• Aucun résultat trouvé

Economic and environmental strategies for process design

N/A
N/A
Protected

Academic year: 2021

Partager "Economic and environmental strategies for process design"

Copied!
16
0
0

Texte intégral

(1)

This is an author-deposited version published in:

http://oatao.univ-toulouse.fr/

Eprints ID:5092

To link to this article

: DOI: 10. 1016/j.compchemeng.2011.09.016

http://dx.doi.org/10.1016/j.compchemeng.2011.09.016

To cite this version

:

Ouattara, Adama and Pibouleau, Luc and

Azzaro-Pantel, Catherine and Domenech, Serge and Baudet, Philippe and Yao

Kouassi, Benjamin Economic and environmental strategies for process

design. (2012) Computers & Chemical Engineering, vol. 36 . pp. 174-188.

ISSN 0098-1354

O

pen

A

rchive

T

oulouse

A

rchive

O

uverte (

OATAO

)

OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.

Any correspondence concerning this service should be sent to the repository

administrator:

staff-oatao@inp-toulouse.fr

(2)

Economic

and

environmental

strategies

for

process

design

Adama

Ouattara

a

, Luc

Pibouleau

a

, Catherine

Azzaro-Pantel

a,∗

,

Serge

Domenech

a

,

Philippe

Baudet

b

,

Benjamin

Yao

c

aLGC-CNRS-INPT,UniversitédeToulouse,4,AlléeEmileMonso,BP84234,F-31432Toulouse1,France bProSim,StratègeBâtimentA,BP27210,F-31672LabègeCedex,France

cInstitutNationalPolytechniqueHouphouët-Boigny,Départementdegéniechimiqueetagro-alimentaire,BP1093Yamoussoukro,Coted’Ivoire

Keywords: Multiobjectiveoptimization Geneticalgorithm Eco-efficiency Economiccriterion Environmentalimpact

a

b

s

t

r

a

c

t

Thispaperfirstaddressesthedefinitionofvariousobjectivesinvolvedineco-efficientprocesses,

tak-ingsimultaneouslyintoaccountecologicalandeconomicconsiderations.Theenvironmentalaspectat

thepreliminarydesignphaseofchemicalprocessesisquantifiedbyusingasetofmetricsorindicators

followingtheguidelinesofsustainabilityconceptsproposedbyIChemE(2001).Theresulting

multiob-jectiveproblemissolvedbyageneticalgorithmfollowinganimprovedvariantoftheso-calledNSGA

IIalgorithm.AkeypointforevaluatingenvironmentalburdensistheuseofthepackageARIANETM,a

decisionsupporttooldedicatedtothemanagementofplantsutilities(steam,electricity,hotwater,etc.)

andpollutants(CO2,SO2,NO,etc.),implementedherebothtocomputetheprimaryenergy

require-mentsof theprocessandtoquantify itspollutant emissions.Thewell-knownbenchmark process

forhydrodealkylation(HDA)oftoluenetoproducebenzene,revisitedhereinamultiobjective

opti-mizationway,isusedtoillustratetheapproachforfindingeco-friendlyandcost-effectivedesigns.

Preliminarybiobjectivestudiesarecarriedoutforeliminatingredundantenvironmentalobjectives.

Thetrade-offbetweeneconomicandenvironmentalobjectivesisillustratedthroughParetocurves.In

ordertoaiddecisionmakingamongthevariousalternativesthatcanbegeneratedafterthisstep,a

syntheticevaluationmethod,basedontheso-calledTechniqueforOrderPreferencebySimilarityto

IdealSolution(TOPSIS)(Opricovic&Tzeng,2004),hasbeenfirstused.Anothersimpleprocedurenamed

FUCAhasalsobeenimplementedandshownitsefficiencyvs.TOPSIS.Twoscenariosarestudied;in

theformer,thegoalistofindthebesttrade-offbetweeneconomicandecologicalaspectswhilethe

lattercaseaimsatdefiningthebestcompromisebetweeneconomicandmorestrictenvironmental

impacts.

1. Introduction

In traditional chemical process design, attention has been focusedprimarilyupontheeconomicviability.Yet,chemicalplants can no longer be designed on the unique basis of technico-economicconcernsandtheotherdimensionsofsustainability– environmentaland social–leadingtotheso-called“Triple Bot-tomline”,mustbepartandparcelofthedesignphase.Thisstudy aimsatthedevelopmentofadesignframeworkforeco-efficient processes,following theguidelinesoftheenvironmentally con-sciousdesign(ECD)methodologyproposedbyAllenandShonnard (2002).

∗ Correspondingauthor.

E-mailaddresses:luc.pibouleau@ensiacet.fr(L.Pibouleau),

Catherine.AzzaroPantel@ensiacet.fr(C.Azzaro-Pantel),

Philippe.Baudet@ProSim.net(P.Baudet),beyao@yahoo.fr(B.Yao).

Amajordifficultytotackletheproblemisthattherearemany independentbutoftencompetingobjectivesthathavetobe consid-eredsimultaneously.Lotsofongoingresearchesaimatdeveloping asetofmetricsor indicatorsasproposedbyIChemE(2001).In thededicated literature,the amountof metricsmay vary from 10(AIChE,1998)to134(CSD,1996)todrawaquantitative pro-file of sustainability.The implementation ofa process-oriented sustainability metrics hasbeencarried out in parallelwith the developmentof adesign framework foreco-efficient processes, followingtheguidelinesoftheenvironmentallyconsciousdesign (ECD)methodologyproposedbyAllenandShonnard(2002).For thispurpose,severalindexesofenvironmentalimpactincluding ozone depletion,GlobalWarming Potential,humanandaquatic toxicity,photochemicaloxidation aswellasacidrainpotentials have tobetaken intoaccount. Such problems leadto multiple and mostoftenconflictinggoalsand must besolvedby means ofefficientmultiobjectiveoptimizationtools.Manyrecentworks usedthecombinationofmultiobjectiveoptimizationandlifecycle assessment approach for theeco-design of chemical processes.

(3)

Nomenclature

AP AtmosphericAcidificationPotential(eqtSO2/y)

Di distillateflowrateincolumnofdistillationi(kg/h)

EP EutrophicationPotential(eqtPO43−/y)

EBi ithenvironmentalburden

Fi alimentationflowrate(kg/h)

FUCA Frenchacronymfor“FaireUnChoixAdéquat” GWP GlobalWarmingPotential(eqtCO2/y)

HDA benzene production fromtoluene hydrodealkyla-tion

Hi,Ho enthalpiesofinputandoutputsteams(kJ/kg)

HP highpressure(Bar)

HTP HumanToxicityPotential(tC6H6/y)

hDi enthalpyofdistillateflowrateindevicei(kJ/kg)

hFi enthalpyofalimentationflowrateindevicei(kJ/kg)

hwi enthalpyofwasteflowrateindevicei(kJ/kg)

1Hstmi enthalpyofvapourizationofwaterinuniti(kJ/kg)

1Hstri enthalpy of vapourization of chemical stream i

(kJ/kg)

LP lowpressure(Bar)

MCDM multiple-criteriadecisionmaking MILP mixedintegerlinearprogramming MINLP mixedintegernonlinearprogramming

MP mediumpressure(Bar)

NLP nonlinearprogramming

˙mFO consumedflowrateoffueloil(t/h)

˙mstmi steamflowratedemandfordevicei(t/h)

˙m consumedflowrateofnaturalgasfuel(NM3/h)

NSGA non-sortedgeneticalgorithm

PCOP PhotoChemicalOxidationorsmogformation Poten-tial(eqtC2H4/y)

PEI potentialenvironmentalimpact Qbi heatsuppliedtoreboileri(kJ/h)

Qci heatextractedfromtheuniti(kJ/h)

R refluxratio

ratio fuelratio(%)

SBX simulatedbinarycrossover

TOPSIS TechniqueforOrderPreferencebySimilaritytoIdeal Solution

WAR WasteReductionAlgorithm

Wi wasteflowrate(kg/h)

 furnaceorboileryield(%)

 correlationcoefficient

Thisapproachisincreasinglybeingusedintheliterature(Azapagic &Clift,1999;Berhane,Gonzalo,Laureano,&Dieter,2009,2010; Gonzalo,2011).

Thisworkaimsatdevelopingadesignframework incorporat-ingenvironmentalissuesduringthepreliminarystagesofaprocess design.Theenvironmentcomponentisidentifiedasseveraldesign objectivefunctionsatthelevelofaprocessflowsheetsynthesis. First,a briefliterature surveydedicated toeco-friendlyprocess designviamodellingandoptimizationformulationisproposedin thispaper.Then,themethodologicalframeworkadoptedinthis workforeco-efficientchemicalprocessdesignisdeveloped.Inthis study,optimizationisperformedbya geneticalgorithm imple-mentedintheMultigenlibrary(Gomezetal.,2010)thatturnedout tobeparticularlywell-suitedformultiobjectiveprocess optimiza-tion.Thewell-known benchmarkprocessfor hydrodealkylation (HDA)of toluene toproduce benzene (Douglas,1988)is revis-itedinamultiobjectivemodeandillustratestheusefulnessofthe approach infinding environmentallyfriendly and cost-effective designs. A key point of the methodology is to capture in the

modellingapproachbothprocessandutilityproductionunits,since theenvironmentalimpactofachemicalprocessisnotonly embed-dedintheproductsinvolvedintheprocessbutisalsorelatedtothe energyconsumption,theeffectofflowrecycle,percentconversion andsoon.Thetrade-offbetweenthesevenconsideredobjectives (production,annualcostandfiveenvironmentalimpacts)begins byabiobjectiveeconomicoptimization(production,annualcost). Then, for a given production, the annual cost is deducedfrom theParetocurve.Biobjective optimizations areimplementedto establishmultilinearrelationsbetweensomeobjectivesinorder toreducethemultiobjectiveproblemsizetothreeantagonist cri-teria.Twocasesarefinallystudied.Intheformercasestudy,under afixedproductionlevel,theaimistofindtheoperatingconditions forgloballyimprovingtheenvironmentalimpacts.Inthelatter sce-nario,theobjectiveis tosatisfyenvironmentalrequirementsas thosethat might bedefinedby anEnvironmentalProtection in ordertohaveaGWP(GlobalWarningPotential)valuelessthan agiventhreshold;theotherenvironmentalimpactsarerequired tobeinferiortothevaluesobtainedinthefirstscenario.

