• Aucun résultat trouvé

Le calorimetre electromagnetique de CMS pour la recherche du boson de Higgs H->ZZ^(*)->4e au LHC.

N/A
N/A
Protected

Academic year: 2021

Partager "Le calorimetre electromagnetique de CMS pour la recherche du boson de Higgs H->ZZ^(*)->4e au LHC."

Copied!
191
0
0

Texte intégral

(1)

Universita degli Studi di Milano-Bi o a

F

a olt

a di S ienze Matemati he, Fisi he e Naturali

|



E ole Polyte hnique, Palaiseau

The CMS Ele tromagneti Calorimeter

for the Higgs Boson Sear h

H ! ZZ

()

! 4e at the LHC

Coordinatore: prof. Claudio Destri

Tutori: dr. Yves Sirois

prof. Tommaso Tabarelli de Fatis

Tesi diDottorato di

Federi o Ferri

Matri ola R00281

S uoladiDottorato di S ienze

(2)
(3)

for the Higgs Boson Sear h

H ! ZZ

()

! 4e at the LHC

Coordinatore: prof. Claudio Destri

Tutori: dr. Yves Sirois

prof. Tommaso Tabarelli de Fatis

Tesi sostenuta il giorno 10 gennaio 2006 presso l'Universita degli Studi di

Milano-Bi o a difronte aduna ommissione omposta da:

dr. Yves Sirois

prof. TommasoTabarelli de Fatis

dr. PhilippeBlo h (referee)

prof. Ezio Meni hetti (referee)

Tesi diDottorato di

Federi o Ferri

(4)
(5)

Introdu tion 1

1 Standard Model Physi s (and Beyond) 3

1.1 GeneralCon epts . . . 3

1.1.1 Lo al Invarian e . . . 4

1.1.2 Spontaneouslybroken symmetries . . . 7

1.2 The SU(2) L U(1) Y Model . . . 10

1.2.1 The Gauge Se tor . . . 11

1.2.2 Fermions . . . 13

1.2.3 AnomalyCan ellation . . . 15

1.2.4 The HiggsBoson . . . 17

1.2.5 StandardModelHiggsProdu tioninp p ollisions . 23 1.3 GoingBeyond . . . 28

1.3.1 Supersymmetry . . . 31

1.3.2 Extra-dimensions . . . 34

Bibliography . . . 38

2 The CMS Dete tor at LHC 39 2.1 The LargeHadron Collider . . . 39

2.2 The Compa t Muon Solenoid . . . 42

2.2.1 Magnet . . . 45

2.2.2 Tra ker . . . 45

2.2.3 Ele tromagneti Calorimetry . . . 49

2.2.4 Hadron Calorimetry . . . 64

2.2.5 Muons System . . . 66

2.2.6 The Triggerand DataA quisition System . . . 68

(6)

3 ECAL: Test Beam Studies 71

3.1 ExperimentalSetup . . . 73

3.2 Test BeamResults . . . 75

3.3 Studieson theAmplitudeRe onstru tion . . . 77

3.3.1 NoiseMonitoring . . . 77

3.3.2 Amplitude Re onstru tionintheTime Domain . . . . 78

3.3.3 Amplitude Re onstru tioninCaseofSaturated Signals 81 3.3.4 Amplitude Re onstru tionintheFrequen yDomain . 86 3.4 Con lusions . . . 90

Bibliography . . . 91

4 Ele tron Re onstru tion in CMS 93 4.1 Ele tron Propagationtowards theCalorimeter . . . 94

4.2 Ele tron Candidates . . . 101

4.2.1 Calorimetri Re onstru tion. . . 101

4.2.2 Ele tron GSFTra kRe onstru tion . . . 104

4.3 EnergyMeasurementsand Ele tron Classi ation . . . 106

4.4 EnergyS ale Corre tion . . . 112

4.5 Energy-MomentumCombination . . . 118 4.6 E e tson theH !ZZ () !4ephysi s . . . 123 4.7 Con lusions . . . 125 Bibliography . . . 128 5 The H !ZZ () !4e hannel 129 5.1 Signaland Ba kgroundDe nition. . . 130

5.2 Signaland Ba kground: Generationand Simulation . . . 132

5.2.1 Signal . . . 133

5.2.2 Ba kgrounds . . . 135

5.3 EventsTriggerand Presele tion . . . 139

5.4 SignalRe onstru tionand Ba kgroundReje tion . . . 140

5.4.1 O -line re onstru tion . . . 141

5.4.2 InternalBremsstrahlung . . . 142

5.4.3 Vertexing . . . 145

5.4.4 Isolationand Ele tron Identi ation . . . 147

5.4.5 Kinemati s ofthe re onstru ted events. . . 149

5.5 Signi an eDe nition . . . 151

5.6 SequentialSele tionAnalysis . . . 152

(7)

5.7.1 Neural Network Stru ture . . . 155

5.7.2 Multi-LayerPer eptrons . . . 158

5.7.3 Neural Networks andProbability . . . 158

5.7.4 Neural Network analysis . . . 161

5.8 Con lusions . . . 168 Bibliography . . . 170 Con lusions 171 A knowledgements 175 Resume i Riassunto v

(8)
(9)

The Standard Model of ele troweak intera tions shows an in rediblygood

agreementbetweentheoryandexperiments. However,itdoesnotyetgivean

answerto a numberof fundamental questions, namely themost important

ofall: theoriginofparti lemass. Oneoftheme hanismsproposedtojustify

massive parti les (andsoto explainthebreakdownof theSU(2)

L

U(1)

Y

symmetry group,upon whi h theStandard Model theoryis built) is based

on as alar eldwhi hwillmanifestitself throughamassive s alarparti le

alledHiggsboson,whi hremainstobefound. Extensivedire tandindire t

sear hesforthisparti leshavebeen arriedoutattheLEP2experimentand

have xeda lowerbound(m

H >114:4 GeV = 2 at 95% C.L.) and anupper bound (m H < 237 GeV = 2

) to the mass of the Higgs boson, indi ating a

valueof114 GeV = 2

at 95%C.L. asthebest t to theexperimentalvalues.

The work presented inthisthesishas been arried outinthe ontest of

the Compa t Muon Solenoid (CMS) ollaboration. CMS is one of thetwo

generalpurposeexperiments(in onjun tionwith ATLAS)whi harebeing

installed at the Large Hadron Collider (LHC) at CERN, along with two

experiments dedi ated to thephysi s of the b quark (LHCb) and to heavy

ions (ALICE). LHC is a proton-proton ollider with a nominal energy of

14TeV= 2

inthe enterof massand anominalluminosityof10 34

m 2

s 1

and willallow tosear h fortheHiggsboson inthefullrange oftheallowed

masses. The golden hannel for the dete tion of what is favoured to be a

\light" Higgs boson is via its de ay into two photons, whi h will provide

forthesignala leanexperimentalsignatureoverthehadroni ba kground.

However,ade ay hannelthatisremarkablyimportantnotonlyforthe

pos-sibilitytodete tthisparti lebutalsoforthedeterminationofitsproperties

(e.g. spin, CP, ouplings to gauge fermions et .) is the one in whi h the

Higgsbosonde aysintoapairofele tronsandpositronsviaanintermediate

state of two Z bosons (H !ZZ ()

! 4e). In this ontext, the

(10)

ex ellent energyand angularresolutions.

Thisthesishasfo used onthe hara terization oftheCMSele tromagneti

alorimeter,bothwithtestbeamdataandwithsimulation,andonthestudy

of the expe ted performan e of the CMS dete tor for the dis overy of the

Higgsboson inthe hannelH !ZZ ()

!4e.

Afteratheoreti aloverviewoftheStandardModel( hapter1) theLHC

olliderand theCMSdete tor willbepresented( hapter 2).

Chapter3illustratestheresultsoftestbeamstudiesdevotedtotheanalysis

of theele troni noiseand of the signal amplitude re onstru tion from the

readoutofthe ele tromagneti alorimeter.

The detailed simulation of the CMS dete tor allows for the study of the

ele tronre onstru tion insideCMS,whi hhas tofa ethe strongsolenoidal

magneti eld (4 T) inside CMS and the tra ker material in front of the

alorimeter. Theresultsare presentedin hapter 4.

Chapter5 shows the analysisof theexpe ted CMSperforman eforthe

se-quentialdete tionte hniqueoftheHiggsbosoninthe hannelH!ZZ ()

!

4e,usingbothastandardsele tion anda NeuralNetwork approa hto

(11)

Standard Model Physi s

(and Beyond)

The theoreti al pathtowards a uni edtheory of weak and ele tromagneti

intera tions beganin1933 when Fermiproposedhis theory ofthe de ay.

It took more than four de ades to rea h what is now alled the Standard

Modelofele troweakintera tionswhi h,togetherwiththeQuantum

Cromo-Dynami s,providesat present themosta uratedes riptionofthree ofthe

known intera tionof Nature withelementaryparti lesand elds.

