• Aucun résultat trouvé

Impact of Guar Gum Derivatives on Properties of Freshly-Mixed Cement-Based Mortars

N/A
N/A
Protected

Academic year: 2021

Partager "Impact of Guar Gum Derivatives on Properties of Freshly-Mixed Cement-Based Mortars"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: emse-01250110

https://hal-emse.ccsd.cnrs.fr/emse-01250110

Submitted on 4 Jan 2016

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Impact of Guar Gum Derivatives on Properties of

Freshly-Mixed Cement-Based Mortars

Alexandre Govin, Marie-Claude Bartholin, Barbara Biasotti, Max Giudici,

Valentina Langella, Philippe Grosseau

To cite this version:

Alexandre Govin, Marie-Claude Bartholin, Barbara Biasotti, Max Giudici, Valentina Langella, et al.. Impact of Guar Gum Derivatives on Properties of Freshly-Mixed Cement-Based Mortars. Caijun Shi; Yan Yao. 14th International Congress on the Chemistry of Cement (ICCC 2015), Oct 2015, Beijing, Italy. The 14th International Congress on the Chemistry of Cement - ICCC Proceedings, 2015. �emse-01250110�

(2)

Impact of Guar Gum Derivatives on Properties

of Freshly-Mixed Cement-Based Mortars

Alexandre Govin

1

, Marie-Claude Bartholin

1

, Barbara Biasotti

2

, Max Giudici

2

,

Valentina Langella

2

, Philippe Grosseau

1

1

SPIN-EMSE, CNRS:UMR5307, LGF, École des Mines de Saint-Étienne, 42023 Saint-Etienne, France

2

Lamberti SpA, 21041 Albizzate, Italy

Conclusions

Water Retention

 HPGs are good water retention agents

 Huge impact of HPG chemical composition

  MS

HP

promotes WR by  [HPG]

 Hydrophobic side chain promotes WR by  C*

Chemical composition of HPGs is a key parameter of mortar formulation

Rheological properties

 HPGs act as VEA

  “Classical” HPGs  the stability of mortars by 

0

 Hydrophobically modified HPGs  the resistance to the flow of admixed

mortars by  K

Xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxx

Introduction

Results

Facade render

Masonry

Adhesive mortar

Sand

Admixture

Cement

Water Retention Agent

(polysaccharide)

Most widely used admixture:

Cellulose Ethers

~ 1/3 of raw materials cost for only

0,5 wt%

Desired

Effect

Water Retention

= Capacity of fresh mortar to keep its mixing water

Without

Water Retention Agent

Absorption of water by the substrate

Mortar

Support

Mixing water stay into the

fresh mortar

 Good Mechanical and

adhesive properties

With

Water Retention Agent

Adhesion

failure

Cracking

Mortar

Support

Mortar

Polysaccharides are

also expected to act

as VEA

Major drawback:

Cement hydration

delay

Study of bio-based Water Retention and VEA admixture :

Hydroxypropyl Guar (HPG)

1 hole 6 holes 12 holes 18 holes 24 holes 30 holes 36 holes 42 holes48 holes 8x8.75mm Filter paper Depretion of 50mm of mercury (6,6 kPa)

Standard ASTM C 1506-09:

Water Retention

70

75

80

85

90

95

100

0.00%

0.05%

0.10%

0.15%

0.20%

WR

(

%

)

Polymer dosage (% bwob)

HPG 1

HPG 2

HPG 3

GG

HPG 4

HPG 5

Herschel-Bulkley model:

K

n

0

0

: yield stress

K: consistency coefficient

n: fluidity index

Rheological properties of mortars

20

40

60

80

100

120

140

0.00%

0.05%

0.10%

0.15%

0

(P

a)

Polymer dosage (% bwob)

20

40

60

80

100

120

140

0.00%

0.05%

0.10%

0.15%

0

(P

a)

Polymer dosage (% bwob)

HPG 1

HPG 2

HPG 3

GG

HPG 4

HPG 5

Yield Stress (

0

)

