetwocities.

70 72 74 76 78 80 82 84 86 88 90 92

Oct(10) Nov(10 Dec(10) Jan(11) Feb(11) Mar(11 Apr(11) May(11 Jun(11) Jul(11) Aug(11) Sep(11) Oct(11) Nov(11 Dec(11) Jan(12) Feb(12) Mar(12 Apr(12) May(12 Jun(12) Jul(12) Aug(12) Sep(12) Months(Years)

Average outdoor relave humidity (%)

Douala Yaounde

Fig.11.Outdooraveragerelativehumidityforthetwocities.

0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3

Oct(10) Nov(10 Dec(10) Jan(11) Feb(11) Mar(11 Apr(11) May(11 Jun(11) Jul(11) Aug(11) Sep(11) Oct(11) Nov(11 Dec(11) Jan(12) Feb(12) Mar(12 Apr(12) May(12 Jun(12) Jul(12) Aug(12) Sep(12) Months(Years)

Avarege outdoor wind speed (m/s)

Douala Yaounde

Fig.12.Outdooraveragewindspeedforthetwocities.

While thewind speed is higher inYaoundé than inDouala,

according to the different values obtained in accordance with

Fig.12,thewindspeedvariesfrom0.9m/sto2.2m/sand0.7m/s

to1.4m/s,respectively,forthecitiesofYaoundéandDouala.The

averageis1.4m/s,anaverageof1.0m/sinDouala,asagainstthe

1.8m/sinYaoundé.ThelocationofYaoundé,acityconsideredto

bebuiltonsevenhills,certainlyinfluencesthewindspeedvelocity

inthisregion.

Theresultsobtainedemphasisetheimportanceofthermal

com-fort in the areas of study and work (offices). Preferences and

thermalsensationsvaryaccordingtotheindividual,evenifthey

comefromthesameareaandaresubjecttothesametypeof

cli-mate[37].Thebuildingsconstructedwithlocalmaterials,recent

aswellasthoseover25yearsofage,arelessinformed,andless

thanpollutingestablishmentsandnewlybuiltoffices.Therateof

theaverageCO2concentrationismuchhigherinYaoundéthanin

Douala.Theacceptabletemperaturerangesfrom22.4◦Cto26.7◦C

inYaoundé,andfrom24.3◦Cto27.8◦CinDouala.

4. Conclusion

Inthiswork,aninvestigationintotheexperimentaland

sub-jectiveresultsofthermo-hygrometricalcomfortconductedin28

buildingsandschoolslocatedintwocitiesofthewettropical

cli-maticzoneofCameroonispresented.Atotalof1450questionnaires

wereusedforboththedryandrainyseasons,whiledifferent

exper-imentalvaluesofindoorparametersweremeasured.Also,external

environmentalparameters,suchastheaveragemonthlyoutside

temperature,windspeedandrelativehumidityinthetwocities,

werereported.Theconclusionsdrawnfromthisstudyareas

fol-lows:

• Individualsexpresstheirfeelingsandthermalpreferences

differ-ently.

• Theaveragethermalinsulationis0.78cloinYaoundé,asagainst

(8)

• ForTsens=0,theaveragetemperatureofneutralityobtainedin

Doualaduringthetwoseasonsis25.0◦Cand24.7◦CinYaoundé.

• Newlybuilthabitatsaremorepolluting.

• 76.7%ofthevotersinDoualaareenvironmentallyoriented,as

against82.6%inYaoundé.

• InDoualaandYaoundé,duringthedifferentseasons,votersdesire

theirenvironmentstoremainunchanged.

• Inbothcities,theresultsoftheanalysisofthephysical

measure-mentsaredifferentfromthosegivenbythevoters.Constructions

are haphazard and do not take into account the

majority-languagecases,separatingthemintoanaccount-planningaspect

ofmicroclimate.Localmaterialsareusedinfavourofimported

materials.Beforebeginningaconstruction,itisadvisableto

con-ductapreliminarystudyonthetypeofclimateprevailinginthe

regiontoadapttothetypeofthecorrespondingconstruction

material.Thechoiceofventilationandairconditioningsystems,

humidifiersandfans,ishighlyimportantastheyaretheones

thatpolluteandconsumelesselectricity.Thechoiceof

materi-als,dependingontheclimaticconstraints,canbeasolutionto

overcometheuncomfortableheat.

Acknowledgements

Theauthorsaregratefultothevariousauthoritiesofthetwo

citiesselectedfortheresearchwhoprovidedtheopportunityto

examineandstudytheinformationrelevanttotheirlocalities.The

authorsalsothanktheheadoftheNationalWeatherStationand

allthose,nearandfar,whoparticipatedinthepreparationofthis

workduringtheperiodofthefieldstudy.