2. Literaturereviewrelatedtoeco-friendlyprocessdesign In recent years, eco-design, which consists in taking into account environmental assessment at the preliminary stage of processdesign,hasbeenrecognizedasanefficient environmen-tallyfriendlyalternativetotraditionalprocessdesign.Currently, there is nostandardized methodology and almost no practical experienceinintegratingsustainablecriteriaintoprocessdesign (Azapagic,Millington,&Collett,2006).Generally,inthis kindof problem,theobjectiveistosimultaneouslymaximizeprofitwhile minimizingenvironmentalimpacts.Twoapproachesaregenerally consideredinchemicalsystemmodelling,thefirstoneisbasedon mathematicalprogrammingmethodsincludingeither determinis-ticalgorithmssuchasMINLP,NLP,MILPformulationsorstochastic optimizationtechniquestosolvethiskindofproblems.Some inter-estingreferencesinclude:SuryaandAlex(2002),Jia,Zhang,Wang, andHan(2006),TveitandFogelholm(2006),andVasiliosandShang (2008).Thesecondtechniquetomodelchemicalprocessesisthe useofsimulators.Flowsheetingprogrampackages,likeCHEMCAD, AspenPlus,HYSYS,PRO/II,and ProSimPlus,arecommonlyused inchemicalengineeringforprocessdesign.Theycanbeusedin anouter optimizationloop to optimizedifferent criteria.Some significantworks canbefoundinStanislav(2003),Lim,Dennis,

Murthy,andRangaiah(2005),Othman,Repke,Wozny,andHuang

(2010),andIskandarandRajagopalan(2011).Carvalho,Gani,and Matos(2008)developedagenericandsystematicmethodologyfor identifyingthefeasibleretrofitdesignalternativesofanychemical process.Thissystematicmethodologyhasbeenimplementedinto anEXCEL-basedsoftwarecalledSustain-pro.

More generally, sustainabledevelopment takesinto account theconceptoflifecycleassessment(LCA),whichisamethodfor analysingand assessing the environment impact of a material, productorservicethroughouttheentirelifecycle.Awholelifecycle includesallprocessesfromthecradletothegrave,i.e.rawmaterial, extraction,processing,transportation,manufacturing,distribution, use,reuse,maintenance,recyclingandwastetreatment.Björkand

Rasmuson(2002)developanewapproachtodesign

environmen-talimpactascumulativeformationofecopoints.Theyshowthat LCAisavaluabletool forenvironmentaloptimizationofenergy systems.Theapplicationofthewholelifecycleassessmentmay beconsideredas verytediousdue tothelackof informationat somestageofitsdevelopment.Tocircumventthisdifficulties,aset ofmetricsorindicatorsfollowingtheguidelinesofsustainability conceptshavebeendeveloped,IChemE(2001),AIChE(1998),CSD (1996)andsoon.Theseindicatorsusetheconceptofenvironmental

(4)

burdensdefinedasaquantitativemeasureofthepotential contri-butionofsubstancesreleased,toaparticularenvironmental poten-tialimpact.Itmustbeyethighlightedthattheyareoftenlimitedto acradle-to-gateorgate-to-gatestudy.Theenvironmentalburdens areusedtoevaluatetheenvironmentalimpacts insome strate-giesliketheWasteReductionAlgorithm(WAR)(Chen&Li,2008; Douglas&Heriberto,1999;Heriberto,Jane,&Subir,1999;Teresa, Raymond,Douglas,&Carlos,2003),theIChemEsustainability met-rics(DinizdaCosta&Pagan,2006;Labuschagne,Brent,&vanErck, 2005)theSustainableProcessIndex(SPI)(Ku-Pineda&Tan,2006; Narodoslawsky&Krotscheck,2004;Sandholzer&Narodoslawsky, 2007).Foragivenprocess,thepotentialenvironmentalimpacts arecalculatedfromstreammassflowrates,streamcomposition andemissionsfromutilitysystemsandarelativepotential envi-ronmentalscore(index)foreachchemicalcompoundisdeduced. TheSustainableProcessIndex(SPI)isanecologicalevaluation sys-temindex specially developed for the requirementsof process engineering.NarodoslawskyandKrotscheck(2004)usedthis envi-ronmentalevaluationmethodologytostudythesustainabilityof energyproduction systems. TheWARalgorithm is a methodol-ogyfordeterminingthepotentialenvironmentalimpact(PEI)of achemicalprocess.ThePEIbalanceisaquantitativeindicatorof theenvironmentalfriendlinessorunfriendlinessofa manufactur-ingprocess.TheWARalgorithmwasfirstintroducedbyHilalyand Sikdar(1994).Theyintroducedtheconceptofapollutionbalance whichwastheprecursortothePEIbalance.Douglas,Richard,and Heriberto(2000)usedtheWARalgorithmtoevaluatethe environ-mentimpactofanallylchlorideproductionfacility.Asystematic approachforsustainableassessmentofchemicalandenergy pro-ductionprocesswhichincorporatesexergyanalysistoquantifythe efficiencyofaprocessandanenhancedinherentsafetyindexto quantifythesocietalimpactofaprocess,hasbeenproposedbyLi, Zanwar,Jayswal,Lou,andHuang(2011).AccordingtoChenandLi (2008),thismethodgenerallydividedtheimpactcategoriesinto twogeneralareaswithfourcategories. Thefirstgeneralareais theglobalatmosphericlevelinvolvingGlobalWarmingPotential (GWP),Ozone DepletionPotential (ODP),Acidificationand acid-rainPotential(AP),PhotoChemicalOxidationorsmogformation Potential(PCOP).Thesecondgeneralareaisrelatedtothelocal toxi-cologicalimpactlevelandisassociatedwithHumanToxicity Poten-tialbyIngestion(HTPI),HumanToxicityPotentialbyeither inhala-tionordermalExposure(HTPE),AquaticToxicityPotential(ATP) andTerrestrialToxicityPotential(TTP).LiketheWARalgorithm,the methodologydevelopedbyIChemE(2001),alsousestheconceptof potencyfactorsfordifferenttypesofpollutants.Thetotal environ-mentalburdenrelatedtoanenvironmentalimpactcategoryis cal-culatedbysummingtheproductofdifferentpotencyfactorsof pol-lutantwiththemassflowrateofpollutantswhichcontributetothis environmentalburden.VasiliosandShang(2008)usedtheIChemE (2001)methodtocalculatetheenvironmentalimpactsofutility productionsystems.Thistechniqueisalsoadoptedinthisstudy fortheenvironmentalevaluation,sincethesecriteriahavebeen identifiedasrepresentativeoftheprocessindustries.Atthefinal stageoftheoptimizationstep,itmaybenecessarytohelpdecision makersindeterminingtrade-offsolutions,severaldecision anal-ysismethodscanbeimplemented.Pirdashti,Ghadi,Mohammadi, andShojatalab(2009)andZhouandPoh(2006)classifydecision analysismethodsintothreemaingroups:singleobjectivedecision making(SODM)methods,Multi-CriteriaDecisionMaking(MCDM) methods,anddecisionsupportsystems(DSS).Theiranalysis high-lightsthatMCDMmethodsthatarestructuralapproachtoanalyse problemswithseveralcriteriaandalternativesarethemostwidely usedstrategies.Theyhelpdecisionmakerstomakeconsistent deci-sionsbytakingalltheimportantobjectiveandsubjectivefactors intoaccount.AcomparisoncanbefoundinGoughandWard(1996). Amongtheavailabletechniques,theso-calledTechniqueforOrder

PreferencebySimilaritytoIdealSolution(TOPSIS)whichbelongsto MCDMgroupisusedforidentifyingthesetofoptimalparameters innumerousinvestigations.Li,Zhang,Zhang,andSuzuki(2009), Jiaetal.(2006),Ren,Zhang,Wang,andSun(2007)usedTOPSISas multicriteriadecisionmethodtotrade-offsolutions.

3. Eco-efficientchemicalprocessdesign 3.1. Generalframework

Thedesignofeco-efficientchemicalprocessesproposedinthis study(seeFig.1)integratesamathematicalmodelforthe consid-eredprocess,coupledwithanimpactassessment model,which is embedded in an outer multiobjective optimization loop. For processmodelling,commercialdesignandflowsheetingpackages couldbeclassicallyused.Theproposedframeworkisan alterna-tivedesignmethodologyforwasteminimizationtotheso-called WARalgorithm(Cabezas,Bare,&Mallick,1999;Young,Scharp,& Cabezas,2000),whichhasbeenextensivelyusedintheliterature. Letusrecallthatthismethodisbasedonapotential environmen-talimpact(PEI)balanceforchemicalprocesses.ThePEIisarelative measureofthepotentialforachemicaltohaveanadverseeffect onhumanhealthandtheenvironment(e.g.aquaticecotoxicolgy, globalwarming,etc.).TheresultofthePEIbalanceisanimpact (pol-lution)indexthatprovidesaquantitativemeasurefortheimpact ofthewastegeneratedintheprocess.

Recently,severalsystematicmethodologieshavebecome avail-ableforthedetailedcharacterizationoftheenvironmentalimpacts of chemicals,products, and processes, which include LifeCycle Assessment.The ideais tousetheirpotentialtodevelop a Life CycleAnalysismethoddedicatedtoprocess development.Since ourapproachfocusesondecreasingtheenvironmentalimpactsof themanufacturingstageandutilitysystems,onlya“cradle-to-gate” analysisisperformed.

Akeypointofthemethodologyimplementedhereistheuse of ARIANETM (http://www.prosim.net/en/energy/ARIANE.html,

2005) a decision supporttool dedicated tothemanagement of plants that produce energy under the form of utilities (steam, electricity, hot water, etc.) included in the PlessalaTM module

developedbyProSimS.A.(2005).ARIANETMisusedherebothto

computetheprimaryenergyrequirementsoftheprocessandto quantifythepollutantemissionsduetoenergyproduction. 3.2. Multiobjectiveoptimization

Like many real world examples,the problemunder consid-erationinvolvesseveralcompetingmeasuresofperformance,or objectives(Collette&Siarry,2002).Usingtheformulationof mul-tiobjectiveconstrainedproblemsofFonsecaandFleming(1998), ageneralmultiobjectiveproblemismadeupasetofncriteriafk,

k=1,...,n,tobeminimizedormaximized.Eachfkmaybe

nonlin-ear,butalsodiscontinuouswithrespecttosomecomponentsofthe generaldecisionvariablexinanm-dimensionaluniverseU.

f(x)=(f1(x),...,fn(x)) (1)

Thiskindofproblemhasnotauniquesolutioningeneral,but presentsasetofnon-dominatedsolutionsnamedPareto-optimal setorPareto-optimalfront.ThePareto-dominationconceptlieson twobasicrules:intheuniverseUagivenvectoru=(u1,...,un)

dominatesanothervector

v

=(

v

1,...,

v

n),ifandonlyif,

i∈{1,...,n}: ui≤

v

i

i∈{1,...,n}: ui<

v

i (2)

Foraconcretemathematicalproblem,Eq.(2)givesthe follow-ingdefinitionoftheParetofront:forasetofncriteria,asolution f(x),relatedtoadecisionvariablevectorx=(x1,...,xm),dominates

(5)

Fig.1.Generaloptimizationandmodellingframework.

anothersolutionf(y),relatedtoy=(y1,...,ym)whenthefollowing

conditionischecked(foraminimizationproblem),

i∈{1,...,n}: fi(x)≤fi(y)∧

i∈{1,...,n}: fi(x)<fi(y) (3)

Onagiven setof solutions,itis possibletodistinguish non-dominatedsets.ThelastdefinitionconcernstheParetooptimality: asolutionxu∈UiscalledPareto-optimalifandonlyifthereisno

xv∈Uforwhich

v

=f(xv)=(

v

1,...,

v

n)dominatesu=f(xu)=(u1,..., un).These Pareto-optimal non-dominated individuals represent

thesolutionsofthemultiobjectiveproblem.