0

5

10

15

20

25

0.00%

0.05%

0.10%

0.15%

K (

P

a.s

n

)

Polymer dosage (% bwob)

20

40

60

80

100

120

140

0.00%

0.05%

0.10%

0.15%

0

(P

a)

Polymer dosage (% bwob)

HPG 1

HPG 2

HPG 3

GG

HPG 4

HPG 5

Consistency (K)

0

0.2

0.4

0.6

0.8

1

1.2

0.00%

0.05%

0.10%

0.15%

n

Polymer dosage (% bwob)

20

40

60

80

100

120

140

0.00%

0.05%

0.10%

0.15%

0

(P

a)

Polymer dosage (% bwob)

HPG 1

HPG 2

HPG 3

GG

HPG 4

HPG 5

Fluidity Index (n)

 

%

100

0

1

0

W

W

W

WR

Excepted

GG

,

HPGs improve

the WR capacity of mortars

Positive impact

of the additional

alkyl chain

 Adsorption compensated by  in coil overlapping

concentration

 MS

HP

improves

the WR capacity

MS

HP HPG 1

< MS

HP HPG 2

<

MS

HP HPG 3

Thanks to  Adsorption and thus  [HPG] in pore

solution

 DS

AC

slightly

reduces

the WR capacity

<

DS

HP HPG 5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.00%

0.05%

0.10%

0.15%

0.20%

m

g

p

o

ly

m

er

ad

so

rb

ed

/g

b

in

d

er)

Polymer dosage (% bwob)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.00%

0.05%

0.10%

0.15%

0.20%

m

g

p

o

ly

m

er

ad

so

rb

ed

/g

b

in

d

er)

Polymer dosage (% bwob)

HPG 1

HPG 2

HPG 3

GG

100% adsorption

HPG 4

HPG 5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.00%

0.05%

0.10%

0.15%

0.20%

m

g

p

o

ly

m

er

ad

so

rb

ed

/g

b

in

d

er)

Polymer dosage (% bwob)

HPG 1

HPG 2

HPG 3

GG

HPG 4

HPG 5

100% adsorption

Adsorption

Hydrophobic alkyl chain:

Low  Adsorption

Change in conformation of HPG

(Simon et al.)

Alkyl chains inside the coils / Hydrophilic groups at the

outskirt of the coils

 MS

HP

:  Adsorption

because of  free -OH and polarity

TOC - Centrifugation - Depletion method

Low dissolution kinetics of GG



0

with HPGs

1

,

2

,

3

Bridging flocculation



K

and

 n

with HPGs ,

5

 MS

HP

 adsorption 

bridging compensated by

 η

0

and [HPG]

Rheological behavior of mortars imposed by the

more and more shear thinning behavior of pore

solution

Materials

Seed

Endosperm

Grinding

HPG preparation

HPG Studied

HPG

O

HO

HO

O

O

O

O

OH

O

O

O

OH

HO

OH

O

HO

H

2

C

C

CH

3

HO

H

H

2

C C

CH

3

HO

H

Native guar gum obtained

without chemical treatment

O

OH

HO

O

O

O

O

OH

HO

O

O

OH

HO

OH

OH

HO

Thermomechanical

extraction

Cyamopsis

tetragonolobus

India

Irreversible

nucleophilic

substitution

 A native Guar Gum (

GG

) + 3 HPGs + 2 hydrophobically

modified HPGs

Roughly the same molecular weight (≈ 2.10

6

Da)

H

ydroxy

P

ropyl

G

uars

 Water-to-Binder ratio: W/B = 0.22

Admixtures in addition to the binder: 0.05%

– 0.15% bwob

Mortar Formulation

Sample

MS

HP

Additional

Substitution

DS

AC

HPG 1

Low

-

-

HPG 2

Medium

-

-

HPG 3

High

-

-

HPG 4

High

Short alkyl chain

HPG 5

High

Short alkyl chain Higher than HPG 4

GG

-

-

-

Component

CEM

II/B-LL 32.5R

Lime CaCO

3

CaMg(CO

3

)

2

Water

% mass of

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to