Theaiminthis hapterisnottogivea ompleteandexhaustive

des rip-tion of the theory, but rather to illustrate its basi prin iples, their

onse-quen esand thefundamentalquestionsthat arestillnotfully answered.

1.1 General Con epts

TheFeynman{Gell-ManLagrangiandes ribingweakV Aintera tion

pro- esses at low energy is manifestlynon-renormalizable, sin e it ontains

op-eratorswithmassdimensionof6(whileane essary onditionforthe

renor-malizability is the presen e of operators with mass dimension less than or

equalto4). ForexampletheLagrangiandes ribingthenu leon de ayand

themuon de ay isgiven by

L= G p 2 p (1 a 5 )ne (1 5 ) e G  p   (1 5 )e (1 5 ) e ; (1.1)

(12)

where

,

5

are Dira matri es, a ' 1:23 is a onstant determined

ex-perimentally. Remarkably,the oupling onstantsforthetwopro esses,G



and G

, are equal and usually denoted by G

F

, alled Fermi onstant and

roughlyestimated by((~ ) 3

=300 GeV ) 2

.

Apossibleremedy to thenon-renormalizabilityistheintrodu tionof a

me-diator for the point-like weak intera tion providing a term in the matrix

elementsto xthequadrati divergen esinhigherorderperturbative

al u-lations. Thismediatormustbeamassive ve tor(toexplaintheshortrange

oftheweakfor e) and exist innature intwo harged states (toexplainthe

harge- hanging manifestations of the weak intera tions). For a omplete

an ellation of all the divergen es at all orders, a neutral ve tor boson is

alsorequired.

To satisfy all the requirements in a oherent and onsistent way, three of

what Weinberg alls \good ideas"('t Hooft, 2005) are needed: the quark

model, the idea of gauge (or lo al) symmetry and that of spontaneously

broken symmetry. In whatfollows,theattentionwillbe fo usedonthelast

two aspe ts.

1.1.1 Lo al Invarian e

Sin e its rst formulation in Maxwells equations whi h unify ele tri and

magneti intera tions (1864), the on ept of gauge invarian e has held an

in reasinglyimportantroleinthedes riptionofNatureanditsfundamental

intera tions. Thefreedomof hoosingmanypotentialsto des ribethesame

physi s an in fa t be reformulated in terms of a gauge symmetry in the

Lagrangian. Su ha reformulation leadsto onserved harges (viaNoethers

theorem) and to other important onsequen es su h as theintrodu tionof

new eldsand intera tions into thetheory.

In ele trodynami s, forexample, requiringthefermion free-parti le

La-grangian L free = (i    m) (1.2)

tobeinvariant underalo alU(1)symmetry !e iq (x)

suggests a

redef-initionof thederivative



(so alled ovariant derivative)as

D    +iqA  (x); (1.3) where A 

is a new ve tor gauge eld. Provided that the gauge eld A



transformsas

(13)

theobje t D behavesinfa t asthe eld under aU(1) phaserotation:

D !e iq (x)

D : (1.5)

The newinvariant Lagrangian Lbe omesthen

L=L free q  A  ; (1.6)

where the lastterm ouples the eld A



to : a new eld (identi edwith

thephoton) hasappearedin thetheory.

To obtain the omplete QED Lagrangian it suÆ es to introdu e a kineti

termforthe eldA



,thatisalo allyinvarianttermdependingonthe eld

and its derivativesbut noton . It an be shown(see for example(Peskin

and S hroeder, 1995)) that out of the four possible ombinations onlyone

ful lsthene essaryrequirementsofrenormalizabilityofthetheoryandgood

behaviourunderdis retesymmetries:

F  =  A    A  : (1.7)

It willbeusefulin thefollowingto noti ethatF



an be rewrittenasthe

ommutator betweentwo ovariant derivatives:

[D  ;D  ℄=[  ;  ℄+iq([  A  ℄ [  A  ℄) q 2 [A  ;A  ℄ =iq(  A    A  ); (1.8) that is [D  ;D  ℄=iqF  : (1.9)

The ompleteQEDLagrangian is then

L QED =L free q  A  1 4 F  F  : (1.10)

ItmustbestressedthatA



isamassless eld: amasstermwouldbeinfa t

proportionalto A

 A



,thusviolating thegauge invarian e:

A  A  !(A    )(A    )6=A  A  : (1.11)

Yang and Mills proved that when when the symmetry group is

non-Abelian, the onstru tion of the theory follows the same prin iples (Yang

and Mills, 1954). The physi al onsequen es are howeverdi erent and are

(14)

onsideredthe invarian eunder a lo altransformation of the SU(2) group

(whi hintheoriginalYang-Millspaperwassupposedtobetheisotopi spin

for a doublets of Dira elds, the proton and the neutron). If the eld

transformsas (x)!G(x) (x)e i i (x)  i 2 (x); (1.12) where  i

are the group generators, then the ovariant derivative takes the

form D    igB  ; B  b i   i 2 ; (1.13) b i 

being three ve tor elds, one for ea h generator of the gaugesymmetry

group.

To assurethelo alinvarian e, B



musttransform a ordingto

B  (x)!G(x)  B  (x)+ i g    G y (x): (1.14)

FollowingbyanalogytheAbelian ase, thekineti termforb i



anbefound

and the Lagrangian ompleted. Indeed, onsidering a eld-strength tensor

builtupwith the ommutator betweentwo ovariant derivativesone nds

[D  ;D  ℄= igF i   i 2 ; (1.15) with F i  =  b i    b i  ig  b i  ;b j   : (1.16)

Using the Pauli's matrix identity to simplify the kineti term (F

 )

2

and

expandingthe ovariant derivative,the Yang-Mills Lagrangian be omes

L YM =L free g 2  b i   i 1 2 trF  F  : (1.17)

As for theAbelian ase, the symmetry ompletely di tates the form of

theintera tion, therebyleadingto a ri hers enario.

Inadditiontothegaugebosonpropagator andto the ouplingofthegauge

eldsto thefermions, thetheory hasthree- and four-gauge-bosons verti es

( g. 1.1),as a onsequen e of the non linear term inF



. These new

self-intera tions for the (massless) gauge bosons exist even without fermions,

while Abelian gauge theories without fermioni elds are free (i.e.

non-intera ting)theories.

Theprin ipleoflo alinvarian eisa onsistentwayto havemasslessve tor

bosons andidatesintothetheory: inorder to be usedtodes ribetheweak

intera tions,however, they must a quire a mass, hen e requiringa

sponta-neous breakingof the symmetry. The me hanism by whi h thissymmetry

(15)

U(1)

(QED)

!

Photon Propagator

SU(2) !

Gauge FieldPropagator

3 GaugeBoson Vertex

4 GaugeBoson Vertex

Figure 1.1: Examples of ouplings pres ribed by an Abelian gauge

symmetry(U(1))andanon-Abelianone(SU(2)).

1.1.2 Spontaneously broken symmetries

If atheory is des ribedby aLagrangian invariant under a given symmetry

butitsphysi alva uumisnot,thenthesymmetryissaidtobespontaneously

broken.

ThereareinNatureseveralo urren esofspontaneoussymmetry

break-ing. Aferromagneti systemis a anoni al example. Above the Curie

tem-peraturethe magneti dipole moments show a rotational SO(3) symmetry

with all the dipoles randomly oriented in a three dimensional spa e

(para-magneti phase). The introdu tionof an external magneti eld expli itly

breaks this SO(3) symmetry down to SO(2) by for ing the spins to be

alignedalongaprivilegeddire tion(paralleltothe elditself). Turningthe

eldo restores theoriginalsymmetry.

Thesystembehavesdi erentlywhenitstemperatureisbelowtheCurie

tem-perature. The lowest energy on guration orresponds to a parallel

align-ment of the magneti dipoles: there is a non-zero magnetization along a

preferred dire tion even in absen e of external elds(i.e. of expli it terms

in the Lagrangian breaking its symmetry). The SO(3) symmetry is then

spontaneously broken down to SO(2) by the system's ground state, whi h

\ hooses"one parti ular on gurationamong in nitepossibilities(the

(16)

(a) (b)

Figure1.2: FormforthepotentialV( 

)ofequation1.19depending

onthesignof 2

: negative(a)andpositive(b).

hasbeen hosen,it an notbe hangedunlessan amount ofenergyis

intro-du edintothesystemforea hof thedipoles,inorderto reorientthem ina

di erentdire tion.

Thesimplestexampleofspontaneoussymmetrybreakingin eldtheory

is realized with dis rete symmetries (namely parity). It shall be however

dis ussed the slightly more advan ed example of a omplex s alar theory

invariantunder aglobal U(1) symmetry.

Thestarting Lagrangianis oftheform

L=  (  )  V(  ); (1.18)

wherethee e tive potentialV(  )is hosen as V(  )=  2   +  2 (  ) 2 ; >0: (1.19)

Two ases, dependingonthe signof  2

,are onsidered( g. 1.2).

If 2

<0,thesymmetryisexa t andthere existsa uniqueva uumstate for

thetheory,at hi=0.