Facedtothediversity ofmathematicalproblems,itis recog-nized thatthere is not a unique and generalalgorithm ableto solvealltheproblems perfectly.Actually,methodefficiency for aparticularexampleishardlypredictable,andtheonlycertainty wehave is expressedbytheNo Free Lunchtheory(Wolpert & Macready,1997):there isnomethodthatoutdoesalltheother onesforanyconsideredproblem.Thisfeaturegeneratesacommon lackofexplanationconcerningtheuseofamethodforthesolution ofaparticularexample,andusually,norelevantjustificationfor itschoiceisgivenapriori.Apossiblesolutionwastodevelop sev-eralalgorithms,distinguishingthembytheirstructureandbytheir typeofvariables(continuous,integer,binary)andcollecttheminto adatabase:Multigen(Gomezetal.,2010)liesonthis principle, andcurrently,sixdifferentalgorithmsareavailable.Theaimwas totreatmultiobjectiveconstrained-optimizationproblems involv-ingvarioustypesofvariables(boolean,integer,real)andsomeof theseproblemscanbestructuraloptimizationones.Multigenhas beenimplementedinVBAandinterfacedwithMicrosoftExcel®

. ThealgorithmsmusthandleconstraintsaswellasPareto domi-nationprinciples.Inthatway,proceduresbasedonindependent objectivestocarryouttheselection(likeVEGA,Schaffer,1985)are notadaptedtotheconsideredproblems.Proceduresbasedofthe nichenotion(NPGA–Horn,Nafpliotis,&Goldberg,1994;MOGA –Fonseca&Fleming,1993)cannotguarantee acorrect conver-genceoftheParetofront,duetothelowdiversityofthegenerated populations.MethodslikeSPEA(Zitzler&Thiele,1999)andNSGA

II(Deb,Pratap, Agarwal, & Meyarivan,2002) favournot domi-natedisolatedindividuals.InSPEA,theprobabilityofselectionis afunction oftheindividualisolation, whichis quitedifficultto implement.InNSGA,individualsfromthemostcrowdedzonesare eliminatedaccordingtoacrowdingsorting.Takingintoaccountall thepreviousitems,NSGAIIwaschosenasthebasisof develop-mentoftheMultigenlibrary.InthispaperthepackageNSGAIIb, whichdiffersfromtheinitialNSGAIIbythecrossoveroperator,has beenretained.Notethat,NSGAIIbimplementsthesamealgorithm thanNSGAII,withcorrectionsoncrossoveroperatortoavoidthe creationofclonesinherentofSBXoriginalversion.Whenthe gen-eratedrandomnumberusedtoperformthecrossoverisgreater thanagivencrossoverprobability,thecrossovermayproducetwo childrenidenticaltotheparents:SBXcrossovercodedinNSGAIIb includesaforcedmutationofchildrenwhenthiseventoccurs.The objectiveistoavoidunnecessarycalculationsforclonesofexisting solutions:allsolutionsgeneratedbythereproductionprocedure arestatisticallydifferent.TheNSGAIIbalgorithmwasimplemented totreatvariablesofdifferentnature,eithercontinuous,orinteger. Sinceouranalysisisrestrictedtotreatcontinuousvariables,the waytohandleintegervariablesisnotdetailedinthispaper.The interestedreaderwillfinmoreinformationin(Gomezetal.,2010). Constrainedmultiobjectiveoptimizationisthemostcommon, kindofprobleminengineeringapplications.Ingeneral,threekinds ofconstraintsareconsidered:simpleinequality(≤),strict inequal-ity(<),andequality(=):

g(x)≤c1 r(x)<c2 h(x)=c3

constr1(x)=c1−g(x)≥0 constr2(x)=c2−r(x)>0 constr3(x)=c3−h(x)=0 (6)

where(g,r,h)arereal-valuedfunctionsofadecisionvariablex=(x1,

(6)

c3)areconstantvalues.Inthemoregeneralcase,theseconstraints arewrittenasvectorsofthetype:

coEnstr1(x)=((c1−g(x))1,...,(c1−g(x))n1) =(constr1(x)1,...,constr1(x)n1)≥0 coEnstr2(x)=((c2−r(x))1,...,(c2−r(x))n2) =(constr2(x)1,...,constr2(x)n2)>0 coEnstr3(x)=(−|(c3−h(x))|1,... ,−|(c3−h(x))|n3) =(constr3(x)1,...,constr3(x)n3)=0 (7)

where n1, n2, and n3 arerespectively, the number or inequal-ity, strict inequality and equality constraints. This formulation impliesthateachconstrivaluewillbenegativeifandonlyifthis

constraint is violated. The conversionof Eq. (6), that is a clas-sical representationof constraintsset,toEq. (7) representation constitutesthefirststepofaunifiedformulationof constrained-optimization problems. In practice, due to round-off error on real numbers, the equality constraint constr3 was modified as

follows: coEnstr3(x)′=(−|(c3−h(x))|1+ε1,...,−|(c3−h(x))|n3+εn3) =(coEnstr3(x))+ Eε =0 E ε=(ε1,...,εn3),

i∈{1,...,n3}, εi∈R (8) E

εiscalleda“precisionvector”oftheequalityvector,andtakes lowvalues(lessthan10−6forexample).Thisapproximationisnot

necessarywhenequalityconstraintinvolvesonlyintegerorbinary variables.

FromEqs.(7)and (8),theconstraintsatisfaction impliesthe maximization ofviolated constraintsin vectorsconstr1,constr2,

andconstr3.AccordingtoFonsecaandFleming(1998),the

satisfac-tionofanumberofviolatedinequalityconstraintsis,fromEq.(7), amultiobjectivemaximizationproblem.Fromatheoreticalpoint ofview,a constrainedmultiobjective optimizationproblemcan beformulatedasatwo-stepoptimizationproblem.Thefirststep impliesthecomparisonofconstraintsatisfactiondegreesbetween twosolutions,usingthePareto’sdominationdefinitionofEq.(3), butamoresimplesolutionconsistsincomparingthesumof val-uesofviolated constraintsonly,asin NSGAIIalgorithmofDeb etal.(2002),whichimplies therearenopriorityrulesbetween constraints.

3.3. Multiple-criteriadecisionmaking(MCDM) 3.3.1. Introduction

MCDMapproachesaremajorpartsofdecisiontheoryand anal-ysis.MCDMareanalyticmethodstoevaluatetheadvantagesand disadvantagesofalternativesbasedonmultiple-criteria.The objec-tiveistohelpdecision-makerstolearnabouttheproblemsthey face,andtoidentifyapreferredcourseofactionforagiven prob-lem.Huang,Poh,andAng(1995)mentionedthatdecisionanalysis (DA)wasfirstappliedtostudyproblemsinoilandgasexploration inthe1960sanditsapplicationwassubsequentlyextendedfrom industrytothepublicsector.Tillnow,MCDMmethodshavebeen widelyusedinmany researchfields.Differentapproaches have beenproposed by many researchers, includingsingle objective decision-making(SODM)methods,MCDMmethods,anddecision support systems (DSS). Literature shows that among MCDM methods,DAstrategiesarethemostcommonlyused(Zhou&Poh, 2006).TheselectionofasingleParetopointfromthePareto fron-tiermaybedifficultasthenumberofobjectivesincreases.Some intuitivemethodssuchastheso-called“knee-method”couldbe efficientforabinarycase.Thisiswhyothermethodsarenecessary

to tackle the multicriteria nature of the results generated by theGA.

3.3.2. Findingknees

Branke,Deb,Dierolf,andOsswald(2004),andTaboadaandCoit (2006)suggestpickingthekneesintheParetofront,thatistosay, solutionswhere asmallimprovement inoneobjectivefunction wouldleadtoalargedeteriorationinatleastoneotherobjective. 3.3.3. TOPSIS

Inpractice,theTechniqueforOrderingPreferencebySimilarity toIdealSolutions(TOPSISmethod)and othermultipleattribute decision making(OMADM)methods arethemostpopular(Ren et al., 2007; Yoon & Hwang, 1995). In this work, the TOPSIS methodologywasusedasdecisionmakingtool.Afterthe gener-ationofthePareto-optimalset,theTOPSISmethodisusedtoaid decision–makerintrade-offingthewholealternatives.Thebasic principleofTOPSISisthatthechosenalternativeshouldhavethe shortestdistancefromtheidealsolutionandthefarthestdistance fromthenegative-idealsolution(Opricovic&Tzeng,2004; Ren etal.,2007;Saaty,1980).

StepsusedinTOPSISasdescribedbyRenetal.(2007)arebriefly describedinwhatfollows:

Step1:Alltheoriginalcriteriareceivetendencytreatment.That consistintransformingthecostcriteriaintobenefitcriteria,which isshownindetailasfollows:

(i)Thereciprocalratiomethod(X′

ij=1/Xij)referstotheabsolute

criteria;

(ii)Thedifferencemethod(X′

ij=1−Xij),referstotherelative

cri-teria.

Aftertendencytreatment,constructamatrix X′[X

ij]n×m, i=1,2,...,n; j=1,2,...,m. (9)

Step2:CalculatethenormalizeddecisionmatrixAasfollows: A=[aij]n×m aij= X′i j max(X′i j)

(j=1,2...,m.) foracriteriontobemaximized (10a) aij=1− X′i j max(X′i j)

(j=1,2...,m.)foracriteriontobeminimized (10b)

Step3:Determinethepositiveidealandnegativeidealsolution fromthematrixA

A+=(a+ i1,a + i2,...,a + im), a + ij =1≤i≤nmax(aij), j=1,2,...,m (11) A−=(a−i1,a−i2,...,a−im), a−ij = min 1≤i≤n(aij), j=1,2,...,m (12)

Step 4: Calculate the separation measures, using the n-dimensionalEuclideandistance.Theseparationofeachalternative fromthepositiveidealsolutionisgivenas

D+i =

v

u

u

t

m

X

j=1 Wj(a+ij−aij) 2 (13)

(7)

Similarly, theseparation from the negativeideal solution is givenas D−i =

v

u

u

t

m

X

j=1 Wj(a−ij −aij) 2 (14)

Step5:Foreachalternative,calculatetheratioRias

Ri=

D−i

D−i +D+i , i=1,2,...,n (15)

Step6:Rankalternativesinincreasingorderaccordingtothe ratiovalueofRiinstep5

3.3.4. FUCA

FUCAistheFrenchacronymforFaireUnChoixAdéquat(Make AnAdequateChoice).Thissimplemethodisbasedonindividual rankingsofobjectives;foragivencriterion,rankoneisassignedto itsbestvalueandrankn(nbeingthenumberofpointsofthePareto front)totheworstone.Then,foreachpointofthefront,aweighted summation(theweightsrepresentingthepreferences)ofranksis performed,andthechoiceiscarriedoutaccordingtothelowest valuesof thesum. Ina recent paper(Moralez-Mendoza, Perez-Escobedo,Aguilar-Lasserre,Azzaro-Pantel,&Pibouleau,2011)the FUCAmethodwascomparedwithclassicalMCDMproceduresona tricriteriaproblemrelatedtotheportfoliomanagementina phar-maceuticalindustry.ForeachsolutionfoundbyELECTRE(Teixeiro deAlmeida,deMiranda,&CabralSeixasCosta,2004),PROMETHEE (Zhaoxa&Min,2010)andTOPSIS,theFUCArankingisalsoreported. AverygoodagreementbetweenthethreeclassicalMCDM meth-odsandFUCAcanbeobserved,showingtheefficiencyoftheFUCA procedure,whichalwaysfindsthebestsolutionselectedbyoneof theothers.