References

[1]R.DeDear,G.Brager,D.Cooper,Developinganadaptivemodelofthermal comfortandpreference,in:FinalReport—ASHRAEProjectRP884,1997. [2]ASHRAE,Thermalenvironmentalconditionsforhumanoccupancy,in:ASHRAE

Standard55,ASHRAE,Atlanta,2004.

[3]CIBSE,CIBSEGuideA,TheCharteredInstitutionofBuildingServicesEngineers, YalePress,London,1999.

[4]Y.H.Yau,Apreliminarythermalcomfortstudyintropicalbuildingslocated inMalaysia,InternationalJournalofMechanicsandMaterialsinDesign3(2) (2008)119–126.

[5]K.QiJie,N.M.Adam,Thermalcomfortinenclosedliftlobbyofatropical edu-cationalinstitution,InternationalJournalofAdvancedScienceandTechnology 15(3)(2010)8–18.

[6]G.ZhangAndal,Thermalcomfortinvestigationofnaturallyventilated class-roomsinasubtropicalregion,BuildingandEnvironment16(2007)148–158. [7]R.Daghigh,K.Sopian,Effectiveventilationparametersandthermalcomfort

studyofair-conditionedoffices,AmericanJournalofAppliedSciences6(5) (2009)943–951.

[8]P.O.Fanger,ComfortThermique,MCGrawHill,NewYork,NY,1970. [9]Z.Lin,S.Deng,Astudyonthethermalcomfortinsleepingenvironmentsinthe

subtropics—developingathermalcomfortmodelforsleepingenvironments, BuildingandEnvironment43(2008)70–80.

[10]J.F.Nicol,M.A.Humphreys,Adaptivethermalcomfortandsustainablethermal standardsforbuildings,EnergyandBuildings34(2002)563–572.

[11]N.H.Wong,S.S.Khoo,Thermalcomfortinclassroomsinthetropics,Energyand Buildings35(2003)337–351.

[12]F. Henry,N.H.Wong,Thermalcomfort fornaturally ventilatedhousesin Indonesia,EnergyandBuildings36(7)(2004)614–626.

[13]S.PaoloCorgnati,RobertaAnsaldi,MarcoFilippi,ThermalcomfortinItalian classroomsunderfreerunningconditionsduringthemid-seasons:assessment throughobjectiveandsubjectiveapproaches,BuildingandEnvironment44 (2009)785–792.

[14]A.Wagner,L.Roberto,Thermalcomfortinbuildingslocatedinregionsofhot andhumidclimateofBrazil,EnergyandBuildings1(23)(2005)1–22. [15]L.Zambrano,C.Malafaia,L.E.G.Bastos,Thermalcomfortevaluationinoutdoor

spaceoftropicalhumidclimate,in:PLEA2006—The23rdConferenceonPassive andLowEnergyArchitecture,Geneva,Switzerland6–8September,2006. [16]N.Djongyang,R.Tchinda,Estimationofsomecomfortparametersforsleeping

environmentsinthedry-tropicalsub-SaharanAfricaregion,EnergyConversion andManagement58(2012)110–119.

[17]A.G.Kwok,Thermalcomfortintropicalclassrooms,ASHRAETransactions104 (1B)(1998)1031–1047.

[18]N.H.Wong,K.W.Cheong,Thermalcomfortevaluationofnaturallyventilated publichousinginSingapore,BuildingandEnvironment37(2002)1267–1277. [19]H.Feriadi,N.H.Wong,Thermalcomfortfornaturallyventilatedhousesin

Indonesia,EnergyandBuildings36(2004)614–626.

[20]I.Hussein,M.H.A.Rahman,FieldstudyonthermalcomfortinMalaysia, Euro-peanJournalofScientificResearch37(1)(2009)134,52.

[21]H.Hens,Thermalcomfortinofficebuildings:twocasestudiescommented, BuildingandEnvironment44(2009)1399–1408.

[22]A.C.Ogbonna,D.J.Harris,Thermalcomfortinsub-SaharanAfrica:fieldstudy reportinJos—Nigeria,AppliedEnergy85(2008)1–11.

[23]B.W.Zingano,Adiscussiononthermalcomfortwithreferencetobathwater temperaturetodeduceamidpointofthethermalcomforttemperaturezone, RenewableEnergy23(2001)7–41.

[24]M.Miyazawa,Seasonalchangesofsleepenvironmentatbedtimeandonarising, in:TheProceedingofthe18thSymposiumonHuman-EnvironmentSystem, 1994.

[25]I.S.O.,Ergonomicsofthethermalenvironmentanalyticaldeterminationand interpretationofthermalcomfortusingcalculationofthePMVandPPDindices andlocalthermalcomfortcriteria,in:I.S.O.7730Standard,I.S.O.,London,UK, 2005.

[26]UNIENISO, Ergonomiadegliambienti termici—valutazionedell’influenza dell’ambientetermicomediantescaledigiudiziosoggettivo,in:UNIENISO 10551,UNIENISO,Gennaio,2002.