On the other hand, if  2

> 0 (whi h also means that  an no longer be

interpretedasamassforthe eld)theva uumstateisin nitelydegenerate

forallthe on gurationssatisfying

jj=   2   1=2 v: (1.20)

Choosing one of them spontaneously breaks the U(1) symmetry. The

(17)

theoriginalsymmetry arepreserved.

Byexpli itly hoosinga va uum on gurationwithonlya real part

hi

0

=v; (1.21)

itis possibleto expand aboutthisgroundstate byde ning

(x)=v+ 1 p 2 (  1 (x)+i 2 (x)); (1.22) with 1 and 2

reals alar elds.

The potentialthenbe omes

V(  )=  4 2 + 1 2  2  2 1 +O( 3 i ) (1.23)

and,omittingthe onstantterms,theLagrangian anthereforebeexpressed

as L= 1 2 (  )(  )+ 1 2 (  )(  )+ 2  2 1 : (1.24) The eld 1

has a quireda massm

1 = p 2  while 2 ismassless.

It is possible to get the avour of this e e t by looking at theform of the

potential( g. 1.2): the mass termfor 

1

is a onsequen e of the restoring

for e against radial os illations, while the symmetry under U(1) rotations

that the Lagrangian still exhibits means that no restoring for es against

angularos illationsexist,therebyallowinga massless

2 eld.

The appearan e of massless s alars when a global ontinuous

symme-try is spontaneously broken is a onsequen e of a general theorem known

as Goldstone's theorem. The number of new massless parti les (so alled

Goldstone bosons) inthetheory is relatedto thedegrees of freedomof the

symmetry group: a rotation in N dimensionsis des ribed by N(N 1)=2

parameters, ea h of them orresponding to a ontinuous symmetry.

Af-ter a spontaneous breakdown of the O(N) symmetry to an O(N 1),

there are still (N 1)(N 2)=2 unbroken symmetries. The number of

masslessGoldstone bosons orrespondingto thebroken symmetries isthen

N(N 1)=2 (N 1)(N 2)=2=N 1. It istrivialto verify thatinthe

previousexamplethisleadsto exa tlyone Goldstone boson.

One an nowaskswhat happensrequiringU(1) to be alo alsymmetry

inthepreviousexample. Thederivationofthepotential(1.19) isstillvalid,

(18)

di erent result be ause of the di erent kineti term due to the ovariant

derivative 1

. One infa tobtainsthat

(D  )(D  )  = 1 2 (   1 ) 2 + 1 2 (   2 ) 2 + p 2qvA     2 +q 2 v 2 A  A  +O((A  ; 1 ; 2 ) 3 ): (1.25)

The lasttermis simplya massterm forthegauge boson A



whi h is

pro-portionalto theva uum expe tation valuev of the eld (m= p

2 qv).

This(mira ulous!) interplaybetweenlo alinvarian eandspontaneous

sym-metrybreaking, rstnoti edbyHiggs(Higgs,1964), allowsto re on ilethe

problemsasso iatedwiththedes riptionoftheweakintera tions. Theneed

of massive gauge bosons is satis ed byrequiring the theory to ful ll (very

elegant) lo al symmetry prin iples at the pri e of introdu ing new elds

subje ted to appropriatee e tive potentials (whi his lesselegant,indeed).

In a ertain way themassless gauge bosons \eat" theGoldstone s alarsto

get one more degree of freedom, the transversely polarizedstate properof

masslessparti les. 1.2 The SU(2) L U(1) Y Model

The Standard Model of ele troweak intera tions uni es weak and

ele tro-magneti intera tions. Itisagaugetheorywithexa tsymmetrieswhi hare

spontaneouslybroken. ProposedindependentlybyWeinberg, Glashowand

Salam ((Weinberg, 1967), (Glashow, 1961)), the Standard Model was

for-mulatedonthebasisofthelargestpossiblesymmetrygroupasso iatingthe

leptons(SU(2)U(1)) asinferred byexperimentalresultsat that time. It

ledtotheuni ationofweakand ele tromagneti intera tions,respe tively

theSU(2)and U(1)sub-groups.

Summarized below are the main experimental fa ts explained by the

theory,asoutlinedby(Renton, 1990):

 leptons and quarksarehalf-spinparti les;

 when weak harged urrent intera tions o ur (mediated by W 

ex- hange) leptonsand quarks ome inweak isospindoublets;

 harged urrent intera tions appear to be purely left-handed (V A

is a hiral theory) and to violateC and P maximally,while(almost)

onserving CP;

1

(19)

L Y

 leptonsand quarks ome inthree generations;

 harged leptonandquarkmasses substantiallyin reasefromone

gen-erationto thenext, whileneutrinosarevery light parti les;

 inadditionto harged urrents,therearetwokindsofneutral urrents:

one oupling toall quarksandleptons(mediatedbyZ ex hange)and

theother ouplingonlytoele tromagneti hargedparti les(mediated

by ex hange);

 short-rangeweak intera tionsaremediatedbythree massive parti les

(W 

; Z,withmassmO(100GeV = 2

))whilein nite-range

ele tro-magneti intera tions aremediatedby one masslessboson( ).

Notallofthesefa tswereknownwhenthe rstpapersbyWeinberg,Glashow

and Salamwere published. The presen eof a weak neutral urrent,for

ex-ample, wasone of themostsu essfulpredi tion ofthe theory.

1.2.1 The Gauge Se tor

Imposingthelo alinvarian eofthetheory undera SU(2)U(1)

transfor-mationgivesfour(massless)gauge elds, three orrespondingto theSU(2)

symmetry(W i

, i=1;2;3) and one to theU(1) (B



). They appearinthe

de nitionofthe ovariant derivative

D  =  igW i   i ig 0 Y 2 B  ; (1.26) where g and g 0

are the oupling onstants of the SU(2) and U(1) groups

respe tively 2 ,  i   i

=2 are the generator of SU(2) and Y is a quantum

numberusually alled weak hyper harge.

Followingtheformalismoutlinedinthepreviousse tion,as alarHiggs eld

 is introdu ed into the theory in order to give a mass to the weak gauge

elds. TheU(1)symmetry,whi h orrespondstothemasslessphoton,must

however notbe broken.

The simplest hoi e foris adoubletrepresentationof SU(2):

  0  + ! : (1.27) 2

(20)

Givingto  a harge 1=2 under U(1), its omplete SU(2)U(1) transfor-mationbe omes  ! e i i  i e i =2 : (1.28)

Ifa quiresa va uum expe tation valueof theform

hi= 1 p 2 0 v ! ; (1.29)

where and arerealnumbers. thenhi isnotinvariantunder anyof the

originalfour generators. It is invariant,however, under the transformation

orresponding to 1 = 2 = 0 and 3

= , i.e. the linear ombination

Q=( 3

+Y=2) orresponding totheele tri harge. Three massive bosons

a quirethereforeamassviatheGoldstones alarsasso iatedwiththethree

broken symmetries, butthephoton remainsmassless.

By evaluating the kineti term for (D 

) 

D



, it is possible to gure out

fromthe masstermstheW 

bosons asthelinear ombination

W   = 1 p 2 W 1  iW 2   ; (1.30)

andtheneutralve torbosonZ andtheele tromagneti ve tor potentialA

 as Z  = 1 p g 2 +g 02 gW 3  g 0 B   A  = 1 p g 2 +g 02 g 0 W 3  +gB   : (1.31)

Themasses fortheweakgauge bosons are

m W =g v 2 ; m Z = p g 2 +g 02 v 2 (1.32)

By de ningthe Weinberg angle as themixing angle between (W 3

;B) that

gives (Z ;A),the followingrelationsare obtained:

Z A !  = os# W sin# W sin# W os# W ! W 3 B !  ; (1.33) with os# W = g p g 2 +g 02 ; sin# W = g 0 p g 2 +g 02 (1.34) Rewriting D 

as a fun tion of the gauge bosons mass eigenstates would

(21)

L Y

leadtotheimportantrelationbetweentheele tri hargeeandthe oupling

onstantsg,g 0 : e=gsin# W : (1.35)

Moreover themasses of Z and W are notindependent:

m W =m Z os# W : (1.36)

Three free parameters of the gauge se tor hen e exist: the two oupling

onstants g and g 0

and the va uum expe tation value v of the Higgs eld.

Theseparameters are usuallyexpressedusingtheele tromagneti oupling

onstant

e.m.

,the Fermi onstant G

F

and themassof theZ boson, whi h

are measuredwith a very high a ura y (Eidelman et al., 2004). The

ou-pling onstant e.m. = gg 0 4 p g 2 +g 02 = 1 137:03599911(46) (1.37)

isdeterminedfromtheanomalousmagneti momentofele tronsandpositrons,

G F (~ ) 3 = 1 p 2v 2 =1:16637(1)10 5 GeV 2 (1.38)

from themuon de ay,and

m Z = v 2 p g 2 +g 02 =(91:18760:0021) GeV = 2 (1.39)

from theZ-lineshapes anat LEP1.