3.4. Utilityproductionmodelling

ARIANETM software tool has been developed by ProSim

Company(French chemical engineeringSoftware Company) for designing assistance and optimal operation of power plants. ARIANETM makesitpossibletooptimizeandmodel anyenergy

combinedproduction plant (steam, hotwater, electricity, com-pressedair,cooling),whateveritssizeandcomplexity.ARIANETM

isadecisionsupporttooldedicatedtothemanagementofplants thatproduceenergyundertheformofutilities(steam, electric-ity,hotwater,etc.).ARIANETM,writteninVBA,presentsastandard

libraryofunitoperationsinvolvedinpowerplants:boilers (mono-fuel,bi-fuel,electrical),turboalternators (backpressureturbines, sidestreamturbines,condensating turbines),switchable or per-mutableturbines(inparallelwithelectricmotors),fuelturbines andthermalengines (withorwithoutrecoveryheatexchanger, withorwithoutpostcombustionboiler),valves,heatexchangers anddeaerators.Alltheseunitoperationscanbedescribed,from thesimplest(minimalistmodelling, withdefaultvalues) tothe mostcomplex(veryfinemodellingofthecharacteristicsand tech-nicalconstraints);thecomplexityofphysicalmodelsrequiringin manycasestousenonlinearequations.Theinherentmodel com-plexityanditsassociatedequationsaretotallytransparentforthe user.Intheframeworkofeco-designmodelling,theproblemlies inintegratingenvironmentalaspectsinsideARIANEsoftware,so thatemissionscanbetakenintoaccountintheglobalenergy bal-ance.Estimationmethods,toevaluatetheemissionsofallinvolved powerplantsequipmentitemshavethentobecompatiblewith existingroutinesthatnotrequirenumerousand complexinput data.InARIANE,classicalpollutantsasnitrogenoxides,carbonand sulphuroxides,andalsosolidparticleslikedusts,arewellknown. Theemissionsmodellingprocessstartsfromthecalculationof pollutantamountsinthesmokesofeachequipmentitem,global

emissionflowrateisfinallythesumofallflowrates,forallsite smokeemitters.Anotherproblemliesthenintheaccurate mod-ellingofthecombustionphenomenainallequipmentitemsofa powerplant.Wegivebelowsomeoftheequationsofunits oper-ationsimplemented in ARIANETM and usedat the eco-efficient

modellingstage.

4. ApplicationtoHDA(hydrodealkylationoftoluene) process

4.1. OverviewoftheHDAprocess

The traditional method of manufacturingbenzene fromthe distillationoflightoilsproducedduringthemanufacturingofcoke hasbeenovertaken bya number ofprocesses:The sourcesare now:catalyticreforming,hydrodealkylationoftoluene(HDA)and toluenedisproportionation.Theglobalworldbenzeneproduction capacitywillrisefromestimated41.8Mt/yin2009to55.8Mt/y in 2015: http://marketpublishers.com/lists/5873/news.html,

http://mcgroup.co.uk/researches/B/028500/Benzene.html. In

2005, the French production capacity was estimated at one Mt/yearonsevenindustrialsites,i.e.meanof143,000t/yearper site(www.ineris.fr/rsde/fiches/fichebenzene2005.pdf).

TheHydrodealkylation(Douglas,1988)processforproducing benzene,aclassicalbenchmarkinchemicalprocesssynthesis stud-ies,isusedinthispaper(HDAprocess).Thisprocessinvolvestwo reactions:theconversionoftoluenetobenzene(Eq.(16))andthe equilibriumbetweenbenzeneanddiphenyl(Eq.(17)).

Toluene+H2→Benzene+CH4 (16)

2Benzene↔ Diphenyl+H2 (17)

Douglas(1988) has firstextensively studied this process by usingahierarchicaldesign/synthesisapproach.Thehydrogenfeed streamhasapurityof95%andinvolves5%ofmethane;thisstream ismixedwithafreshinletstreamoftoluene,recycledtoluene,and recycledhydrogen.Thefeedmixtureisheatedinafurnacebefore beingfed toan adiabatic reactor.The reactoreffluent contains unreactedhydrogenandtoluene,benzene(thedesiredproduct), biphenyl,andmethane;itisquenchedandsubsequentlycooled inahigh-pressureflashseparatortocondensethearomaticsfrom thenon-condensablehydrogenandmethane.Thevapoursteam fromthehigh-pressureflashunitcontainshydrogenandmethane thatisrecycled.Theliquidstreamcontainstracesofhydrogenand methanethatareseparatedfromthearomaticsinalow-pressure flashdrum.Theliquidstreamfromthelow-pressureflashdrum consistingofbenzene,biphenyl andtolueneisseparatedintwo distillationcolumns.Thefirstcolumnseparatestheproduct, ben-zene,frombiphenylandtoluene,whilethesecondoneseparates thebiphenyl from toluene, which isrecycled backat the reac-torentrance.Energyissavedbyusingtheoutletstreamleaving thereactorasitstemperatureis intherangeof 620◦C,to

pre-heatthefeedstreamcomingfromthemixer,viaaheatexchanger (Fehe)someenergyintegrationisachieved(Cao,Rossiter,Edwards, Knechtel,&Owens,1998)(seeFig.2).

Asabovementioned,ARIANETMisusedherebothtocompute

theprimaryenergyrequirementsoftheprocessandtoquantify thepollutantemissions related toenergy production. Atypical steamgeneratingfacilityisconsidered:steamisproducedfrom aconventionalmono-fuelfiredboiler(40barand400◦C)andlet

downto lowerpressure levels (respectively,10bar,336◦C and

5bar,268◦C)throughturbineswhichproduceelectricityusedin

theplant.ARIANETMisalsousedtomodelthefiredheater

(fur-nace)oftheprocessasabi-fuelfiredheater(mixofnaturalgasand fuel).

(8)

Fig.2.HDAplantwithisutilityproductionunit.

TomodeltheHDAprocess,commercialdesignandflowsheeting packagescouldbeusedinordertocomputetheobjectivefunctions. However,ratherthanusingsuchpackages,theequationsproposed byDouglas(1988)havebeendirectlyimplementedandsolvedby theExcel®

solver.Biphenylhasbeenconsideredasapollutant,and theenvironmentalimpactcontributionsforthecomponentsinthe HDAprocesshavebeentakenfromSikdarandEl-Halwagi(2001).

4.2. InteractionbetweenHDAprocessandutilityproduction system

FromthestudiesofDouglas(1988)andTurton,Bailie,Whiting, &Shaeiwitz(1997,2009),sevenvariableswereselectedforHDA processbecauseoftheirinfluenceontheeconomicand environ-mentaloptimizationcriteria.Thesevariablesareinitiallyusedto computetheoverallmaterialbalanceofthemainchemical com-poundsandaswellastheassociatedthermodynamicproperties (enthalpy,density,heatcapacity, etc.)atvariousprocessnodes, withuseofSimulis® Thermodynamicsasacalculationserverof

thermodynamicproperties.Theyservefinallytocomputethesize ofallequipmentitemsinvolvedintheprocessforcarryingoutthe requiredunitoperations.Fig.3showstheinteractionbetweenthe variablesof theHDA processandtheutilityproductionsystem. HDAprocessoperationneedsthermalandelectricalutilities.The thermaldemandisformulatedintermsoffuelflowratetomeet theneedofheatingthemixtureinthefurnaceaswellasofsteam tomeettheheatingdemandsfortheexchangers,reboilerandother itemsoftheprocess.Eqs.(18)–(20)describethedemandofsteamin thecaseofareboiler.Theserequirementsobtainedfromtheenergy balancesoftheHDAsimulatoraretransmittedviaPlessalaTMas

variablestotheunitoperationsinvolved,whicharemodelledby useofArianeTM(boiler,furnace).Then,fueloilflowrateof,the

nat-uralgasflowrateandsteamflowratebecomesecondaryvariables forArianeTM.TheuseofArianeTMprovidestypicalresultsrelatedto

thethermalpowerplanti.e.thepowerproducedbytheturbineand theflowratesofallthepollutantsresultingfromfuelcombustion.

˙mstmi=

Qbi

1Hstmi

(9)

Fig.3.Interactionbetweenvariablesandsimulationtools.

with Qbi=DihDi+WihWi−FihFi+Qci (19)

and Qci=Di(R+1)1Hstri (20)

4.2.1. Furnacemodelling

Thefurnaceismodelledasabi-fuelboilerfedwithbothnatural gasandfueloil.Theirflowratesarelinkedbytheso-calledenergetic ratioandthefurnaceenergeticdemandasfollows:

Consumednaturalgasflowrateinthefurnace:QNG

˙m = QFurnace ·LHVNG·ratio

(21) Consumedfueloilflowrateinthefurnace:QFO

˙m = QFurnace ·LHVFO·(1−ratio)

(22) Energeticratio:

ratio= Energyprovidedbynaturalgas

Totalenergyofnaturalgasandfueloil (23)

Thefuelsconsideredarenaturalgas(fuel1)andfueloil(fuel2). Caseofamono-fuelboiler:

Theboilerisusedtoproducesuperheatedvapour,forthe oper-ationoftheturbineandhotwaterfortheotherunits

˙m= QBoiler ·LHVNG

. (24)

4.2.2. Sidestreamturbinemodelling

Aboilerisusedtoproductsteamathighlevelofpressureand temperature,and thenthis steamis expended througha back-pressureandcondensingturbinetogeneratepower.Theturbineis modelledwiththefollowingequations,implementedinARIANETM:

Si(Ti,Pi)=So(To∗,Po) (25)

Turbinemaximumwork

Wmax=Hi(Ti,Pi)−Ho(To∗,Po) (26)

Turbineisentropicyield = Weff

Wmax

(27)

5. Optimizationproblemformulation 5.1. Economicobjectives

AsmentionedbyCutlerandPerry(1983),amajorobjectiveof anyindustrial processis profitmaximization. In thisstudy,the benzeneproduction(ProdB)tobemaximizedandtheannualcost (Annualcost)havebeenchosenaseconomicfunctions.Thebenzene productionisadirectoutputoftheHDAprocess,whiletheannual costiscomputedaccordingtorelations(28)–(31).

Annual cost=0.1FCI+CRM+CUT (28)

FCI:Fixedcapitalinvestment($) 0.1FCI:depreciationcost($/y) CRM:costofrawmaterials($/y)

CUT:costofutilities($/y)

FCI=

X

i

(Purchase costi+Installedcosti) (29)

CRM=

X

i

(10)

Table1

Capitalcostestimationformainitems(M&S:Marshall&SwiftEquipmentsCostIndex=1,468.6(2009))fromChemicalEngineeringJanuary2010.