[27]A.TuanNguyen,M.KumarSingh,S.Reiter,Anadaptivethermalcomfortmodel forhothumidsouth-eastAsia,BuildingandEnvironment56(2012)291–300. [28]B.MoujalledAndal,Comparisonofthermalcomfortalgorithmsinnaturally

ventilatedofficebuildings,EnergyandBuildings40(2008)2215–2223. [29]K.Nagano,T.Mochida,Experimentsonthermaldesignofceilingradiantcooling

forsupinehumansubjects,BuildingandEnvironment39(2004)267–275. [30]C.J.Simonson,M.Salonvaara,T.Ojanen,ImprovingIndoorClimateandComfort

withWoodenStructures,TechnicalResearchCentreofFinland,Espoo,2001. [31]J.Toftum,A.S.Jorgensen,P.O.Fanger,Upperlimitsforindoorairhumidityto

avoiduncomfortablyhumidskin,EnergyandBuildings28(1998)1–13. [32]J.Toftum,A.S.Jorgensen,P.O.Fanger,Upperlimitsofairhumidityforpreventing

warmrespiratorydiscomfort,EnergyandBuildings28(1998)15–23. [33]M.Nematchoua,R.Tchinda,A.José,R.Gholamreza,Studyofdioxidecarbon

concentrationandindoorairqualityinsomebuildingsintheequatorialregion ofCameroon(Yaounde),InternationalJournalofHealthSciences2(2)(2014) 1–15.

[34]P.Ricciardi,C.Buratti,ThermalcomfortinopenplanofficesinnorthernItaly: anadaptiveapproach,BuildingandEnvironment56(2012)314–3207. [35]C. Buratti,P.Ricciardi,Adaptiveanalysisofthermalcomfortinuniversity

classrooms:correlationbetweenexperimentaldataandmathematicalmodels, BuildingandEnvironment44(2009)674–687.

[36]A.S.Dili,M.A.Naseer,Z.Varghese,ThermalcomfortstudyofKeralatraditional residentialbuildingsbasedonquestionnairesurveyamongoccupantsof tradi-tionalandmodernbuildings,EnergyandBuildings42(2010)2139–2150. [37]M.Nematchoua,R.Tchinda,A.José,Thermalcomfortandenergyconsumption

inmodernversustraditionalbuildingsinCameroon:aquestionnaire-based statisticalstudy,AppliedEnergy114(2014)687–699.

Figure

Fig. 1. Location of the city studied.
Table 3 lists some results of the physical measurements obtained in 28 buildings and classes studied, located in two provinces  sit-uated in the central and coastal regions, as mentioned earlier.
Fig. 3. (a) Thermal sensation versus indoor air temperature in Douala. (b). Thermal sensation versus indoor air temperature in Yaoundé.
Fig. 4. (a) Thermal sensation during the dry season (b). Thermal sensation during the rainy season.
+3

Références

Documents relatifs

Since shape analysis has a natural setting in infinite dimension (indeed, the shape space is typically the space of all submanifolds in IR d ), we will need to derive an

In order to determine potential risk factors for agoraphobia onset in the elderly, a mixed regression model adjusted for age and time to diagnosis examined the association

We proposed earlier a calix[4]arene- based molecular actuator for the contracting mechanism, in which π-dimer formation was proposed as a driving force.. In

Daytime outdoor temperatures higher than this correspond to a lower indoor temperature, an indication of both the suitability of the space for natural ventilation, and

Boosting Holistic Ontology Matching : an Extended Linear Approach and its Evaluation on Graph Clique- based Relaxed Reference Alignments.. 21st International Conference on

The aim of this study is to start from different angulated radiographs [5,6] of the same bone Region Of Interest (ROI) and see if a better relationship between texture analysis

on possible effects of these compounds on energy me- tabolism. Interestingly, the present study indicates that cell exposure to cis-RSV, often considered as a by- product of

ﺮﻳﺭﺎﻘﺘﻟﺍ ﻦﻣ ﺔﻋﻮﻤ ﺺﺨﻠﻣ ﻦﻋ ﺓﺭﺎﺒﻋ ﺔﻴـﺼﻔﻘﻟﺍ ﺪﻴﻟﺎﻘﺘﻟﺍ ﻭﺫ ﱵﻴﻟﻮﻴﻨﻟﺎﺑ ﺔﺻﺎﳋﺍ ﺔﻳﺮﺛﻷﺍ ﲏﻃﻮـﻟﺍ ﺪـﻬﻌﻤﻠﻟ ﺍﺮﻳﺪﻣ ﻙﺍﺬﻧﺁ ﻥﺎﻛ ﻱﺬﻟﺍ ﺲﺒﻣﺎﻛ ﻝﺎﻳﺮﺑﺎﻏ ﺎﻬﻌﲨ ، ﺔﻳﺮﺋﺍﺰﳉﺍ ﺀﺍﺮﺤﺼﻟﺎﺑ