1.2.2 Fermions

Ifjustone familyofquarksandleptonsis onsidered(e.g. (e;

e

),(u;d)) 3

in

thedes riptionoftheele troweakpro esses,therepresentationsofSU(2)

L 

U(1)

Y

assignedto thefermionsmustpreserve the hiralnature oftheweak

harged urrent intera tions and the oupling of ele tromagnetism to

left-and right-handedfermions. Theserequirementsleadto

3

Thegeneralizationtotheothertwofamiliesoffermions(;

 ),(;



),( ;s),(b;t)is

(22)

L L =  e L e L ! =P L  e e ! (2; 1) e R =P R e (1; 2) Q L = u L d 0 L ! =P L u d 0 ! 2; 1 3  u R =P R u (1; 4 3 ) d 0 R =P R d 0 (1; 2 3 ) (1.40) whereP L = 1 5 2 andP R = 1+ 5 2

aretheproje tionoperatorsonorthogonal

eli ity states, and the last olumn represents the quantum numbers

orre-spondingto therepresentations of SU(2)

L

U(1)

Y .

FromtheGell-Mann{NishijimarelationQ=

3

+Y=2 it anbenoti edthat

an eventual right-handed neutrino 

R

, singlet of the gauge group, would

have vanishing both harge and weak hyper harge. This neutrino would

therefore not intera t ele troweakly and onlyindire t measurements ould

proofits existen e.

Inthe expressiongiven above, downquarks ome witha \ 0

": quark mass

eigenstates,infa t, donot oin ide withweak intera tion eigenstates. The

latterare a linear ombination ofthe masseigenstates throughtheunitary

mixingmatrix 0 B  d 0 s 0 b 0 1 C A = 0 B  V ud V us V ub V d V s V b V td V ts V tb 1 C A 0 B  d s b 1 C A ; (1.41)

whi his generallyreferred to astheCabibbo-Kobayashi-Maskawa matrix.

Itishasbeenshownexperimentallythatfermionsaremassiveparti les 4

.

However, a masstermof thegeneri form

m = m( L R + R L ) (1.42)

would break the gauge invarian e in the Lagrangian (

L and

R

belong

to di erent representation of SU(2) and have di erent U(1) harges) and

is therefore not allowed. Notwithstanding thisunpleasant feature of hiral

Lagrangians, it ispossibleto buildamass term withthe helpof the Higgs

eld. The masstermforthe leptonsis

L Yukawa = X i=e;;   i L i L e i R +h. .  ; (1.43) 4

Re entresultsfromneutrinoos illationexperimentsseemtoindi atenon-zeromasses

(23)

L Y

where 

i

are new dimensionless parameters of the theory. Repla ing the

eld byits expe tationvalue yields

L Yukawa = X i=e;;   i v p 2 e i L e i R +h. .  : (1.44)

It follows that themass forthe leptoniis proportionalto its Yukawa

ou-plingto theHiggs:

m i = 1 p 2  i v: (1.45)

Pro eedinginthe same way forthequarkmass terms,one obtains

L Yukawa = X i=d;s;b   i v p 2 d i L d i R +h. .  + X i=u; ;t   i v p 2 u i L u i R +h. .  ; (1.46)

and forthemassof thequarki

m i = 1 p 2  i v: (1.47)

An additional ompli ation for quarks, whi h is not made expli it here, is

that the Yukawa ouplings involve mass eigenstates. To have the

orre-sponding expression in terms of the weak eigenstates base, the

Cabibbo-Kobayashi-Maskawa matrix elements (1.41) must be properly introdu ed,

inorder to passfrom themasseigenstates to the weakintera tionones.

1.2.3 Anomaly Can ellation

Even ifa theory is renormalizable(and non-Abeliangauge theories are, as

demonstrated by 't Hooft ('t Hooft, 1976)) there an be urrents whose

onservation (throughgauge invarian e+Noether's theorem) holdsat tree

levelbutisviolatedin rstloopdiagrams. Anexamplesofsu ha urrentis

givenin gure1.3: allthedivergen es omingfromthese loopsmust an el

outto give a nitetheoryat all perturbativeorders.

It an be shownthat

A ab /tr h 5  a n  b ; oi =A ab + A ab ; (1.48)

wherethe tra e istaken overall thefermion familiesand inthelast

equiv-alen e thefa tor

5

hasbeenexpli itly set equal to 1 for left- and

(24)

Figure 1.3: Example of a triangle anomaly. In this ase the

axial-ve tor urrentisrepresented.

For a theory whi h equally ouples left- and right-handed fermions, the

an ellation omes automati ally, sin eA ab

+ =A

ab

. Indeed, the Standard

Modelisa hiraltheory,andthisautomati an ellationdoesnottakepla e.

It an be shown, however, that the only anomaly inthe theory is

propor-tionalto tr h f a ; b gY i = 1 2 Æ ab X fermion doublets Y: (1.49)

Using the Gell-Mann{Nishijima relation, the ondition for the absen e of

anomalies an beexpressed asafun tion ofele tri harge:

Q=Q R Q L = X right-handed doublets Q X left-handed doublets Q (1.50)

Considering a single fermion generation in the Standard Model, one

left-handedleptondoublet orrespondsto one left-handedquarkdoublet,while

right-handeddoublets areabsent. This translatesin

Q= Q L =1+ 2 3 1 3 = 1 3 ; (1.51)

whi hmeansanomalieshavebeenintrodu edintothetheory. Bysupposing,

however that quarks ome with an additional three- avoured harge with

respe ttotheleptons,assuggestedbythestrongintera tiontheory,afa tor

3, whi h orresponds to the three di erent possible \strong harges" the

(25)

L Y thenbe omes Q= Q L =1+3  2 3 1 3  =0; (1.52)

sotheanomalies an el(withinea h singlefermion generation).

Given the Standard Model of ele troweak intera tion, an indi ation for a

des riptionofstrongintera tionshasbeenfoundasa onditionforits

renor-malizability.

1.2.4 The Higgs Boson

It has been shown in the previous se tions how the Higgs eld give mass

to gauge bosons and fermions, but this is not the only onsequen e of the

introdu tion of a s alar eld into the theory. As demonstrated in se tion

1.1.2 a newmassives alar parti leisexpe ted to appear.

Toseehowthis anhappenwithintheStandardModel,one anparametrize

the expansion of the Higgs eld  about its ground state in the following

way(so alledunitarygauge):

(x)= 1 p 2 U(x) 0 v+H(x) ! ; (1.53)

whereU(x)isageneraltransformationofSU(2)toprodu ethemostgeneral

double- omponent spinor  and H(x) is a real eld su h that hh(x)i = 0.

U(x) analwaysbeeliminatedfrom theLagrangianbyagauge

transforma-tion soitwillnotbe onsideredinthe followingdis ussion.

Oneseeks to writeexpli itlyin termof theexpansion1.53 all thepie es of

theStandardModel Lagrangian ontaining theHiggs eld. The e e tive

Lagrangian forand theYukawa ouplingsto thefermions.

The usualform of theLagrangian foris

L H =(D  ) y (D  ) V( y )= =(D  ) y (D  )+ 2  y  ( y ) 2 ; (1.54)

wherethepotentialrea hesa minimumat

v   2   1=2 : (1.55)

Pluggingin thepotentialyields

L V =  2 H 2 vH 3 1 4 H 4 = = 1 m 2 H H 2 r  m H H 3 1 H 4 ; (1.56)

(26)

Figure 1.4: Feynman diagrams and rules for the intera tion of the

(27)

L Y

(a)

(b)

Figure 1.5: (a)Bran hingratioforH de ayfor avarietyof hannels

as afun tion of the Higgs boson mass. (b) Total de ay width of the

(28)

The eld H is thereforea massive s alar,witha massgiven by m H = p 2v; (1.57)

andis alledHiggsboson.

Thekineti term inL

H

written intermsof gives

L K = 1 2 (  H) 2 +  m 2 W W +  W  + 1 2 m 2 Z Z  Z     1+ H v  2 : (1.58)

Finally,the Yukawa Lagrangian produ es forea h fermion f a term of the

form L f = m f ff  1+ H v  (1.59)

Anillustrationof theHiggsboson ouplingstothegaugebosonsandto the

fermions (and the ubi and quarti self-intera tion ouplings) is given in

gure 1.4. As the asso iated Feynman rules show, the ouplings are

om-pletelydeterminedbythemasses of theparti lesinvolved andbytheweak

intera tion oupling onstants. In parti ular, ouplings to W 

and Z are

proportionalto mass of the gauge bosons squared, whilefor fermions

ou-plingsare dire tlyproportionalto thefermions' mass. The oupling to the

gluonsandtothephotonsviafermioni loopisalsointeresting. Indeed,due

toits mass,thetquarkgivesthedominant ontribution. The rst oupling

relationisparti ularlyimportant forthe Higgsboson produ tionpro esses

at hadron olliders. Onthe other hand, these ond oupling relations

pro-videone ofthe leanest signatures forexperimental dete tion.