Equipmentinvestmentcost($) Nonlinearform Columncost

D:columndiameter(m) Purchasecost=9.201

!

M&S 280



(101.9D1.066H0.802F c) H:columnheight(m)

Fc:materialpressure Installedcost=9.202

!

M&S280



D1.066H0.802(2.18+Fc)+20.69

!

M&S 280



4.7D1.55HF′ c F′

c:material,trayspace,traytype

Exchangercost Purchasecost=

!

M&S 280



(474.7A0.65F c) A:heatexchangerarea(m2) Installedcost=

!

M&S

280



(474.7A0.65)(2.29+F c) Furnacecost Purchasecost=

!

M&S

280



(5.52×103)Q0.85F c Q:furnaceabsorbed(293kW) Installedcost=

!

M&S

280



(5.52×103)Q0.85(1.27+F c)

Table2

Capitalcostfortheutilitysystem.

Equipmentsinvestmentcost(1000$) Nonlinearform Fielderectedboiler 8.09F0.82f

p1

F:steamflowrate(kg/s);P:pressure(bar) With,fp1=0.6939+0.01241P−3.7984Exp(−3P2) Steamturbine Wst:power(MW) 25.79Wst0.41 Deaerator F:BFWflowrate(kg/s) 0.41F0.62 Condenser Q:heatdissipated(MW) 4.76Q0.68 CUT=

X

i ˙mUTiPUTi (31)

˙mRMi:massflowrateofrawmateriali(kg/h)

PRMi:unitpriceofrawmateriali($/kg)

˙mUTi:flowrateofutilityi(kg/h,stdm3/h,m3/horkW)

PUTi:unitpriceofrawmateriali($/kg,$/stdm3,$/m3or$/kWh)

Forthemainequipmentitems,thepurchaseandinstalledcosts werecomputed fromtheclassical Guthrie’scorrelations (1969) (seeTable1).Fortheutilitysystem,capitalcostestimationwas performedbyusingexpressionsdevelopedinBruno,Fernandez, Castells,andGrossmann(1998)(seeTable2).Finally,thecostsof rawmaterialsandutilitiesfromTurtonetal.(2009)aredisplayed inTable3.Forconvenience,theAnnualcostwillbeexpressedin M$/yinwhatfollows.

5.2. Environmentalobjectives

The environmental impacts are quantified by the so-called environmental burdens listed by IChemE. From the classifica-tionproposedbyAzapagic,Emsley,andHamerton(2003),eight

Table3

CostofrawmaterialsandutilitiesusedinHDAprocess.

Rawmaterials Cost($/kg)

Toluene 0.648

Hydrogen 1

Utilities Cost($/commonunit)

Fueloil(n◦2) $549/m3

Naturalgas $0.42/stdm3

Electricity $0.06/kWh

SteamfromBoiler

Highpressure $29.97/1000kg

Mediumpressure $28.31/1000kg

Lowpressure $27.70/1000kg

Coolingtowerwater(30–40◦C) $14.8/1000m3

categoriesofimpactscanbeidentified,andenvironmentalburden EBiiscomputedas: EBi= n

X

j=1 ecijBj (32)

whereecijistheestimatedclassificationofthejthparticipantinthe ithburdenandBjistheemissionofthejthgreenhousegas.Fora

givenapplication,thechoiceofparticularimpactscanbededuced from the flowsheet analysis, and they are quantified through massandenergybalances.Amongtheenvironmentalimpacts pro-posedbyAzapagicetal.(2003),fiverepresentativeitemsforthe consideredchemicalprocesshavebeenretainedforcomposingthe EnvironmentalBurdens(EBi).EachconsideredEnvironmental

Bur-dencanbebrieflydescribedasfollows(seethestudyofAzapagic etal.(2003)formoreinformation).

- GlobalWarmingPotential(GWPintCO2equivalent/y)whichis

ameasureofhowagivenmassofgreenhousegasisestimated tocontributetotheglobalwarming.Itisarelativescale,which comparesthemassofaconsideredgastothesamemassofcarbon dioxide.ItisequaltothesumofeightemissionsBjofgreenhouse

gasesmultipliedbytheirrespectiveGWPfactorsecjGWP.

-AcidificationPotential(APintSO2equivalent/y)isbasedonthe

contributionsofSO2andNOxtothepotentialaciddeposition,that

isontheirpotentialtoforH+protons.ThefiveAPfactorsecj APare

expressedrelativelytotheAPofSO2.

-Photochemical Ozone Creation Potential (POCP in

tC2H4equivalent/y) (or PCOP) very often defined as

sum-mer smog, is theresult of reactionsthat take place between nitrogenoxides NOx andVOCs exposed toUVradiations.The

POCPisrelatedtoethyleneasreferencesubstance,thatistosay thatthePOCPfactorsecjAPfortheeightconcernedproductsare expressedrelativelytothePOCPofC2H4.

- HumanToxicityPotential(HTPintC6H6-equivalent/y)expresses

thepotentialharmofchemicalsreleasedintotheenvironment. HTPincludesbothinherenttoxicityandgenericsource-to-dose relationships for pollutant emissions. It uses a margin-to-exposureratiotoevaluatethepotentialforhealthimpactfrom

(11)

exposuretoharmfulagents,bothcarcinogensandnon carcino-gens.It iscalculated byaddinghumantoxic releasestothree differentmedia,i.e.air,waterandsoil.Thetoxicologicalfactors arecalculatedusingtheacceptabledailyintakeorthetolerable dailyintakeofthetoxicsubstances.Thehumantoxicological fac-tors(26fromAzapagicetal.,2003)arestillatdevelopmentstage, sothat HTPcanonly betaken asanindicationandnot asan absolutemeasureofthetoxicitypotential.

-EutrophicationPotential(EPintPO43−equivalent/y)isdefinedas

thepotentialofnutrientstocauseover-fertilisationofwaterand soilwhichinturncanresultinincreasedgrowthofbiomass.

Itmustbeemphasizedatthislevelthattheapproachpresented heredoesnotaccountfortheentirelifecycleoftheprocesssince theenvironmentalburdensareassociatedwiththeemissions gen-eratedbytheprocessbothfromthematerialcomponentsandfrom theenergyvectors. Forinstance,theoutcomeof benzeneisnot consideredhereasitisviewedasthedesiredproductforthe pro-cess.Wearethusawarethattheapproachdevelopedheredoesnot embedthewholelifecycleoftheproduct.Moreover,the extrac-tionresourceassociatedwithrawmaterialssuchastolueneisnot included.Briefly,onlytheprocesscontributionisconsideredinthis study.

Ofcourse,alifecycleassessmentmethodologycouldbe attrac-tive to be more general and the abovementioned drawbacks could be partially overcome by using standard environmental databasesavailablein theliterature (e.g.EcoInvent forinstance http://www.ecoinvent.ch/)implementedinlifecycleassessment softwaretools.Thisissuewillconstituteaperspectiveofthiswork. 5.3. Multiobjectiveproblemformulation

Using the previous economic and environmental objective functionsdefinedabove,thefollowing multiobjective nonlinear optimizationproblemisformulatedasfollows:determinedecision variables(processoperatingconditions)inorderto:

Max(ProdB) (33)

Min(Annualcost) (34)

Min(EBi), i=1, 5 (35)

s.t.

Massandenergybalances(Excel®andARIANETM)

Boundsondecisionvariables

ProdBrepresentsthebenzeneproductionatthetopofcolumn 2(inkmol/h).

Theadditionalfollowingconstraintshavebeenconsideredinthe Multigeninterface,thenumericalvaluesvaluehavebeendeduced fromtheanalysisofDouglas(1988)andTurtonetal.(1997). -Thepurityofthebenzeneproductisatleast99.97% - Thehydrogenfeedmusthaveapurityof95% -Thereactoroutlettemperatureislessthan704.50◦C

-Thequencheroutlettemperatureislessthan621.16◦C

-TheconversionrateCisboundedas:0.5≤C≤0.9

-The hydrogen flow rate purged FPH (kmol/h) is bounded as:

30≤FPH≤300

-Allpollutants,CO2,NOx,CO,SO2,dustsflowrate(kg/h)musttake

onlypositivevalues. 5.4. GAparameters

Thetwoclassesofoptimizationproblemspresentedbelowhave beensolvedbyusingthecodeNSGAIIboftheMultigentoolbox, withthefollowing operatingparameters: populationsize=200,

Fig.4. Benzeneproductionvs.Annualcost.

numberofgenerations=200, Crossoverrate=0.75 andMutation rate=0.2.

Douglas(1988)thenTurtonetal.(1997)defineboundsonthe HDAvariablesasreportedinTable4.Theinitialpopulationwas randomlygeneratedbetweenthesebounds,anda particularset ofvariableshasbeenextractedfromtheinitialpopulation(column InitialvalueofTable4)forfurthercomparisonpurposes(seeTable5 line“Initial”).

6. Case1:economicfollowedbyecologicalstudy 6.1. Solutionstrategy

Fortheprobleminvolvingalltheobjectives,theParetofrontisa cloudofpointslocatedinahypercubeofℜ7.Toreducethis hyper-cubedimensioninordertointerpretasgoodaspossiblethegenetic algorithmresults,a twostepssolutionstrategyisimplemented. Inthefirststep,thebiobjectiveproblem((33)and(34))issolved toobtainanefficienttrade-off(ProdB*,Annualcost*)betweenthe maximalbenzene productionand theminimalinvestmentcost. Thenthebenzeneproduction,beingfixedatavalueProdB*obtained fromtheParetocurve,theproblem((33)–(35))issolvedforthe investmentcostlyinginalowrange[Annualcost*,Annualcost*+˛], withavalueof˛equalto15%forinstance.Adegradationofthe annualcostisalsoallowed,thusimprovingtheenvironmental per-formancesoftheprocessofbenzeneproduction.

6.2. Economicstudy:biobjectiveoptimization(ProdB,Annual cost)

TheParetofrontcorrespondingtotheoptimizationofthepair (ProdB,Annualcost)isdisplayedinFig.4.Thecurveiscomposedof twoportionsofstraightlines.Thekneelocatedonthecurvegives thebesttrade-off(Brankeetal.,2004),thatistosay(205.04M$, 299.96kmol/h).Withoutenvironmentalconsiderations,this solu-tion would be adopted for plant design. In the following, the benzeneproductionwillbelowerboundedat300kmol/handthe annualcostwillvaryintherange[205.04M$,299.96M$]inorder tocompetewithadditionalenvironmentalobjectives.Thevalues ofallconsideredobjectivesforthefirstpoint(204.5,299.9)noted “First”oftheflatlineofFig.4and theinitialpointdescribedin Table4areusedforcomparingobjectivesinTable5.

6.3. Studyofenvironmentalburdensviabiobjectiveoptimizations Thebenzeneproductionbeingfixedat299.96kmol/handthe Annualcostlyingintherange[205.04M$,299.96M$],the crite-ria are optimized by pairs for identifying redundantobjectives expressedintermsofmultilinearfunctionsofthethreeremaining ones(Annualcost,EPandAP).Thesedependentimpacts(GWP,HTP andPOCP)willberemovedfromthemultiobjectiveoptimization problem,wheresomedegradationsoftheAnnualcostareallowed

(12)

Table4

DecisionvariablesfortheHDAprocess.