Adetailedviewofthebran hingratiosforthedi erentde ays oftheHiggs

bosonisgivenin gure1.5(a) asafun tionofm

H

. Asa onsequen eofthe

linearHiggs oupling to thefermion masses, form

H <2m

W

the dominant

hannelis H !bb,whi h orrespondsto thede ay intheheaviest fermion

kinemati ally a essible. Beyond the threshold for the produ tion of two

gauge boson H ! WW ()

and H ! ZZ ()

be ome dominant be ause of a

fa torm 3 H =m 2 W  ;Z

inthepartialwidth. Thetotal de aywidthoftheHiggs

boson asa fun tionof theHiggs massis given in gure 1.5(b): the

asymp-toti behaviour isproportionalto m 3

H .

Existing Constraints on m

H

Althoughthe Higgsmass isa free parameter ofthe StandardModel,there

aretheoreti alargumentsofinternal onsisten yofthetheorygiving

(29)

L Y

Figure 1.6: Theoreti allimitsontheHiggsbosonmassassumingthe

validityoftheStandardModeluptoas ale.

have been arried out.

ByassumingtheStandardModelto bevalidatleastupto a ertainenergy

s ale , a lower bound for m

H

omes from the requirement for the

sym-metry breaking to a tually o ur. This transposes into the ondition for

the potential V(hi) <V(0), that is equivalent to  >0 at all s ales. On

the other hand, sin e perturbative orre tions to the Higgs self intera tion

terms make  in reasing with energy, requiring to keep nite up to the

s ale translates inanupperboundform

H

. Thesetwo theoreti al limits

are shown in gure 1.6. From what on erns theexperimental onstraints,

resultsofdire tsear hesatLEPIIareshownin gure1.7: valuesform

H up

to 114:4 GeV= 2

are ex luded. Indire t onstraints based on the

require-ment thatallthemeasurementsofele troweakobservables(e.g. asymmetry

measurements, mass for W 

, top quark mass et .) be onsistent allow to

ex ludeaHiggsmassgreaterthan237GeV = 2

at95%C.L.. Thebest tfor

all these measurements gives the value m

H =114 +69 45 GeV = 2 at 95% C.L. ( gure 1.7) assumingm top =1784 GeV = 2 .

However, indire t onstraints on Higgsboson masshave a limited

(30)

Figure1.7: ExperimentallimitsontheHiggsbosonmass omingfrom

dire tsear hesatLEP(theex ludedregionisshadowed)and 2

result

ofa tonele troweakobservablesassumingm

H

(31)

L Y

Figure1.8: One-standard-deviation(39.35%)un ertaintiesinm

H asa

fun tionofm

t

forvariousinputs,andthe90%CLregion( 2

=4:605)

allowed by all data.

s (m

Z

) = 0:120 is assumed ex ept for the ts

in luding theZ-lineshapedata. The95%dire t lowerlimitfrom LEP

2isalsoshown.

onlylogarithmi allyonm

H

,whilefermionsgive ontributionsquadrati ally

dependent on m

f

. It turnsoutthat, be ause of the largemass for thetop

quark ( omparable to the predi ted Higgs mass), un ertainty on the top

mass an sensiblyshift the onstraints on m

H

, as illustrated in gure 1.8,

inwhi hthedependen e ofele troweak observablesonm

H

and m

t

is made

expli it.

1.2.5 Standard Model Higgs Produ tion in p p ollisions

The des riptionof theintera tionof two protonsis based,withintheQCD

framework, on the parton model approximation. This onsists in

onsid-ering the in oming beam of hadrons equivalent to a beam of onstituents

( alled partons and identi ed with quarks and gluons) whose momentum

distributionsinsidethehadronis hara terized bypartondensityfun tions

(pdf) f

i

(x;). The probabilityto ndtheparton i arryinga fra tion

be-tween x and x+dx of the initial momentum p of the hadron is given by

dxf

i

(x;), where  is the typi al energy s ale of the pro ess. The pdf's

do not depend on the parti ular pro ess onsidered are and are therefore

(32)

Figure1.9: Representationoftheimprovedpartonmodelformula(eq.

1.60).

upon theenergys ale oftheintera tion.

The general expressionfor the produ tion ross se tion of some nal state

with high invariant mass from the intera tion of two protons beams with

momenta p

1

and p

2

( gure 1.9) an then be expressed by the so alled

improved parton modelformula:

(p 1 ;p 2 )= X i;j Z dx 1 dx 2 f i (x 1 ;)f j (x 2 ;) ij (x 1 p 1 ;x 2 p 2 ; s ();): (1.60)

The ross-se tionforthemostimportantpro essesatLHCisshownin gure

1.10.

In p-p ollisions, the dominant Higgs produ tion me hanism over the

entire mass range a essible at LHC (see hapter 2) is via gluon fusion

(gg ! H), where the Higgs ouples to the gluons through a heavy quark

loop ( gure1.11).

The leading ontribution to the loop omes from the top quark. The

otherquarks ontributetotheloopbyafa toratleastsmallerbyO(M 2 b =M 2 t )

be ause of theform ofthe Higgsboson ouplingto thefermions.

As summarized in (Del Du a, 2003) QCD orre tions at the Next to

LeadingOrder(NLO) have been omputedand showan in reaseof theLO

rossse tion by 10-80%, therebyleading to a signi ant hange of the

the-oreti al predi tions. NNLO al ulations have re ently be ome available in

(33)

L Y

Figure1.10: Cross-se tionforthemostimportantpro essatLHCasa

fun tionofthe enterofmassenergy. Therateofeventsperyearisalso

reportedontherights ale,assumingforLHCanintegratedluminosity

of100fb 1

(HighLuminosityphase).

Figure 1.11: Gluonfusionpro ess fortheHiggsboson produ tionin

(34)

Figure 1.12: Higgs produ tion via gluon fusionin pp ollisionsat a

enter of mass energy of 14 TeV= 2

as afun tion of the Higgs mass.

The produ tion rate has been omputed in the large m

top

limit, to

leading order, NLO and NNLO a ura y. The shaded bands display

therenormalisation

R

andfa torisation

F

s alevariations. Thelower

ontours orrespondto  R =2m H and  F =m H

=2, while theupper

ontoursto R =m H =2and F =2m H .

(35)

L Y

Figure1.13: Weakbosonfusion(WBF)pro essfortheHiggs

produ -tioninhadroni ollisions.

thegluons by an e e tive oupling (valid ifthe Higgsmassis smaller than

thethresholdforthe reation ofatopquarkpair). Itisexpe tedto

approx-imatethefullmassiveres alingfa tor within10%upto 1TeV = 2

, overing

the entire Higgs mass range a essible at LHC. NNLO orre tions display

an in rease of about 15% at m

H

= 120 GeV = 2

with respe t to the NLO

evaluation. Figure 1.12 shows the e e t of the higher order orre tions to

theHiggstotal rossse tion via gluonfusion.

These ondlargestprodu tionme hanismfortheHiggsbosonisviaweak

bosonfusion (WBF, qq ! qqH), where the Higgs is radiated o theweak

bosonex hangedin thet- hannelbetween thetwo in omingquarks ( gure

1.13). Sin e thedistributionfun tions ofthe in omingvalen equarkspeak

at values of the momentum fra tions x0:1-0:2, the two outgoingquarks

arenaturallyhighlyenergeti . Theythereforehadronizeintotwojetswitha

largerapidityintervalbetweenthem,typi allyat forward-ba kward

rapidi-ties. Anotherinterestingpropertyis theabsen e ofhadroni produ tionin

therapidityintervalbetweenthetwojets,sin ethe olourlessweak

intera -tion bosonex hanged between the in omingquarks auses gluon radiation

to o urs only as bremsstrahlung o the quark legs. This features an be

used to distinguish WBF Higgs produ tion from gluon gluon fusion. NLO

orre tions in

s

to the WBFprodu tionpro ess have been omputedand

foundto bemodest (ontheorder of 5-10%)(Puljak,2000).

The ross-se tionsfor thetwo produ tion pro esses illustratedabove along

withminorpro essessu hasHiggsstrahlungorttasso iatedprodu tionare

(36)

σ

(pp

H+X)

[

pb

]

s = 14 TeV

M

t

= 175 GeV

CTEQ6M

gg

H

qq

Hqq

qq

_

HW

qq

_

HZ

gg,qq

_

Htt

_

M

H

[

GeV

]

0

200

400

600

800

1000

10

-4

10

-3

10

-2

10

-1

1

10

10

2

Figure 1.14: Cross-se tionfortheStandard Model Higgsprodu tion

atLHC.

1.3 Going Beyond

Despitethein rediblygoodagreementbetweenStandardModelpredi tions

and experiments (for an example of some observablessee the gure 1.15),

there are both on eptual problems and phenomenologi al indi ations of

newphysi s beyond it.

Parti lemassandquantumnumberssu hastheele tri harge,weakisospin,

hyper hargeand oloursarenotexplainedbytheStandardModel. F

urther-more,there is no reasonwhy leptons and quarks ome in di erent avours

andwhytheirele troweak intera tionmixinsu hape uliarway. Isthisan

indi ationtowardsmoreelementary onstituentsofmatterthanquarksand

leptons?

After the extension of the Standard Model, based on experiments, to the

group SU(3)SU(2)U(1) in order to in lude the strong intera tions

(SU(3) group), one is also tempted to in lude gravity in the same way.

However, typi al energy s ales for quantum gravity are of the order of

M P 1= p G N 10 19 GeV = 2

, seventeen ordersof magnitudehigher than

thetypi alele troweak intera tions. CantheStandardModelwithoutnew

physi sbevalidupto su hlargeenergies? Thisappearsunlikely,sin ethere

are no indi ationsin the Standard Model of why the typi al weak s ale of

masses issosmallrelativelyto thePlan kmassM

P

(hierar hyproblem).

(37)

Measurement

Fit

|O

meas

O

fit

|/

σ

meas

0

1

2

3

0

1

2

3

∆α

had

(m

Z

)

∆α

(5)

0.02758

±

0.00035 0.02767

m

Z

[

GeV

]

m

Z

[

GeV

]

91.1875

±

0.0021

91.1874

Γ

Z

[

GeV

]

Γ

Z

[

GeV

]

2.4952

±

0.0023

2.4965

σ

had

[

nb

]

σ

0

41.540

±

0.037

41.481

R

l

R

l

20.767

±

0.025

20.739

A

fb

A

0,l

0.01714

±

0.00095 0.01642

A

l

(P

τ

)

A

l

(P

τ

)

0.1465

±

0.0032

0.1480

R

b

R

b

0.21629

±

0.00066 0.21562

R

c

R

c

0.1721

±

0.0030

0.1723

A

fb

A

0,b

0.0992

±

0.0016

0.1037

A

fb

A

0,c

0.0707

±

0.0035

0.0742

A

b

A

b

0.923

±

0.020

0.935

A

c

A

c

0.670

±

0.027

0.668

A

l

(SLD)

A

l

(SLD)

0.1513

±

0.0021

0.1480

sin

2

θ

eff

sin

2

θ

lept

(Q

fb

) 0.2324

±

0.0012

0.2314

m

W

[

GeV

]

m

W

[

GeV

]

80.425

±

0.034

80.389

Γ

W

[

GeV

]

Γ

W

[

GeV

]

2.133

±

0.069

2.093

m

t

[

GeV

]

m

t

[

GeV

]

178.0

±

4.3

178.5

Figure 1.15: Comparison of the measurements withthe expe tation

oftheSM al ulatedforthe veSMinputparametervaluesinthe

min-imum of the global  2

of the t (The ALEPH, DELPHI, L3, OPAL,

SLD Collaborations, the LEP Ele troweak Working Group, the SLD

Ele troweakand HeavyFlavourGroups,2005). Thepull ofea h

mea-surement is reported aswell. The dire ted measurements of m

W and

W

(38)

me hanism for the ele troweak symmetry breaking, is not satisfa tory as

well. Loop orre tionsto theHiggsmassarequadrati allydivergent,giving

riseto theso- allednaturalityproblem.

If the Standard Model is not the fundamental theory, it will be valid up

to a ertain energy s ale . This limit an be viewed as a ut o whi h

parametrizesour ignoran e onthe new physi sthat willmodifythe theory

atlargeenergys ales. Itistheninterestingtolookattherelevantquantities

of theStandard Model upon the ut o s ale, requiringthat no

\unnat-ural"dependen e on  arise. For what on erns the Higgs mass, in order

not to ex eed the limits indi ated by dire t and indire t sear hes  must

be small, of the order of O(1 TeV= 2

), but annot be too smallsin e new

physi s hasnotbeendete tedat the present experiments.

Moreover, another unsatisfa tory theoreti al aspe t ofthe StandardModel

is the number of arbitrary parameters. These in lude three independent

gauge ouplings, apossibleCP-violatingstrong-intera tionparameter, two

independent masses for weak bosons, six quark and three harged-leptons

masses,threegeneralizedCabibboweak-mixinganglesandtheCP-violating

Kobayashi-Maskawa phase.

On the other hand, from the experimental side there is a strong eviden e

of neutrino os illations, implying massive neutrinos and the violation of

the family leptonnumber (and at least nine more arbitrary parameters in

the Standard Model to a ommodate these e e ts). Dire t measurements

ofneutrino masses, mainlyfrom -de ayexperiments, have imposedupper

limitsfromO(1eV = 2

)fortheele tronneutrinotoO(10 2

eV= 2

)forthetau

neutrino,whi h are roughly tenorder of magnitudes lessthan theheaviest

fermionmass(m t O(10 2 GeV = 2

)). Althoughthereare nosymmetriesin

thetheoryprote tingneutrinosfromhavingamass(e.g. amasslessphoton

isimposedbytheU(1) gaugesymmetry,relatedto the ele tri harge

on-servation), the me hanism to give su h a mass is not trivial. If a Yukawa

oupling via Higgs boson is invoked, a right-handed neutrino must be

in-trodu ed into theStandardModel,unless theun on rmedhypothesis that

neutrinos are Majorana parti les is true. A right-handed neutrino in the

Standard Model, however, should be neutral both to ele tromagneti and

weak harge, from the onstraintsimposed byLEP on thenumber of

neu-trino families((LEP Ele troweak Working Group, 1999)). Thus it will be

asinglet of SU(2)U(1), withthe right ofan additional Dira mass term

intheLagrangian that willbe totallyun onstrained. So more ompli ated

(39)

Figure 1.16: One-loop orre tions to the Higgs boson mass due to

fermioni (a)orbosoni (b)degreesoffreedom.

Model should be introdu ed. The so alled \see-saw" me hanism is the

mostpopularalternative, whi h ombines left- and right-handedneutrinos

inDira andMajoranamassterms,inorderto justifysu hsmallmassesfor

theneutrinos.

Two are thepossibleextensions of the StandardModel that willbe brie y

onsideredinthefollowing: supersymmetryand extra-dimensions.

1.3.1 Supersymmetry

Mainlymotivatedto stabilizetheHiggsmassquadrati divergen es,

super-symmetry onsists in assuming the existen e of a symmetry Q that

trans-formingfermionstobosonsandvi eversa. Forea hfermioninthetheoryis

thenintrodu edanewbosonand,byanalogy,to ea hbosonsisasso iateda

fermion. Thishasan immediate onsequen eon theone-loop orre tionsto

theHiggsmass( gure 1.16). Infa t, termdueto fermioni degrees of

free-domenterswithanoppositesignwithrespe tto orre tions duetobosoni

degrees of freedom. If 

f

and 

s

are the Higgs ouplings to fermions and

bosonsrespe tively,theone-loop orre tionm 2

H

totheHiggsmassbe omes

proportionalto m 2 H /( s  f ) 2 +O( 4 ): (1.61)

Forsuitablevaluesof the oupling onstantsthequadrati divergen es

dis-appear, leavingonlylogarithmi divergen es.

Ina supersymmetri StandardModelea h fermionis then oupledto a

bo-sonin a supersymmetri multiplet, alled\supermultiplet": to ea h lepton

is asso iated a so alled \slepton", a \squark" to ea h quark. In thesame

(40)

spin 0 spin 1/2 spin 1 SU(3) C SU(2) L U(1) Y ~ u L ; ~ d L u L ;d L 3 2 + 1 3 ~ u R u R 3 1 + 4 3 ~ d R d R 3 1 2 3 ~ ;e~ L  ;e L 1 2 1 ~ e R e R 1 1 2 H + u ;H 0 u ~ h + u ; ~ h 0 u 1 2 +1 H 0 d ;H d ~ h 0 d ; ~ h d 1 2 1 ~ g g 8 1 0 ~ w  ;w~ 0 W  ;W 0 1 3 0 ~ b 0 B 0 1 1 0

Table1.1: Parti le ontentofasupersymmetri StandardModel.

gaugesupermultiplet.

In the simplest extension of the Standard Model ( alled Minimal

Super-symmetri Standard Model) the Higgs se tor is omposed by two s alar

doublets,withtheirfermioni partners. Intable1.1thelistoftheStandard

Model parti les and theirsupersymmetri partners (\superpartners") with

thequantum numbersof ea hsupermultipletisgiven asa referen e.

Inorderto implementthebaryon(B)andlepton(L)number onservation,

anew onserved quantum number alled R -parityisde ned as

P

R =( )

3(B L)+2S

; (1.62)

whereB = 1=3 for quarksand squarks and 0 otherwise, L= 1 for leptons

and sleptons,0 otherwise, and S is theparti lespin. P

R

is equalto +1for

standardparti leswhileit takesthe value 1forsuperpartners.

Some onsequen es of theR -parity onservationare:

 the lightestsupersymmetri parti le(LSP) withP

R

= 1 isstable;

 supersymmetri parti les de ay into states with an odd number of

superpartners;

(41)

(a) (b)

Figure 1.17: Evolution of theele troweak, strong,and gravitational

oupling onstantswiththeenergys aleoftheintera tionsfor (a)the

StandardModelalone and(b) theMinimalSupersymmetri extension

oftheStandardModel(MSSM).