Decisionvariables Lowerbound Initialvalue Upperbound

Conversionrate(%) 0.5 0.75 0.9

Hydrogenpurgeflowrate(kmol/h) 31 198 308

Flashpressure(bar) 30 34 34

Stabilizerpressure(bar) 4 10 10

Column1pressure(bar) 2 2 4

Column2pressure(bar) 1 1 2

Ratio(bi-fuelfurnace)(%) 0.1 0.85 0.9

Table5

Valuesofobjectives.

Objective ProdBt/y AnnualcostM$/y EPtPO43−/y APtC2H4/y GWPtCO2/y HTPtC6H6/y POCPtC2H4/y Initial 305.00 277.42 9759.06 11,190.34 1,884,528.48 18,699.58 2472.32 First 299.96 205.04 13,831.12 4829.26 1,410,428.13 26,537.88 1944.11 Gainvs.initial(%) −1.62 26.00 −29.44 56.85 25.16 −41.91 21.36 1410500 1411000 1411500 1412000 1412500 1413000 1413500 205,34 205,32 205,3 205,28 205,26 205,24 205,22 205,2 205,18 205,16

Annual cost (M$/y)

GWP (t CO

2

/ y)

Fig.5.GWPvs.Annualcost.

0 5000 10000 15000 20000 25000 30000 235 230 225 220 215 210 205 200

Annual cost (M$/y)

HTP (t C

6

H6

/ y)

Fig.6.HTPvs.Annualcost.

forgloballyimprovingalltheenvironmentalimpacts(includingthe redundantones).

(GWP,Annualcost):Nondominatedpointsappearonlyinlow rangesforthetwoobjectives(seeFig.5),suggestingastrong rela-tionbetweenthem(seesection5.4).(HTP,Annualcost):ThePareto frontisdisplayedinFig.6,wherethetwoobjectiveshaveopposite effects.(EP,Annualcost):TheresultsareshowninFig.7.Thecurves displayedinFigs.6and7exhibitverysimilartrends,duetoastrong linkbetweenthem(seeSection5.4).(AP,Annualcost):ThePareto

0 2000 4000 6000 8000 10000 12000 14000 235 230 225 220 215 210 205 200

Annual cost (M$/y)

EP (t PO

4

3-/y)

BT2 BT1

Fig.7.EPvs.Annualcost.

4300 4400 4500 4600 4700 4800 4900 235 230 225 220 215 210 205 200

Annual cost (M$/y)

AP (t SO

4

/y)

BT1

BT2

Fig.8. APvs.Annualcost.

1910 1915 1920 1925 1930 1935 1940 1945 1950 222 220 218 216 214 212 210 208 206 204

Annual cost (M$/y)

PCOP (t C

2

H4

/y)

Fig.9. POCPvs.Annualcost.

frontisdisplayedinFig.8.(POCP,Annualcost):theresultsreported inFig.9showthatnondominatedpointsappearonlyinalowrange forthePOCPobjective,suggestingastrongrelationbetweenthese twofunctions.(AP,EP):concerningthepair(AP,EP),the biobjec-tiveoptimizationgivesthefrontdisplayedinFig.10,whereitcan bepointedoutthatthetwoimpactsexhibitantagonistbehaviours.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 16000 14000 12000 10000 8000 6000 4000 2000 0 EP (t PO43-/y) AP (t SO 2 /y) BT1 BT2 Fig.10. APvs.EP.

(13)

Table6

Resultsofthemultilinearregressions–Case1.

Objective AnnualcostM$/y EPtPO43−/y APtC2H4/y y-Intercept Coeff.corr. Errormax(%)

GWPtCO2/y 5445.29 −0.64 43.95 90,529.67 0.9988 0.51 HTPtC6H6/y −6.29×10−5 1.92 −3.70×10−5 9.25×10−3 1.000 10−6 POCPtC2H4/y 0.44 4.07×10−3 8.67×10−2 1377.95 0.9999 0.03 4000 5000 6000 7000 8000 0 5000 10000 15000 205 210 215 220 225 230 AP (t SO2 / y) EP (t PO4 (3-) / y) Annual cost (M$ / y) TT1 TT2 TF1 TF2

Fig.11. Triobjectiveoptimization(Annualcost,EP,AP)– Case1.

6.4. Redundantobjectives

Fromtheprevioussection,environmentalimpactsGWP,HTP andPOCPwerefoundtobelinkedwithotherobjectivesAnnual cost, EP and AP. From 200 randomly generated values for the independentvariables(definedinTable4),theobjectivesAnnual cost,EP,AP,GWP,HTPandPOCPwerecomputedandmultilinear regressionswereperformed ontheExcel platform.The experi-mentwascarriedoutseveraltimesandgivesthefollowingresults ofTable6.

Inallcases, thecoefficientofcorrelationis verygood. From thecoefficientsofmultilinearequations,itcanbeobservedthat GWPandPOCParemainlyincreasingfunctionsoftheAnnualcost, whileHTPdependsprincipallyonEP.SoimpactsGWP,POCPand HTPbeingexplicitfunctionsoftermsAnnualcost,EPandAP,they canbesuppressedfromthefollowingmultiobjectiveoptimization phase.

6.5. Triobjectiveoptimization

Fromthepreviousbiobjectivestudy,onlythreeindependent objectivesareremaining: Annualcost,EPand AP.Theyarenow simultaneouslyoptimized,andtheresultsaredisplayedinFig.11. TheflatportionofthecloudofpointsnearAnnualcost≈205M$/y, EP≈10,000tPO43−andAP≈5000tSO2/ysuggeststhatgood

solu-tionsmayexistinthiszoneforthethreeobjectives.

Table7

ResultsofTOPSISanalysisforbiobjectiveoptimizations.

Pair AnnualcostM$/y EPtPO43−/y APtSO2/y (EP,Cost)1 226.42 3590.12 (EP,Cost)2 226.64 3574.40 (AP,Cost)1 210.13 4499.36 (AP,Cost)2 210.18 4498.29 (AP,EP)1 5918.37 4763.31 (AP,EP)2 5886.94 4819.97 6.6. Selectingsolutions 6.6.1. Biobjectiveoptimizations

Fromthethreeindependentobjectives,Annualcost,EPandAP, aTOPSISanalysisiscarriedouttwiceforthethreepossiblepairs inordertodetectineachcasethetwobestpointscalledBT1and BT2(BTsignifyBiobjectiveTopsis)inFigs.7,8and10.Theresults areindicatedinTable7.NotethattheFUCAprocedurecannotbe implementedonbiobjectiveproblems,insofarastheParetofront beingperdefinitionasetofnondominatedpoints,thesumofranks isconstantandequaltothenumberofpointsinthefrontplusone (thebestpointforoneobjectivebeingtheworstonefortheother). 6.6.2. Triobjectiveoptimization

ATOPSISandaFUGAanalysisarecarriedouttwiceontheglobal setofobjectives(Annualcost,EP,AP,GWP,HTPandPOCP).Inthese studieseventhedependantobjectivesGWP,HTPandPOCP, com-putedbyusingTable6fromthethreeindependentones,haveto beconsidered,becausetheycan influencethedecisionmaking. However,theresults areonly displayedfor thethree indepen-dentcriteriain Fig.11.Let uspointoutthat therankingswere performedwithoutanypreferencefactor.Thetwobestsolutions obtainedfromTOPSIS(respectivelyFUCA)arecalledTT1andTT2 (respectivelyTF1andTF2)onthe3Dcurve.

Table8exhibitstheresultsobtainedbothforthethree inde-pendentobjectivesandforthethreedependentonesinthelast columns.Foreachobjectivethegainin%iscomputedvs.solution called“first”inTable5.Thevaluesofthecorrespondingvariables aregiveninTable9.Obviously,thesolutionsobtainedwhen pro-jecting3-Dsolutionsinthecorresponding2-Dspacesgloballyover estimatethesolutionsobtainedinthepure2-Doptimizations.As apartialconclusion,preliminary2-Doptimizationscannotbeused forestimatingthesolutionsofthe3-Dproblem.TheTOPSISand FUCArankingsprovideyetsurprisinglywithscatteredvalues.The FUCAproceduregivesresultsthataremuch moreinagreement

Table8

ResultsofTOPSISandFUCAanalysisforthetriobjectiveoptimization.

Case AnnualcostM$/y EPtPO43−/y APtSO2/y GWPtCO2/y HTPtC6H6/y POCPtC2H4/y

TT1 227.34 4404.41 6221.15 1,599,077.01 8439.0316 2038.64 Gain −10.88 67.08 −28.82 −13.36 68.20 −4.86 TT2 222.28 4735.06 6043.41 1,563,468.01 9072.59 2022.27 Gain −8.41 64.61 −25.14 −10.85 65.81 −4.02 TF1 206.99 9770.38 4930.16 1,428,118.43 18,720.83 1939.25 Gain −0.95 26.98 −2.09 −1.25 29.46 0.25 TF2 209.03 10,109.41 4782.53 1,432,472.39 19,370.44 1928.70 Gain −1.95 24.45 0.97 −1.56 27.01 0.79

(14)

Table9

Valuesofthedecisionvariablesforthetriobjectiveoptimization.

Decisionvariables TT1 TT2 TF1 TF2

Conversionrateoftoluene 0.59 0.60 0.70 0.75

Hydrogenpurgeflowrate(kmol/h) 300 300 300 300

Flashpressure(bar) 33.98 33.98 33.98 33.88

Stabilizerpressure(bar) 9.99 9.71 10 9.97

Column1pressure(bar) 3 3 3 3

Column2pressure(bar) 1.68 1.21 1.31 1.02

Ratio(bi-fuelfurnace) 0.29 0.32 0.24 0.34

witha simplegraphicalanalysis:besides,theglobalgaininthe setofobjectivesishigherthanthevaluecomputedbytheTOPSIS analysis.AcloserexaminationofTF1andTF2finallyleadstoselect thesolutionTF2,becauseitgivesonlyonenegativegainin envi-ronmentalimpacts.Inthefollowingstudiedcase,onlytheFUCA rankingwillbeused.

7. Case2:simultaneouseconomicandecologicalstudies 7.1. Context

Let us consider now that according to the EPA’s more stringent regulations, the GWP must be below a threshold of 1,400,000tCO2/y, which may have some effects on production

level.Besides,incentivemeasuresforenvironmentprotectionlead toimprovesimultaneouslytheotherenvironmentalobjectivesEP, AP,HTPandPOCP(ascomparedwiththepreviouscase).

Afterrandomlygeneratingseveralthousandsofvaluesfor inde-pendentvariables,it appearsthatvalues ofGWPslightly lower than1,400,000tCO2/yarelocatedinabenzeneproductionrange

of[250,280]kmol/h.Sothemultiobjectiveoptimizationisnow car-riedoutinthisrangeofproduction.Thesamestrategyasinthe previouscaseconsistingindecouplingobjectivesindependentand independentsetsisimplementedagain.Inordertoavoid extrapo-lationmodelproblemsthatmayoccur,multilinearregressionsare performedagainfordependentobjectives.Finally,atriobjective optimizationiscarriedoutforidentifyingthebestsolutionunder thesenewenvironmentalconstraints.