The rstthingtobenoti edisthatsuperpartnersofstandardparti les(e.g.

a s alarele tron) withthe same masswould have already beendete tedin

experiments. Sin e none of them has been observed so far, despite

exten-sive sear hes at ollider ma hines, the supersymmetry must be broken in

a realisti theory. However, the feature of having 

f =

s

to all orders in

perturbationtheory,that an elthedivergen esof theHiggsmass,mustbe

preserved inthebroken theory.

Theme hanismbywhi hthesupersymmetryisbrokenisthemaindiÆ ulty

inbuildingasupersymmetri extensionoftheStandardModel. Twoarethe

mainsolutionsproposed.

The rst one onsists in introdu ing a so- alled soft breaking term in the

StandardModelLagrangian,thatisthemostgeneralsupersymmetri

break-ingtermpreserving

f =

s

. Thisparametrizeourignoran eofthebreaking

me hanismwiththeintrodu tionof105freeparametersintothetheorythat

an be redu ed by further assumptionsbased on experimental onstraints

(e.g. absen eofFlavourChangingNeutral Currentpro esses,CP violation

et .).

The se ond me hanism involves gravity and is generally referred to as the

gravity-indu ed supersymmetry breaking (mSUGRA). It is the results of

someunderlyingme hanismthatbreaksthesymmetryataverylarges ale,

presumably ompatiblewith thePlan kmasss ale.

An en ouraging indire teviden e of supersymmetry is that theuni ation

(42)

Model tout- ourt, as it is shown in gure 1.17. Moreover,

supersymme-try is predi tedas a natural onsequen e by mostof the attempt to build

grand-uni edtheories(e.g. stringtheories).

1.3.2 Extra-dimensions

Ase ondpossibleextensionoftheStandardModelisbasedon

phenomeno-logi al theories involving the gravitational intera tion. The general idea

behind these theory is to solve the hierar hy problembringing the gravity

down to the weak intera tion s ale, obtaining the observed Plan k mass

s aleasaresultsofa(4+n)-dimensionalworld. Inour4-dimensionalspa e

gravitywouldappearweak,asfor elineswouldes apeinextradimensions.

Thestartingpointistheobservationthatele troweakintera tionshavebeen

probedat distan es 1 E.W. =m 1 W

whilegravitationalfor eshavebeen

in-vestigated only to distan es of the order of  1 m, whi h is 33 orders of

magnitudegreaterthantheintrinsi energys aleofgravity,givenbym 1

P .

Theassumptionthatgravityat 1 mwouldbethesameatm 1

P

isthen

not ompletelyjusti ed. Changes ould happen inbetween.

Theproposedtheories an bemainly dividedinto two lasses,a ording to

thekindofextra dimensionproposed:

 at ompa ti edextradimensions;

 warped extradimensions.

Ea hof thetwo previous ategories an be dividedintwo groups:

 gravitationalextradimensions: onlythegravitational elds an

prop-agate inextra dimensions;

 universal extra dimension: Standard Model elds and gravitational

elds an propagate inextradimensions.

In the following the prin ipal ideas behind at ompa ti ed and warped

gravitationalextradimensionswillbebrie y illustrated.

As enarioproposedbyArkani-Hamed,Dimopoulos,Dvali(Arkani-Hamed

etal.,1998)isthatinadditiontothespa e-timedimensionswelivein,there

aren ompa tspatialdimensionsofradiusRa essibletothegravitybut

nottotheotherthree fundamentalfor es. StandardModelparti les annot

freely propagate in 4+n dimensions but would be lo alized on the

(43)

extra-dimensionsaregravitons.

The onsequen eisthatinourworldgravitymanifestsitselfasanextremely

weakfor e,withtypi alintera tionenergiesoftheorderofthePlan ks ale,

despiteinthefull(4+n)dimensionsthey aresuppressattheweak

intera -tion s ale.

Atdistan esr R thegravitationalpotentialbetweentwomasses m

1 and

m

2

ismodi eda ording to theGauss'slawin(4+n)dimensions:

V(r) m 1 m 2 m n+2 P(4+n)  1 r n+1 ; rR : (1.63)

On the other hand, when the distan e between the two masses is mu h

greater than R , then their gravitational ux lines an no longer penetrate

insidetheextra dimensions,and theusual1=r potentialisobtained:

V(r) m 1 m 2 m n+2 P(4+n)  1 r ; r R : (1.64)

The e e tive 4-dimensionalm

P isthen given by m 2 P m n+2 P(4+n) R n : (1.65) By assuming that m P(4+n) is of the order of m W and by demanding R to

be su h that the observed m

P

is reprodu ed, the following value for R is

obtained: R10 30 n 17   TeV = 2 m W  1+ 2 n : (1.66)

For n = 1 this will imply R  10 13

m, so deviation from Newton's law

shouldappear at solarsystem distan es. However, if n2 su h deviation

wouldappearonlybelow1 mm,thatisdistan esnotyetprobedby

experi-ments.

A ording to thismodel, thephenomenology of theStandard Model is

en-ri hed with a graviton and all its Kaluza-Klein ex itations re urring on e

every 1=R , perextradimensionn.

Adi erentmodel(RandallandSundrum,1999)isbasedonthe

hypoth-esisoftheexisten eofatleastoneextradimensiona essibletogravityand

thatthemetri ofthespa e-time dis riminatesbetweenthetraditionalfour

oordinatesand theadditionalones.

(44)

spa e has the usual \ at" metri multiplied by a \warp" fa tor rapidly

hangingasa fun tionof theadditional oordinate:

ds 2 =e 2kr    dx  dx  +r 2 d 2 (1.67)

wherek isas aleoftheorderofthePlan ks ale,r

isthe ompa ti ation

radius,isthe oordinateof theextra dimension(0 <<) and  is the

usualMinkowski'smetri tensor.

Thegravity s ale,whi his at theele troweak s ale,is given by

  =m P e kr  (1.68) where   1 TeV= 2 an be obtained with kr  11;12. Massive

Kaluza-Kleinex itations ofgravitons appearwith amassgiven by

m n =kx n e kr  =x n  k m P    ; (1.69) where x n is the n th

root of the Bessel fun tion of order 1 (x

n

= 3:8317;

7:0156; 10:1735 forn=1; 2; 3).

The ouplingofthegravitonto theStandardModelparti leisproportional

to1=



. Thegravitonmassisdeterminedbytheratiok=



. Thesearethe

(45)

Bibliography

Arkani-Hamed, N., Dimopoulos, S. and Dvali, G. (1998), The Hierar hy

Problem andNew Dimensions at a Millimiter,hep-ph/9803315.

Del Du a, V.(2003),Higgs Produ tion at LHC,International Workshopon

QCD,hep-ph/0312184.

Eidelman, S., Hayes, K. et al. (2004), Review of Parti le Physi s, Physi s

LettersB, vol. 592,pp.1+, URLhttp://pdg.lbl.gov.

Glashow, S. L. (1961), Partial Symmetries of Weak Intera tions, Nu l.

Phys., vol. 22, pp. 579{588.

Higgs,P.W.(1964),Brokensymmetries, masslessparti lesandgauge elds,

Phys. Lett.12(2) (1964),pp. 132{133.

't Hooft, G. (1976), Computation of the quantum e e ts due to a

four-dimensional pseudoparti le, Phys.Rev., vol. D14,pp. 3432{3450.

't Hooft, G. (2005), 50 Years of Yang-Mills Theory, World S ienti

Pub-lishingCo.

LEPEle troweak Working Group(1999), A ompilation of the lastest

ele -troweak data from LEPand SLC,Te h. Rep.CERN-EP/99-15.

Peskin, M. E. and S hroeder, D. V. (1995), An Introdu tion to Quantum

FieldTheory,Addison-Wesley.

Puljak, I. (2000), CMS dis overy potential for the Higgs boson in the H !

ZZ ()

! 4e 

de ay hannel. Contribution to the onstru tion of the

CMSele tromagneti alorimeter, Ph.D.thesis,UniversiteParisVI.

Randall,L.andSundrum,R.(1999), ALarge MassHierar hy froma Small

Extra Dimension, hep-ph/9905221.

Renton,P.(1990),Ele troweak Intera tions -an introdu tion tothe physi s

of quarksand leptons, CambridgeUniversityPress.

The ALEPH, DELPHI, L3, OPAL, SLD Collaborations, the LEP

Ele -troweak Working Group, the SLD Ele troweak and Heavy Flavour

Groups (2005), Pre ision Ele troweak Measurements on the Z

(46)

Weinberg, S. (1967), A Model of Leptons, Phys. Rev. Lett., vol. 19, pp.

1264{1266.

Yang, C.-N.and Mills,R.L.(1954), Conservation of isotopi spin and

(47)

The CMS Dete tor at LHC

Inspiteoftheremarkablea ura yinthedes riptionofelementaryparti les

intera tions, theStandardModel does notyet give an answerto a number

of fundamental questions (see hapter 1). Building upon its past strength

ofunderstandingopen problems,thephysi s ommunityhasfo usedits

at-tentionto hadron olliders,whi hareparti ularlysuitableforthedis overy

ofnew physi s. TheLarge Hadron Collider(LHC)at CERN,presently

un-der onstru tion,representsthenewgenerationofhadron ollidersandwill

undoubtedlyhelpto llgapsinourknowledge.

Afterabriefdes riptionofthema hine,the hapter willfo usonCMS,one

of the two general purpose dete tors (ATLAS and CMS) whi h will be

in-stalledat LHCalongwithtwoexperimentsspe i allyorientedtobphysi s

(LHCb)and heavyions physi s(ALICE).Parti ularemphasiswillbe given

to the mainfo usof this thesis,the te hni alaspe ts and expe ted

perfor-man esof theele tromagneti alorimeter of theCMSdete tor.

2.1 The Large Hadron Collider

The LHCwillprovideproton-proton ollisionat a enterof massenergy of

14 TeV = 2

(7+7). The available energy forthe intera tions of the proton

elementary onstituents willthen rea h the TeV range,whi his aboutone

order of magnitude greater thanthe typi al LEPand Tevatron intera tion

energies.

The LHC will be pla edin the already existent 26:7 km long LEP tunnel

and is supposed to start its a tivity in2007. Sin e ollisions willo ur

(48)

Figure2.1: LayoutoftheLargeHadronColliderwiththefour

exper-imentsthatwillbelo atedatea h intera tionpoint.

two di erent magneti eld on gurations are required. Super ondu ting

dipoles operating at 1:9 K will provide a  8:4 T magneti eld. Boosts

will be given by 400 MHz super ondu ting radiofrequen y avities with a

voltage ranging between 8 and 16 MV. The hannels for the two beams

a eleration willbe insertedina single ryostat.

Protons will be delivered to LHC by an upgrade of the CERN existing

fa ility. Thisfa ilitywillbringtheprotonsto theinje tionenergyintoLHC

of450GeVinfoursteps( gure2.1): theLINACwillbringthemto50MeV ,

theBooster willfurther a elerate them up to 1:4 GeV , thePS to 25 GeV

andtheSPSwillinje tthemintotheLHCattheirinitialenergyof450GeV

aftera nala eleration step..

Thebun hes, withanominalnumberof10 11

protonsea h,willhave avery

smalltransverse spread(

x  

y

15 m) and will be7:5 m long in the

beam dire tions at the ollision points. A summary of the main te hni al

parametersof LHC isgiven intable 2.1.

Theluminosityofana eleratorthat ollidesbun hesofn

1 andn 2 parti les at afrequen yf isgiven by L=f n 1 n 2 4  ; (2.1)

(49)

Parameter Value

Cir umferen e[km℄ 27

Numberofmagnet dipoles 1232

Dipolar magneti eld[T℄ 8:386

MagnetTemperature [K℄ 1:9

Beamenergy[TeV= 2 ℄ 7 Nominalluminosity[ m 2 s 1 ℄ 10 34

Protonsperbun h 1:0510 11

Bun h spa ing[m℄ 7:48

Bun h timeseparation[ns℄ 24:95

Transverse beamsize I.P.[m℄ 200

rmsbun hlength[ m℄ 7:5

Crossingangle [rad℄ 210 4

Beamlifetime [h℄ 7

Luminositylifetime [h℄ 10

Table2.1: Mainte hni al parametersoftheLargeHadronCollider.

where

x and

y

representtheGaussianbeampro leintheplaintransverse

to thebeamaxis.

The nominal LHC luminosity is L = 10 34 m 2 s 1 and orresponds to an

integrated luminosity over one year of LHC runningof 100 fb 1

. Thiswill

value be rea hed after an initial phase at  10 33

m 2

s 1

(so alled \low

luminosity"phase) whi hwillbemainlydedi atedtotunethedete tor

per-forman es,to sear h fornew parti lesand to studythequark bphysi s.

TherequirementsontheLargeHadronCollider reate several hallenges

from the experimental point of view. The need of high statisti s to dete t

rare pro ess requires very high luminosity,with the onsequen es of a high

event rate dueto ommon QCDpro essesand an extremelydense parti le

environment.

Indeed, the total p-p ross se tion at the LHC energy is estimated to be

 100 mb (Eidelman et al., 2004), whi h, given the ma hine parameters,

impliesan average of about 20 p-p intera tion per bun h rossing, 10 9

in-tera tions per se ond. A strong online event sele tion is therefore needed

in order to redu e the event rate at around 10 2

Hz , 7 orders of magnitude

less, whi h orresponds to the maximum data storage rate rea hable with

(50)

to distinguishevents belongingto di erentbun h rossings, whi h are

sep-arated onlyby25 ns.

Regarding the hallenge given by the parti le density, a typi al minimum

bias ollision at LHC will produ e on average 5:5 harged parti les with

mean transverse momentum around0:5 GeV = and 8primary photonsper

unit of pseudorapidity. An interestingevent, whi h typi ally ontains high

p

T

leptons,highE

T

hadronjets,b-jets,largemissingtransversemomentum,

willalwaysbesuperimposedonthispile-up. Dete torsmusthen ehave ne

granularity in order to separate parti les very lose in spa e by means of

sophisti atedre onstru tionalgorithms.

Moreover,toextra tasmu hinformationaspossiblefromaninteresting

sig-nal,multi-purposedete tors shouldalso ful llthefollowingrequirements:

 fullhermeti itytoallowforana uratemeasure ofthemissing

trans-verseenergyandmomentum( omingfromalmostnon-intera ting

par-ti les, likeneutrinosorsupersymmetri neutralinos);

 apabilitytore onstru tleptonsinawiderangeoftransversemomenta

and rapidity(to re onstru tgauge bosons,tag b-jets et .);

 apabilitytore onstru t hargedtra kswithagoodpre isionontheir

transverse momentum andimpa t pointposition(toeÆ iently

re on-stru t and tagB parti lesand );

 apability to re onstru t hadron jets from QCD pro ess and heavy

parti les de ays.

A very high parti le ux traversing ea h omponent of the dete tor also

impose restri tive requirements on the material that an be used for the

dete tor onstru tion: the best results will be obtained with the optimal

ompromisebetweendete torperforman eandparti leradiationresistan e.

2.2 The Compa t Muon Solenoid

Inorderto satisfythepreviousbasi requirements,CMShasoptedfora

ompa tdete tor ina solenoidalmagneti eld oaxial withthebeam-line.

Thephilosophyadopted forthedete tor designhasbeen:

(51)

Figure2.2: ThreedimensionalrepresentationoftheCMSdete tor.

ii) thebest alorimetry ompatible withi);

iii) ahigh quality entraltra king to a hievebothi)and ii);

iv) ahadron alorimetrywitha 4 solid angle overage;

v) a nan iallya ordabledete tor.

The apparatus exhibits a ylindri alsymmetry around thebeam dire tion

and dete tors are installed following an onion-like stru ture of onse utive

layers in the entral region(barrel) and several disks inthe forwardregion

(end aps). As hemati view oftheCMS dete torisgiven in gure2.2and

a longitudinal view of one quarter of the dete tor in gure 2.3. The full

lengthis 21:6 m, thediameter is15 m, for a total weight of 12500 t and

an average densityof3:3g m 3

.

Tra kingand alorimetrysub-dete torsare pla edinsidethe

super ondu t-ing solenoidwhilethe muon system is integrated in thereturn yoke of the

magneti eld.

In the following dis ussion, the di erent dete tor omponents will be

Figure

Figure 1.1: Examples of 
ouplings pres
ribed by an Abelian gauge
Figure 1.5: (a) Bran
hing ratio for H de
ay for a variety of 
hannels
Figure 1.12: Higgs produ
tion via gluon fusion in pp 
ollisions at a
Figure 1.14: Cross-se
tion for the Standard Model Higgs produ
tion
+7

Références

Documents relatifs

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Etude du bruit de fond du canal H-&gt;ZZ-&gt;4l dans l’expérience ATLAS du LHC et recherche au-delà du modèle standard par le modèle à deux doublets de Higgs...

Puisque le nombre d’´ ev´ enements attendus dans ce canal est tr` es faible, un des points critiques de cette analyse repose sur la compr´ ehension et le contrˆ ole du bruit de fond

An de déterminer quelles sont les variables inématiques dis riminantes entre le signal gg → H → γγ et le bruit de fond γγ +X dans la région de l'espa e de phase où le boson

Nous nous présentons devant vous avec un esprit hum ilié, avec un cœur atten d ri, repentant ; recevez-nous, que votre sacrifice s’accomplisse et vous soit

Ne peut être désigné le cooccupant qui a déjà le droit d’être inscrit sur la liste référendaire du secteur concerné à titre de personne domiciliée, de

- 1  Autres, précisez svp, 0 ou 1point, s’il s’agit d’un plus positif dans le cadre du DD 4- La prise en compte de l’environnement est selon votre entreprise :  Gérer

We argue that this is a valid instrument for the four following reasons that will be detailed below: (1) it is a relevant instrument to measure the propensity of a country to