7.2. Multilinearregressions

For200valuesofindependentvariables withina production range[250,280]kmol/hrandomlygenerated,thevaluesoftheother objectivesarecomputedandtheresultsofmultilinearregressions aredisplayedinTable10.

0 0.5 1 1.5 2 2.5 x 10 3 4 2000 4000 6000 8000 1000012000 14000 250 255 260 265 270 275 280 AP (t SO2/y) EP (t PO4 (3-)/y) ProdB (kmol /h) TF3 TF4 TF5

Fig.12. Triobjectiveoptimization(ProdB,EP,AP)–Case2.

7.3. Triobjectiveoptimization

Atriobjectiveoptimizationiscarriedoutonthethree indepen-dentobjectives(ProdB,EPandAP),theotherdependantobjectives GWP,HTP,POCPandAnnualcost,beingcomputedbyusingTable10 fromthethreeindependentones.TheParetocurveobtainedfrom thetricriteriaoptimizationof(ProdB,EP,AP)isdisplayedinFig.12, wherethepointscalledTF3,TF4andTF5correspondrespectively tothebestsolutionfoundbyperforminganon weighted(resp. weighted)sumofranksofthesevenobjectives.

7.4. Selectingsolutions

AFUCArankingisfirstcarriedoutwiththesameweightfor alltheobjectives.ThebestsolutionnotedTF3isidentifiedamong thefivefirstones.However,inthissituation,benzeneproduction isimprovedonlyby14%.Thegoalofanyindustrialprocessbeing firstlyprofitmaximization,asecondFUCArankingisperformed withdifferentweightsonobjectives:0.4forbenzeneproduction

Table10

Resultsofthemultilinearregressions–scenario2.

Objective ProdBkmol/h EPtPO43−/y APtC2H4/y y-Intercept Coeff.corr. Errormax(%)

GWPtCO2/y 4901.44 −11.61 23.36 10,945.95 0.9397 3.75

HTPtC6H6/y −2.14×10−5 1.92 −3.68×10−5 1.66×10−4 1.000 6×10−6 POCPtC2H4/y 5.08 2.04×10−3 7.950×10−2 5.46 0.9942 0.69

COSTM$/y 0.6959 0 0 −5.03502 0.9997 2.10

Table11

ResultsofFUCAanalysisforthetriobjectiveoptimization.

Case BenzeneProd(kmol/y) AnnualcostM$/y EPtPO43−/y APtSO2/y GWPtCO2/y HTPtC6H6/y POCPtC2H4/y

TF3 253.50 171.30 7901.62 3737.16 1,249,024.11 15,104.58 1599.81 Gain −16.34 19.08 21.84 21.86 12.81 22.02 17.05 TF4 276.73 188.21 7149.41 4446.35 1,388,198.24 13,666.63 1772.36 Gain −9.49 18.04 29.28 7.03 3.09 29.45 8.11 TF5 259.88 175.95 8982.89 3799.92 1,269,260.85 17,171.37 1639.400 Gain −14.23 15.82 11.15 21.86 11.39 11.35 15.00

(15)

Table12

Valuesofthedecisionvariablesforthetriobjectiveoptimization–Case2.

Decisionvariables TF3 TF4 TF5

Conversionrateoftoluene 0.74 0.71 0.76 Hydrogenpurgeflowrate(kmol/h) 299.30 299.92 299.92 Flashpressure(bar) 29.27 28.73 32.57 Stabilizerpressure(bar) 8.60 6.02 7.00 Column1pressure(bar) 2.13 2.03 2.21 Column2pressure(bar) 1.02 1.33 1.74 Ratio(bi-fuelfurnace) 0.16 0.24 0.17

and0.1forthesixcriteria.Asinthepreviouscase,thebestsolution notedTF4isidentifiedamongthefivefirstones.Finally,a compro-misesolutionTF5generatedwiththerespectiveweightsof0.35for thebenzeneproduction,0.15fortheGWPand0.1foralltheothers isalsodetermined.

Table11exhibitstheresultsobtainedbothforthethree inde-pendentobjectivesand forthe threedependentones. Foreach objectivethegainin%iscomputedvs.solutionTF2ofTable8.The valuesofthecorrespondingvariablesaregiveninTable12. 8. Conclusions

Thispaperhaspresented a methodologyfor eco-design and optimizationofachemicalprocesstakingintoaccountthe contri-butionofutilitygeneration,viatheindustrialsoftwareARIANETM.

The well-known benchmark HDA process first developed by Douglas(1988)illustratestheapproach,whichistotallydifferent withthetraditionalend-of-pipetreatmentmethods.Theprocess wasdesignedunderclassicalengineeringobjectiveslikebenzene production and total annual cost, by also considering classical environmentalburdensastheGlobalWarmingPotential,the Acid-ificationPotential,thePhotochemicalOzoneCreationPotential,the HumanToxicityPotentialandtheEutrophicationPotential.A vari-antoftheclassicalmultiobjectivegeneticalgorithmNSGAIIwas usedforsolvingthevariousmultiobjectivesproblems.

Inapreliminarystudy,agoodvalueofthebenzeneproduction wasidentifiedonalimitedrangeofcosts,thenapossible degra-dationoftheannualcostinthisrange,andthusofthebenzene productionwereallowedtoimprovetheenvironmental perfor-mancesoftheprocess.InsteadofsearchingforaParetofrontonthe wholesetofobjectives,apreliminarystudyofobjectiveswas car-riedoutfordeterminingasub-setofdependentcriteriaexpressed asmultilinearfunctionsoftheremainingindependentones.Sothe multiobjectiveproblemwasreducedtoatricriteriaone.The val-uesofcorrespondingdependentobjectiveswerecomputedfrom theindependentones,andaTOPSISandFUCAanalyseswere per-formedonthewholesetofobjectives,FUCAgivingmuchbetter resultsthanTOPSIS.Analternativewouldbetoidentifyanideal pointontheParetofrontbydefiningametricdistancetoanutopia point(i.e.minimizingallobjectivesforinstance)asanobjective functionusingasingleobjectiveGA.

Asecondscenarioisbasedonanotherformulationforwhich a more stringent environmental regulation has tobe satisfied, expressedastheGWPcriteriontobelowerthanagiven thresh-old.Theobjectivealsohaspositivegainsoverallenvironmental objectivesEP,AP,HTPandPOCP.Multilinearregressionswere per-formedagain,toobtainanewtricriteriaproblem,solvedagainby meansofNSGAII.Bysimplytuningtheweightingfactorsusedin theFUCAranking,severalsolutionsofferingagoodtrade-offcanbe deducedforobjectives.Herethreesolutionscorresponding respec-tivelytohigh,mediumandlowrangesofbenzeneproductionare generated.Thismethodologycanbeappliedtoawidespectrumof chemicalprocessdesignproblemswithmultipleand environmen-talobjectivesandmakesexplicitthetrade-offsbetweenthem.

References

AIChE(1998).Sustainabilitymetrics.http://www.aiche.org/cwrt.

Allen,D.T.&Shonnard,D.R.(2002).Greenengineeringenvironmentallyconscious designofchemicalprocesses.UpperSideRiver,NJ:PrenticeHallPTR.

ARIANETM.http://www.prosim.net/en/energy/ARIANE.html.

Azapagic,A.&Clift,R.(1999).Lifecycleassessmentandmultiobjectiveoptimisation. JournalofCleanerProduction,7(2),135–143.

Azapagic,A.,Emsley,A.&Hamerton,I.(2003).Polymers:Theenvironmentand sus-tainabledevelopment.JohnWiley&Sons.

Azapagic,A.,Millington,A.&Collett,A.(2006).Amethodologyforintegrating sus-tainabilityconsiderationsintoprocessdesign.ChemicalEngineeringResearchand Design,84(A6),439–452.

Berhane,H.G.,Gonzalo,G.-G.,Laureano,J.&Dieter,B.(2009).Designof environmen-tallyconsciousabsorptioncoolingsystemsviamulti-objectiveoptimizationand lifecycleassessment.AppliedEnergy,86(9),1712–1722.

Berhane,H.G.,Gonzalo,G.-G.,Laureano,J.&Dieter,B.(2010).Asystematictoolfor theminimizationofthelifecycleimpactofsolarassistedabsorptioncooling systems.Energy,35(9),3849–3862.

Björk,H.&Rasmuson,A.(2002).Amethodforlifecycleassessment environmen-taloptimisationofadynamicprocessexemplifiedbyananalysisofanenergy systemwithasuperheatedsteamdryerintegratedinalocaldistrictheatand powerplant.ChemicalEngineeringJournal,87(3),381–394.

Branke,J.,Deb,K.,Dierolf,H.&Osswald,M.(2004).Findingkneesinmultiobjective optimization,parallelproblemssolvingfromnature.LNCS,3242,722–731. Bruno,J.C.,Fernandez,F.,Castells,F.&Grossmann,I.E.(1998).RigorousMINLP

modelfortheoptimalsynthesisandoperationofutilityplants.Chemical Engi-neeringResearchandDesign,76,246–258.

Cabezas,H.,Bare,J.C.&Mallick,S.K.(1999).Pollutionpreventionwithchemical processsimulators:Thegeneralizedwastereduction(WAR)algorithm– Full version.ComputersandChemicalEngineering,23,623–634.

Cao,Y.,Rossiter,D.,Edwards,D.W.,Knechtel,J.&Owens,D.(1998).Modelling issuesforcontrolstructureselectioninchemicalplants.ComputersandChemical Engineering,22Suppl.,S411–S418.

Carvalho,A.,Gani,R.&Matos,H.(2008).Designofsustainablechemicalprocesses: Systematicretrofitanalysisgenerationandevaluationofalternatives.Process SafetyandEnvironmentalProtection,86(5),328–346.

Chen,Q.&Li,W.(2008).Anapproachtopotentialenvironmentalimpactreduction inchemicalreactionprocesses.CleanTechnologiesandEnvironmentalPolicy,10, 97–105.

Collette,Y.&Siarry,P.(2002).Optimisationmultiobjective.Eyrolles.

CSD(1996).IndicatorsofSustainableDevelopment,NewYork.www.un.org/esa/ dsd aofwind/indindex.shtml.

Cutler,C.R.&Perry,R.T.(1983).Realtimeoptimizationwithmultivariablecontrolis requiredtomaximizeprofits.ComputersandChemicalEngineering,7,663–667. Deb,K.,Pratap,A.,Agarwal,S.&Meyarivan,T.(2002).Afastandelitistmultiobjective

geneticalgorithm:NSGA-II.IEEETransactionsonEvolutionaryComputation,2, 182–197.

DinizdaCosta,J.C.&Pagan,R.J.(2006).Sustainabilitymetricsforcoalpower generation inAustralia. Process SafetyandEnvironmentalProtection, 84(2), 143–149.

Douglas,J.M.(1988).Conceptualdesignofchemicalprocess.NewYork:McGrawHill. Douglas,M.Y.&Heriberto,C.(1999).Designingsustainableprocesseswith simula-tion:Thewastereduction(WAR)algorithm.ComputersandChemicalEngineering, 23,1477–1491.

Douglas,Y.,Richard,S.&Heriberto,C.(2000).Thewastereduction(WAR)algorithm: Environment impacts,energy consumption,and engineering economicals. WasteManagement,20,605–615.

Fonseca,C.M.&Fleming,P.J.(1993).Geneticalgorithmsformultiobjective opti-mization:Formulation,discussionandgeneralization.InProceedingsofthe5th internationalconferenceongeneticalgorithms(pp.416–423).

Fonseca,C.M.&Fleming,P.J.(1998).Multiobjectiveoptimizationandmultiple constrainthandlingwithevolutionaryalgorithm:PartI.Aunifiedformulation. IEEETransactionsonSystemsManandCyberneticsPartA:SystemsandHumans,1, 26–37.

Gomez,A.,Pibouleau,L.,Azzaro-Pantel,C.,Domenech,S.,Latgé,C.&Haubensack, D.(2010).Multiobjectivegeneticalgorithmstrategiesforelectricityproduction fromgenerationIVnucleartechnology.EnergyConversionandManagement,51, 859–871.

Gonzalo,G.-G.(2011).AnovelMILP-basedobjectivereductionmethodfor multi-objectiveoptimization:Applicationtoenvironmentalproblems.Computersand ChemicalEngineering,35(8),1469–1477.

Gough,J.D.&Ward,J.C.(1996).Environmentaldecisionmakingandlake manage-ment.JournalofEnvironmentalManagement,48(1),1–15.

Guthrie,K.M.(1969).Capitalcostestimating.ChemicalEngineering,76,114–142. Heriberto,C.,Jane,C.B.&Subir,K.M.(1999).Pollutionpreventionwith

chemi-calprocesssimulators:Thegeneralizedwastereduction(WAR)algorithm-full version.ComputersandChemicalEngineering,23,623–634.

Hilaly,A.K.&Sikdar,S.K.(1994).Pollutionbalance:Anewmethodfor minimiz-ingwasteproductioninmanufacturingprocesses.JournaloftheAirandWaste ManagementAssociation,44,1303–1308.

Horn,J.,Nafpliotis,N.&Goldberg,D.(1994).AnicheParetogeneticalgorithmfor multiobjectiveoptimization.InProceedingsofthe1stIEEEconferenceon evolu-tionarycomputation(pp.82–87).

Huang,J.P.,Poh,K.L.&Ang,B.W.(1995).Decisionanalysisinenergyand environ-mentalmodelling.Energy,20,843–855.

(16)

IChemE(2001).Thesustainabilitymetrics.http://www.icheme.org/sustainability/. Iskandar,H.&Rajagopalan,S.(2011).Aknowledge-basedsimulation-optimization frameworkandsystemforsustainableprocessoperations.Computersand Chem-icalEngineering,35,92–105.

Jia,X.,Zhang,T.,Wang,F.&Han,F.(2006).Multi-objectivemodellingand opti-mizationforcleanerproductionprocesses.JournalofCleanerProduction,14, 146–151.

Ku-Pineda,V.&Tan,R.R.(2006).Environmentalperformanceoptimizationusing processwaterintegrationandSustainableProcessIndex.JournalofCleaner Pro-duction,14(18),1586–1592.

Labuschagne,C.,Brent,A.C.&vanErck,R.P.G.(2005).Assessingthesustainability performancesofindustries.JournalofCleanerProduction,13(4),373–385. Li,X.,Zanwar,A.,Jayswal,A.,Lou,H.H.&Huang,Y.L.(2011).Incorporatingexergy

analysisandinherentsafetyanalysisforsustainabilityassessmentofbiofuels. IndustrialandEngineeringChemistryResearch,50(5),2981–2993.

Li,C.,Zhang,X.,Zhang,S.&Suzuki,K.(2009).Environmentallyconsciousof chem-icalprocessandproducts:Multi-optimizationmethod.ChemicalEngineering ResearchandDesign,87,233–243.

Lim,K.H.,Dennis,N.V.S.N.,Murthy,K.&Rangaiah,G.P.(2005).Synthesisanddesign ofchemicalprocesses.JournaloftheInstitutionofEngineer,Singapore,45(6) Moralez-Mendoza,L.F.,Perez-Escobedo,J.L.,Aguilar-Lasserre,A.,Azzaro-Pantel,C.&

Pibouleau,L.(2011).Selectingthebestalternativebasedonahybrid multiobjec-tiveGA-MCDMapproachfornewproductdevelopmentinthepharmaceutical industry.InIEEESymposiumonSwarmIntelligenceParis,11–15May.

Narodoslawsky,M.&Krotscheck,Ch.(2004).Whatcanwelearnfromecological valuationofprocesseswiththeSustainableProcessIndex(SPI)–Thecasestudy ofenergyproductionsystems.JournalofCleanerProduction,12,111–115. Opricovic,S.&Tzeng,G.(2004).CompromisesolutionbyMCDMmethods:A

com-parativeanalysisofVIKORandTOPSIS.EuropeanJournalofOperationalResearch, 156,445–455.

Othman,M.R.,Repke,J.U.,Wozny,G.&Huang,Y.(2010).Amodularapproach tosustainabilityassessmentanddecisionsupportinchemicalprocessdesign. IndustrialandEngineeringChemistryResearch,49,7870–7881.

Pirdashti,M.,Ghadi,A.,Mohammadi,M.&Shojatalab,G.(2009).Multi-criteria decision-makingselectionmodelwith applicationtochemical engineering managementdecisions.InternationalJournalofHumanandSocialSciences,4(15). ProSim(2005). Plessala AutomationServer. http://www.prosim.net/en/energy/

ARIANE.html.

Ren,L.,Zhang,Y.,Wang,Y. &Sun,Z.(2007).ComparativeanalysisofaNovel M-TOPSIS Method and TOPSIS. Applied Mathematics Research Express, 10 doi:10.1093/amrx/abm005(articleIDabm005)

Saaty,T.L.(1980).Theanalytichierarchyprocess.NewYork:McGraw-Hill. Sandholzer,D.&Narodoslawsky,M.(2007).SPIonExcel–Fastandeasy

calcula-tionofthesustainableprocessindexviacomputer.Resources,Conservationand Recycling,50(2),130–142.

Schaffer,J.(1985).Multi-objectiveoptimizationwithvectorevaluatedgenetic algo-rithms.InProceedingsoftheInternationalConferenceonGeneticAlgorithmsand theirApplications(pp.93–100).

Sikdar,S.K.&El-Halwagi,M.M.(2001).Processdesigntoolsfortheenvironment.New York:TaylorandFrancis.

Stanislav,V.E.(2003).Anexaminationofamodifiedhierarchicaldesignstructureof chemicalprocesses,http://www.che.ttu.edu/classes/che5000/EmetsThesis.pdf. Surya,K.C.&Alex,Z.(2002).AdefinitionofSteady-stateplantwidecontrollability.

IndustrialandEngineeringChemistryResearch,41

Taboada, H. & Coit, D. (2006). Data mining techniques to facilitate the analysis of the Pareto-optimal set for multiple objective problems. In Proceedings of the Industrial Engineering Research Conference Orlando, FL, (pp.43–48).

TeixeirodeAlmeida,A.,deMiranda,C.M.G.&CabralSeixasCosta,A.P.(2004). Mul-ticriteriamodelforprioritizationofresearchanddevelopmentprojects.Journal oftheAcademyofBusinessandEconomicals,(March)

Teresa,M.M.,Raymond,L.S.,Douglas,M.Y.&Carlos,A.V.C.(2003).Evaluating theenvironmentalfriendliness,economicalsandenergyefficiencyof chemi-calprocesses:Heatintegration.CleanTechnologiesandEnvironmentalPolicy,5, 302–309.

Turton,R.,Bailie,R.C.,Whiting,W.B.&Shaeiwitz,J.A.(1997).Analysis,synthesisand designofchemicalprocesses.UpperSideRiver,NJ:PrenticeHall.

Turton,R.,Bailie,R.C.,Whiting,W.B.&Shaeiwitz,J.A.(2009).Analysis,synthesisand designofchemicalprocesses(3rded.).UpperSideRiver,NJ:PrenticeHall. Tveit,T.-M.&Fogelholm,C.-j.(2006).Multi-periodsteamturbinenetwork

optimiza-tion:PartII.Developmentofamulti-periodMINLPmodelofautilitysystem. AppliedThermalEngineering,26,1730–1736.

Vasilios,P.&Shang,Z.(2008).Amulti-criteriaoptimizationapproachforthe designofsustainableutilitysystems.ComputersandChemicalEngineering,32, 1589–1602.

Wolpert,D.H.&Macready,W.G.(1997).Nofreelunchtheoremsforoptimization. IEEE.Trans.Evolut.Comput.,1,67–82.

Yoon,K.P.&Hwang,C.L.(1995).Multipleattributedecisionmaking:Anintroduction. ThousandOaks,CA:Sage.

Young,D.,Scharp,R.&Cabezas,H.(2000).Thewastereduction(WAR)algorithm: Environmentalimpacts,energyconsumption,andengineeringeconomicals. ComputersandChemicalEngineering,20,605–615.

Zhaoxa,S.&Min,H.(2010).MulticriteriadecisionmakingbasedonPROMETHEE method.InComputing,ControlandIndustrialEngineering,2010International Con-ferenceWuhan,China.

Zhou,P.A.&Poh,B.W.(2006).Decisionanalysisinenergyandenvironmental modelling:Anupdate.Energy,31,2604–2622.

Zitzler,E.&Thiele,L.(1999).Multiobjectiveevolutionaryalgorithm:Acomparative casestudyandthestrengthParetoapproach.IEEETransactionsonEvolutionary Computation,3,257–271.

Figure

Fig. 1. General optimization and modelling framework.
Fig. 2. HDA plant with is utility production unit.
Fig. 3. Interaction between variables and simulation tools.
Fig. 4. Benzene production vs. Annual cost.
+3

Références

Documents relatifs

“Resources location”: Here, Jorge Vargas-Florez, Matthieu Lauras, Uche Okongwu and Lionel Dupont propose a decision- making support model in AI capable of designing a

In this paper, we explore the 256 elementary cellular automata rules by a Walsh transform in order to find out correlation-immune rules for gener- ating good pseudo-random

We are therefore justified in assuming that all of the deflection arises from the Van der Waals term in the potential, and this permits us to determine the

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Inducible nitric oxide synthase activity in colon biopsies from inflammatory areas: correlation with inflammation intensity in patients with ulcerative colitis but not with

Par ailleurs, la comparaison avec les normes établies par le Comité Consultatif du Projet d'Appui aux Activités de Nutrition (P.A.A.N.) pour la qualité nutritionnelle des

Les travaux réalisés dans le cadre de cette thèse ont permis d’apporter de nouveaux éléments à la compréhension de l’impact des espèces exotiques envahissantes (EEE), et

The rheology of the olivine aggr egate is described thr ough a crys tal plasticity model that we have developed and that tak es into accou nt the elastic